Multi-Proposer Construction on top of Tendermint





# Roadmap of this talk

1. Concrete



2. Abstract

Tendermint Muppet: Multi-proposer construction

3. Discussion



Buchman, Kwon, Milosevic. "The latest gossip on BFT consensus" arXiv preprint arXiv:1807.04938 (2018).







Malachite came about from the need to run Tendermint in a strange new way, for Starknet decentralized sequencer







\* Inspired from Starknet here







#### Requirements for the decentralized sequencer protocol

Battle-tested



#### Performance

Optimistic responsiveness

#### Rich, novel architectures



Madara, Pathfinder







Objectives

f@litate growth and stability

dere application differentiation

#### Strategy

- Exceptional <u>expressivity and power</u> to enable richer architectures
- Exceptional <u>performance</u>

Roadmap of this talk

1. Concrete



2. Abstract

♦ Tendermint

♦ Muppet: Multi-proposer construction





3. Discussion

# Tendermint And the art of <u>simplifying</u>

- the most widely-used BFT consensus protocol

- represents the meeting of theory <> practice circa 2013

some constraints brought from practice:
builds on a gossip network
rotate leaders all the time

- main novelty:

\* the simplified termination mechanism \* unified graceful & degraded paths

- The protocol was wrong the first couple of times



Buchman, Kwon, Milosevic. "The latest gossip on BFT consensus" arXiv preprint arXiv:1807.04938 (2018)

#### Tendermint refresher

Start consensus on block height H round O



#### Vote Extensions



Each vote extension is signed, arbitrary data

![](_page_12_Figure_0.jpeg)

#### Multi-proposal API

New API support in Malachite (via Muppet)

![](_page_13_Figure_2.jpeg)

![](_page_13_Picture_3.jpeg)

![](_page_14_Figure_0.jpeg)

## Multi-Proposer Design (1)

![](_page_15_Figure_1.jpeg)

## Multi-Proposer Design (2)

![](_page_16_Figure_1.jpeg)

Ordering of concise certificates (not raw Bundles) -> Higher throughput

## Multi-Proposer Design (3)

![](_page_17_Figure_1.jpeg)

Finalization Latency: 4 one-way message delays

# Multi-Proposer Design (4)

![](_page_18_Figure_1.jpeg)

# Multi-Proposer Design (5)

![](_page_19_Figure_1.jpeg)

#### Censorship Resistance

- Value of CR unclear
- Design space available
- ⊘ | Option 1 inclusion multiplier
  - Each tx: User chooses an inclusion multiplier (m)
  - The multiplier determines how many validators will include the tx in their next Bundle
  - If multiplier x > f+1, then guaranteed inclusion in next block
  - Lower efficiency (high redundancy)

#### ∅ | Option 2 - dependency graph via Bundles

- User chooses a builder/val that guarantees inclusion, running an auction at each height (say, Flashbots)
- Top N tx at Flashbots get included in each Bundle, as follows
- At multicast layer, Flashbots pays ~F other validators to include the Bundle certificate at their next Precommit
- Higher efficiency (but requires extra mechanism)

![](_page_20_Picture_13.jpeg)

![](_page_20_Picture_14.jpeg)

![](_page_20_Picture_15.jpeg)

Roadmap of this talk

1. Concrete

![](_page_21_Picture_2.jpeg)

2. Abstract

Tendermint

Muppet: Multi-proposer construction

![](_page_21_Picture_6.jpeg)

![](_page_21_Picture_7.jpeg)

3. Discussion

#### Discussion

![](_page_22_Figure_1.jpeg)

Name for Multi-Proposer Muppet Polykite Malaplex ?? names are tough..

#### Free DA problem

![](_page_22_Picture_4.jpeg)

Require each wallet to have 5x the min fee in funds

![](_page_22_Picture_6.jpeg)

![](_page_23_Picture_0.jpeg)

Lausanne, Zurich, Toronto, Berlin ...

Core R&D & security for decentralized systems

![](_page_23_Picture_3.jpeg)

![](_page_23_Picture_4.jpeg)

https://t.me/MalachiteEngine

**QUINT** https://quint-lang.org/

![](_page_23_Picture_7.jpeg)

https://cycles.money/

We are (always) hiring!
https://informal.systems/

# Lifecycle of a user's transaction

![](_page_24_Figure_1.jpeg)

# Overview of cool things we're experimenting with

![](_page_25_Figure_1.jpeg)

♦ throughput

♦ symmetric API

Two-phase Tendermint variant

#### ♦ latency

- simpler base protocol
- ♦ 5F+1 fault-model

♦ reth integration

◆ libp2p improv & MEV protection

EVM integration

♦ engine API ergonomics

# Brief genealogy

![](_page_26_Picture_1.jpeg)

![](_page_27_Picture_0.jpeg)

- \* Most widely used BFT consensus engine
- \* Originally called "Tendermint Core"
- \* Implements Tendermint in Go
- \* A lot of "batteries included"
- \* discovery
- \* RPC server
- \* mempool
- \* indexer
- \* write-ahead log

-> Simplified adoption by users

![](_page_28_Picture_0.jpeg)

Both implement Tendermint

Malachite

OSS & long-term maintenance

~ 0(1000) nodes

| Go                                          | Rust                                              |
|---------------------------------------------|---------------------------------------------------|
| Monolithic                                  | Modular                                           |
| Many "batteries" included                   | Lean & extensible                                 |
| Build blockchains (i.e., Layer 1s)          | Build whatever: sequencers, provers, ?            |
| Building happens <u>on top</u> of it        | Building happens with it                          |
| "Enough" performance ~ 1-2 years to iterate | Progressively higher perf ~ 3-6 months iterations |

#### Open areas of R&D

![](_page_29_Figure_1.jpeg)

# (Vanilla) Tendermint Throughput

![](_page_30_Figure_1.jpeg)

https://github.com/cometbft/cometbft/blob/main/docs/references/qa/CometBFT-QA-v1.ma

leader's p2p for block dissemination @ Propose phase

![](_page_30_Picture_4.jpeg)

### (Vanilla) Tendermint Bottleneck

![](_page_31_Figure_1.jpeg)