
Multi-Proposer Construction
on top of Tendermint

� / AdiSeredinschi
https://informal.systems/malachite

(rhymes with "dynamite")



Roadmap of this talk

3. Discussion

1. Concrete

Tendermint
Muppet: Multi-proposer construction

2. Abstract



Source: electrek.co

By Vauxford - Own work, CC BY-SA 4.0

Decentralized
Application

Buchman, Kwon, Milosevic. "The latest gossip on BFT consensus"
arXiv preprint arXiv:1807.04938 (2018).



Malachite: Origins

<>

Malachite came about from the need to run Tendermint in
a strange new way, for Starknet decentralized sequencer



User transactions

User

Developer

chaotic system:
- bugs
- lost tx
- inconsistent state
- liveness problems
- efficiency & costs
- maintenance

Decentralized
Sequencer

Execution
and proofs

L1



Decentralized
Sequencer

Execution
and proofs L1

L1Proof Scheduling

Forc
ed S

taki
ng U

pdat
e

Pro
of 

Sub
miss

ion

* Typical protocols needed
for a decentralized rollup

* Inspired from Starknet here



Malachite: Origins

Requirements for the decentralized sequencer protocol

<>

well-understood
fast to production

specs exist
thoroughly researched

Battle-tested

Simple

Performance

Optimistic responsiveness

...



Objectives

Rich, novel architectures

Madara, Pathfinder Snapchain Crosslink

Strategy
facilitate growth and stability

drive application differentiation
to enable richer architectures

Exceptional performance

Exceptional expressivity and power



Roadmap of this talk

3. Discussion

1. Concrete

Tendermint

Muppet: Multi-proposer construction

2. Abstract

Muppet



- the most widely-used BFT consensus protocol

- represents the meeting of theory <> practice
circa 2013

- some constraints brought from practice:
* builds on a gossip network
* rotate leaders all the time

- main novelty:
* the simplified termination mechanism
* unified graceful & degraded paths

- The protocol was wrong the first couple of times

Buchman, Kwon, Milosevic. "The latest gossip on BFT consensus"
arXiv preprint arXiv:1807.04938 (2018)

Tendermint
And the art of simplifying



...

Start consensus
on block height H

round 0

P0 -
P1 correctly
broadcasts
a Propose

P2 correctly
broadcasts
Prevote

P3 correctly
broadcasts
Prevote

P1 locks
on

and broadcasts
Precommit

&
Precommit

&
Precommit

P1, P2, and P3 decide
on value

P2 locks
on

P3 locks
on

P1 correctly
broadcasts
Prevote

P0

P1
proposer

P2

P3

faulty

L18:19 L40

L36:43

L49:54

L24

L24

L24

PROPOSE PRECOMMITPREVOTE

PREVOTE

PREVOTE

m1 m1

m1

m1

m1 m1

m1

m1

m1

m1 m1

Tendermint refresher
propose prevote precommit



All decide on
Also, each node

witnesses 3/4 extensions
P0

P1
proposer

P2

P3

PROPOSE PRECOMMITPREVOTE

PREVOTE

PREVOTE

m1 m1 m1 m1 m1m1m1m1
m1

m1

m1

m1

m1

Vote Extensions

precommit w/ vote extensions

Each vote extension is signed, arbitrary data



Standard in BFT consensus

Single-proposal API

X X

X

DECIDE

DECIDE

PROPOSE

BFT consensus protocol
e.g., Tendermint, Bitcoin

Ethereum's GASPER

- 1 proposal at a time

- 1 block = 1 decision = 1 proposal

- rotating leader

- total order over decisions

Abstract view:

Validator
(Elected Proposer)

Validator
(Non-Proposer)

Validator
(Non-Proposer)

Validator
(Non-Proposer)

..



New API support in Malachite (via Muppet)

Multi-proposal API

X

X

Xu

v

t

y
y

y
v

z

v

v

Multi-Proposer

Tendermint

DECIDE

DECIDE
PROPOSE

PROPOSE

PROPOSE

PROPOSE

- many proposals at a time

- 1 block = 1 decision = many proposals

- (same) rotating leader

- (same) total order over decisions

Abstract view:
Validator

Validator

Validator

Validator

Validator

Validator

API is symmetric



Application layer

Multicast layer

User

broadcast_tx

propose(Bundle)

decide(Set(Bundle))

Multi-proposer layer
DECIDE

PRECOMMIT w/
VOTE EXTENSION

Muppet

Malachite
(incl. Tendermint)

multicast

fetch

returns Certificate

returns Set(Bundle)



Multi-Proposer Design (1)

propose

propose

propose

multicast

multicast

multicast

Multicast

CERT CERT

CERT

Bundle Bundle

Multi-Proposer #1

Multi-Proposer #2

Application layer #2

Application layer #1

CERT

CERT

to be
continued ..

to be
continued ..

CERTBundle



Multi-Proposer Design (2)

Malachite

CERT CERT

CERT

finalize

finalize

PRECOMMIT
(vote ext)

DECIDEUnmodified
Tendermint

Ordering of concise certificates (not raw Bundles) -> Higher throughput

PRECOMMIT
(vote ext)

Multi-Proposer #1

Multi-Proposer #2

Application layer #2

Application layer #1



Multi-Proposer Design (3)

.. to be discussed ..

Finalization Latency: 4 one-way message delays

INPUT

INPUT

OUTPUT

OUTPUT

Malachite

PRECOMMIT
(vote ext)

PRECOMMIT
(vote ext)

PRECOMMIT

HEIGHT H HEIGHT H+1

PRECOMMITPROPOSAL PREVOTE

DECIDE



Multi-Proposer Design (4)

Malachite

PRECOMMIT

PRECOMMIT

PRECOMMIT

HEIGHT H HEIGHT H+1

PRECOMMITPROPOSAL

Validate
the proposed value

PREVOTE

DECIDE

Multi-Proposer #1
This is the value

proposed

MUST be >2f+1
vote extensions

Each ext. MUST be
0..* CERT

Multi-Proposer #2

Multi-Proposer #3

Multi-Proposer #4



Multi-Proposer Design (5)

Malachite

finalize

finalize

PRECOMMIT

DECIDEUnmodified
Tendermint

PRECOMMIT

Multi-Proposer #1

Multi-Proposer #2

Application layer

Application layer

Multicast layer #2

fetches the full Bundle
identified by its CertificateMulticast layer #1

fetch

fetch



Censorship Resistance

Option 1 - inclusion multiplier

Option 2 - dependency graph via Bundles

Each tx: User chooses an inclusion multiplier (m)

User chooses a builder/val that guarantees inclusion, running
an auction at each height (say, Flashbots)

The multiplier determines how many validators will include
the tx in their next Bundle

Top N tx at Flashbots get included in each Bundle, as follows

At multicast layer, Flashbots pays ~F other validators to
include the Bundle certificate at their next Precommit

If multiplier x > f+1, then guaranteed inclusion in next block

Lower efficiency (high redundancy)

Higher efficiency (but requires extra mechanism)

Value of CR unclear

Design space available

User

User

multiplier (m)

tip & auction

inclusion in m Bundles

broadcast_tx

broadcast_tx

..



Roadmap of this talk

3. Discussion

1. Concrete

Tendermint

Muppet: Multi-proposer construction

2. Abstract
Muppet



Discussion
Name for Multi-Proposer

Muppet

Polykite

Malaplex

??

names are tough..

Fees

Free DA problem

Validation
Inclusion CheckTx

Require each wallet to have 5x the min fee in funds

Execution ReCheckTx

Don't care



* Lausanne, Zurich, Toronto, Berlin ..

* Core R&D & security for decentralized systems

https://informal.systems/
We are (always) hiring!

https://quint-lang.org/

https://cycles.money/

https://t.me/MalachiteEngine



Lifecycle of a user's transaction

transaction

set of
vote extensions

broadcast
multicast

precommit

decide

precommit

1
2

4b
4c
..

3

6

7

4

5

Application layer
Multicast layer

User

decide(Set(Bundle))
Multi-proposer layer

VOTE EXTENSION

VOTE EXTENSION
Malachite

fetch (if needed)

propose
CERT

Bundle

Bundle



Two-phase Tendermint
variant

Overview of cool things we're
experimenting with

throughput

latency

simpler base protocol

5F+1 fault-model libp2p improv & MEV protection

reth integration

engine API ergonomics

symmetric API

Multi-proposer

EVM integration



Brief genealogy

impl.

fork & continuation

many lessons from

Buchman, Kwon, Milosevic. "The latest gossip on BFT consensus"
arXiv preprint arXiv:1807.04938 (2018).

Algorithm

Impl. in Go
Consensus Engine Impl. in Rust

Consensus Engine

Impl. in Go
Consensus Engine

RIP

�����



* Most widely used BFT consensus engine

* Originally called "Tendermint Core"

* Implements Tendermint in Go

* A lot of "batteries included"

* discovery
* RPC server
* mempool
* indexer
* write-ahead log

Simplified adoption by users



Both implement Tendermint

OSS & long-term maintenance

~ O(1000) nodes

Go

Monolithic

Many "batteries" included

Build blockchains (i.e., Layer 1s)

Building happens on top of it

"Enough" performance ~ 1-2 years to iterate Progressively higher perf ~ 3-6 months iterations

Building happens with it

Rust

Modular

Lean & extensible

Build whatever: sequencers, provers, .. ?



Open areas of R&D

provable consensus

problem: dev. velocity is low due to slow L1 upgrades

problem: prove anti-censorship to external observer

automatic upgrades outcome: versioning & upgrade support for block protocol

outcome: zk-proof on block construction properties

outcome: reusable primitives for processing proofs from
other base layers

native oracle
problem: coordination with other L1s takes herculean effort

Multi-proposer Two-phase Tendermint EVM (Reth) integration



https://github.com/cometbft/cometbft/blob/main/docs/references/qa/CometBFT-QA-v1.md

- 300-400 tx/s

- 1 tx = 1024 bytes

- ~.4 MB/s

leader's p2p for block
dissemination @ Propose phase

(Vanilla) Tendermint Throughput

Summary

Bottleneck



(Vanilla) Tendermint Bottleneck

...

P0

P1
proposer

P2

P3

propose prevote precommit


