
Short-lived zero-knowledge proofs and signatures

Arasu Arun1, Joseph Bonneau1,2, and Jeremy Clark3

1 New York University
New York, NY, USA

2 University of Melbourne
Melbourne, VIC, Australia

3 Concordia University
Montreal, QC, Canada

Abstract. We introduce the short-lived proof, a non-interactive proof
of knowledge with a novel feature: after a specified period of time, the
proof is no longer convincing. This time-delayed loss of soundness hap-
pens “naturally” without further involvement from the prover or any
third party. We propose formal definitions for short-lived proofs as well
as the special case of short-lived signatures. We show several practical
constructions built using verifiable delay functions (VDFs). The key idea
in our approach is to allow any party to forge any proof by executing
a large sequential computation. Some constructions achieve a stronger
property called reusable forgeability in which one sequential computation
allows forging an arbitrary number of proofs of different statements. Our
work also introduces two novel types of VDFs, re-randomizable VDFs
and zero-knowledge VDFs, which may be of independent interest.

1 Introduction

A digital signature is forever. Or at least, until the underlying signature scheme
is broken or the signature key is breached. This is often in contrast to what
is strictly required in real world applications: a signature might need to only
provide authenticity for a few seconds to conduct an authenticated key exchange
or verify the provenance of an email. When cryptographic proof of past actions
lives on for decades, it violates the principle of least privilege. At best, the long-
lived authentication provided by standard signatures is often unnecessary. In
certain cases, however, it may have significant undesirable consequences.

An illustrative example is the Domain Keys Identified Mail (DKIM) proto-
col [61] used by modern SMTP servers to sign outgoing email on behalf of the
entire domain (e.g., example.com) with a single key. DKIM is primarily intended
to prevent email spoofing [32]. As such, these signatures only need a lifetime of
minutes for recipient SMTP servers to verify and potentially filter email. How-
ever DKIM signatures do not expire and instead provide long-lasting evidence
of authenticity for old email messages, such as ones leaked through illicit data
breaches [81]. As a result, cryptographers have suggested that DKIM servers
should periodically rotate keys and reveal old private keys to provide deniability
for old DKIM signatures [51].

Our approach. A short-lived proof convinces the verifier of the following: either
a claimed statement x is true or someone expended at least t steps of sequential
work to forge the proof. The proof incorporates a random beacon value (e.g., the
day’s newspaper headline) to ensure it was not created before a specific time T0.
If a verifier observes the proof within ∆ units of time after T0, she will believe
it is a valid proof if ∆ < t because it would be impossible to have forged the
proof within that time period. Once ∆ ≥ t, the proof is no longer convincing as
it may have been constructed through the forgery process.

Our constructions build on recent advances in time-based cryptography,
specifically verifiable delay functions (VDFs) [18,87,72]. Under the hood, the
sequential computation required for forging a proof or signature in all of our
schemes is equivalent to evaluating a VDF on a random input.

Cryptographic deniability. The idea that signatures should not be permanently
verifiable is a special case of cryptographic deniability. This is often weaker than
intuition suggests. Informally, deniability for signatures means there is no addi-
tional cryptographic proof that Alice sent a particular message. There may still
be circumstantial proof such as logs or testimony, but these would exist whether
or not cryptography was used at all.

A simple approach, as suggested for DKIM, is to publish secret information
after running a protocol which enables any party to forge transcripts, undermin-
ing them as definitive evidence. Other approaches include deniable key exchange
protocols (e.g., OTR messaging [23]) or designated verifier proofs/signatures [56]
which limit verifiability to a specified set of parties. By contrast, short-lived
proofs are non-interactive and publicly verifiable yet become deniable after a
specified period of time without any further action by the prover. For signa-
tures, the signer can maintain a long-lived key even as messages signed with it
expire.

The fact that short-lived signatures provide deniability without the sender
needing to interact with the recipient (or even know the receivers’ public key)
makes them uniquely qualified for achieving deniability in several practical sce-
narios, as we discuss in Section 10. An example is sending signed email to a large
group of individuals who do not have known public keys using a single signature.
To our knowledge, ours is the first primitive to enable this.

To summarize our contributions, as outlined in Table 1:

• We introduce the notion of short-lived zero-knowledge proofs (§4), with
short-lived signatures [35] as a special case (§8). Reusable forgeability cap-
tures the useful property of a single slow computation enabling efficient proof
forgery for any statement (§4.1).
• We propose a short-lived proof construction (with reusable forgeability) from

any generic non-interactive zero-knowledge proof scheme and any VDF (§5).
• We propose a short-lived proof construction (§6.2) for any Σ-protocol (§2.2)

and any VDF with a Σ-protocol for verification. Our basic scheme requires
precomputation per-proof, which we eliminate by introducing the concept of
re-randomizable VDFs (§A).

2

Sc
he

m
e

Se
ct

io
n

R
eu

sa
bl

e
fo

rg
ea

bi
lit

y

N
o

pr
e-
co

m
pu

ta
tio

n

V
D
F

re
qu

ire
d

Pro
of

/S
ig
n

ty
pe

short-lived proofs

Generic ZK §5 any [18] generic SNARK

Σ-Precomp §6.2 # # any [18] Σ-protocol

Σ-rrVDF §6.3 # G# re-randomizable (§A) Σ-protocol

Σ-zkVDF §7 G# zero-knowledge (§7.1) Σ-protocol

short-lived signatures

Generic ZK §8.1 any [18] generic SNARK

Σsign ∨ zkVDF §8.1 G# zero-knowledge (§7.1, §C) Σ signatures

Sign-Trapdoor §8.2 # trapdoor ([87,72]) RSA

Sign-Watermark §8.3 G# watermarkable ([87], §B) RSA

Table 1. A comparison of our constructions. The symbol G# denotes schemes with a
time-space tradeoff in the delay parameter t (see §9).

• We introduce the notion of zero-knowledge VDFs (§7) and use it to build a
short-lived proof with reusable forgeability for Σ-protocols.
• We show that our general Σ-construction can be instantiated with Σ-signatures

such as Schnorr (§8.1). We further introduce short-lived signature schemes
(§8.2) from trapdoor VDFs [87] and watermarkable VDFs which are as com-
pact as a single VDF proof and offer reusable forgeability.

2 Background and Related Work

2.1 Zero knowledge proofs and arguments

We start with a basic background on zero-knowledge proofs, while referring
the reader to [83] for more comprehensive introduction. Zero-knowledge proofs
concern a relation R ⊂ X × W — a set of pairs (x,w) where x is called the
statement or instance and w is called the witness. For example, for the relation
of a Diffie-Hellman tuple, we might write: RDH3 = {(x = (g, g1, g2, g3), w =
(a, b))|g1 = ga∧g2 = gb∧g3 = gab}. The set of all values x such that there exists
a witness w for which (x,w) ∈ R is the language LR. If there is a polynomial-
time algorithm to verify that (x,w) ∈ R, then LR is an NP language. It has
been shown that all NP-languages have a zero-knowledge proof system [50]. A

3

non-interactive zero knowledge proof system ΠR for R is a trio of algorithms
(we consider R to be hard-coded into all three):

• Π.Setup(λ)→ pp
• Π.Prove(pp, x, w)→ π
• Π.Verify(pp, x, π)→ Accept/Reject

A proof system is complete if, for all (x,w) ∈ R, given a proof π ← Prove(pp, x, w),
the verification algorithm Verify(pp, x, π) outputs Accept. A proof system is
sound if an unbounded malicious prover (who does not know w) cannot pro-
duce an acceptable proof with probability greater than 2−κ for knowledge error
κ. The weaker notion of computational soundness holds for polynomial-time
malicious provers; for simplicity we refer to such argument systems as proofs.

A proof of knowledge has an additional property roughly stating that an
adversary must “know” a witness w to compute a proof for (x,w) ∈ R. Soundness
for proofs-of-knowledge is formalized by defining an algorithm A which outputs
an accepted proof π and demonstrating an efficient algorithm Extract which can
interact with A and output a witness w such that (x,w) ∈ R. Depending on the
proof construction, the extractor may need to rewind A (a rewinding extractor)
or inspect A’s internal state (a non-black box extractor).

A proof of knowledge is zero knowledge if the proof π reveals nothing about
the witness w. Formally, this is established by an efficient algorithm Simulate
which, given any statement x ∈ LR and the ability to program the random oracle
to give specified responses, can output simulated proofs π̃ indistinguishable from
real proofs such that Verify(pp, x, π̃) accepts.

If the system produces succinct (e.g., constant or poly-logarithmic sized)
arguments, it is a SNARK (or zk-SNARK) for R, of which there are now many
known constructions [52,49,11].

2.2 Sigma Protocols

Outside of Section 5, our constructions utilize a special subclass of interactive
zero-knowledge proof systems, called Σ-protocols [79]. A Σ-protocol [79] is a
three-move interactive protocol between P and V that realizes a partially secure
proof of knowledge which is called honest verifier zero-knowledge.

1. P runs Σ.Commit(x)→ a and sends a to V.
2. V runs Σ.Challenge()→ c and sends c to P.
3. P runs Σ.Respond(x,w, a, c)→ z and sends z to V.
4. V accepts if Σ.Verify(x, a, c, z)→ Accept.

We write ΣR to denote a Σ-protocol for relation R. A Σ-protocol has special
soundness if there exists an algorithm Σ.Extract(x, a, c, c′, z, z′) which outputs a
witness w for x when given any two accepting transcripts of the form (x, a, c, z)
and (x, a, c′, z′) (with c 6= c′). A Σ-protocol is honest verifier zero-knowledge if it
has an efficient algorithm Σ.Simulate(x)→ (ã, c̃, z̃) such that Σ.Verify(x, ã, c̃, z̃)

4

accepts and the distribution of (x, ã, c̃, z̃) is indistinguishable from transcripts of
a genuine interaction between a verifier prover knowing a witness w.

Every Σ-protocol can be transformed into a non-interactive, fully secure (i.e.,
no honesty assumption on the verifier) zero knowledge proof in the random oracle
model using the Fiat-Shamir heuristic [46], in which the challenge is generated
as c = O(x, a). Σ.Extract and Σ.Simulate make use of rewinding the other party
and programming the random oracle.

2.3 Disjunction of Σ-protocols

The set of relations with Σ-protocols is closed under conjunction and disjunc-
tion [37]. The classic protocol for disjunction of Σ-protocols, which we denote
Σ-OR, is due to Cramer et al. [37].4 Let ΣR1

and ΣR2
be Σ-protocols for rela-

tions R1 and R2 respectively. Assume the prover wants to prove the disjunction
of the statement x = (x1, x2) and knows a witness w1 showing that (x1, w1) ∈ R1

(knowing w2 and showing that (x2, w2) ∈ R2 is a symmetric case). The proof is
constructed as follows:

Protocol ΣR1∨R2(x1, w1, x2,−) :
1. P runs ΣR2

.Simulate(x2)→ (a2, c2, z2)
2. P runs ΣR1

.Commit(x1)→ a1
3. P send (a1, a2) to V
4. V sends c = Σ.Challenge() to P
5. P sets c1 = c⊕ c2
6. P runs ΣR1

.Respond(x1, w1, a1, c1)→ z1
7. P sends (c1, c2, z1, z2) to V
8. V accepts if:
• c = c1 ⊕ c2
• ΣR1 .Verify(x1, a1, c1, z1) accepts
• ΣR2 .Verify(x2, a2, c2, z2) accepts

The core idea is that the prover is able to choose the challenge to one of
the two Σ-protocols, but this induces a pseudorandom challenge for the other
protocol which the prover must then be able to genuinely prove. We will use
this construction in Section 7 and introduce a similar (but slightly different)
construction in Section 6.2.

2.4 Beacons

A beacon [73] is a continual source of unpredictable public randomness. A bea-
con’s output at time Ti should be uniformly random and unpredictable as of
time Ti. We assume that beacon values are drawn uniformly randomly from a
space |B| ≥ 2λ for the security parameter λ. All our protocols assume an input
beacon value denoted b.

4 Ciampi et al. [30] later introduced a different Σ-OR protocol with certain advantages
over the Cramer et al. construction.

5

In practice, NIST operates a centralized beacon which publishes 512 random
bits every minute [4]. The drand project operates a public beacon publishing 256
bits every 30 seconds [2] using a multi-party randomness protocol [82]. Other
potential beacons that have been analyzed include web server challenges [54],
stock market prices [31], lottery draws [6] and blockchain data [22].

2.5 Verifiable Delay Functions

Verifiable delay functions (VDFs) are defined by a trio of algorithms:5

• VDF.Setup(t, λ)→ pp
• VDF.Eval(pp, b)→ (y, π)
• VDF.Verify(pp, b, y, π)→ Accept/Reject

Boneh et al. first formalized VDFs and offer precise security definitions [18].
Informally, VDFs satisfy three important properties. VDFs must be verifiable,
meaning that the verification algorithm is efficient (at most polylogarithmic in t
and λ) and always accepts when given output from the genuine Eval algorithm.

Most importantly, VDFs must impose a computational delay. Roughly speak-
ing, computing a VDF successfully with non-negligible probability over a uni-
formly distributed challenge b should be impossible without executing t sequen-
tial steps. More precisely, VDF security is defined by a property called σ, p-
sequentiality against an online adversary able to run for σ(t) steps using up
to p(t) parallel processors [18]. The adversary may use an advice string from a
precomputation algorithm that might run for much longer, i.e., O(poly(t, λ)).
The exact values of σ and p depend on the underlying construction, as does
the notion of a “step” of computation (typically squaring an element in a finite
group or evaluating a one-way function). All of our constructions reduce forging
a proof to evaluating a VDF on a random input. Our definition of t-Forgeability
(§4) maps directly to the sequentiality definition for VDFs.

VDF evaluation must be a function, meaning that Eval is a deterministic
algorithm and it is computationally infeasible to find two pairs (b, y), (b, y′) with
y 6= y′ that Eval will accept. Our constructions don’t rely on this property and we
could instead use the weaker notion of a proof-of-sequential work (PoSW) [64,33].
Modern VDF constructions are in fact the most efficient known PoSW construc-
tions; for simplicity we present all our constructions using the notation and
terminology of VDFs.

VDFs constructions have been proposed from generic succinct proofs [18],
repeated squaring in groups of unknown order [87,72], permutation polynomi-
als [18], isogenies [44], and homomorphic encryption [57]. Earlier work proposed
“weak” VDFs based on computing square roots mod p [41,63].

An important limitation of all VDF constructions is that they can only guar-
antee a certain number of steps of sequential computation are required. The

5 The VDF challenge is traditionally denoted x, we use b to avoid confusion with x as
the statement of a zero-knowledge proof.

6

real-world or “wall-clock” time needed to execute this computation varies based
on the speed of available computing platforms. In our work, this means that
the period of time after which proofs become forgeable varies. To manage this
limitation, conventional wisdom suggests using a VDF with a relatively simple
evaluation function for which highly optimized hardware is available to honest
parties, limiting the speedup available to attackers. For this reason, repeated-
squaring based VDFs are considered the most practical candidates today.

2.6 VDFs from repeated squaring

We focus in particular on VDF constructions which utilize repeated squaring
in a group of unknown order as the core sequential computation, as these have
useful algebraic properties for building short-lived proofs and signatures. VDF
evaluation is simply y = VDF.Eval(b) = b2

t

. Note that the computation is b(2
t)

(requiring t sequential squarings) and not (b2)t (requiring only log t squarings); to
avoid clutter we will omit parenthesis around the exponent 2t which will appear
frequently. Wesolowski [87] and Pietrzak [72] introduced two distinct approaches

for efficiently proving that y = b2
t

in a group of unknown order:

Wesolowski proofs Wesolowski proofs [87] work as follows. First, the Prover

provides ỹ, claiming ỹ = b2
t

. The verifier provides a random prime ` as a chal-
lenge. Both parties compute, via long division, the unique values q, r such that
2t = q`+r and 0 ≤ r < `. Finally, the prover outputs a proof π = bq. The verifier
accepts if and only if ỹ = q`br. Note that this protocol is itself a Σ-protocol.

Pietrzak proofs Pietrzak proofs [72] are generated through a multi-round

protocol. As before, the Prover provides ỹ, claiming ỹ = b2
t

. The prover then

provides a value v and asserts that v = b2
t/2

. The verifier then chooses a random
challenge r and they both compute ỹ′ = ỹ · vr, b′ = v · br. The verifier could

manually verify that ỹ′ = (b′)(2
t/2) by computing t

2 squarings, half as many

as the original problem of verifying that ỹ = b(2
t). Alternately, the prover can

send the value r to the prover, who can recursively prove that ỹ′ = (b′)(2
t/2).

Typically, this is done for d rounds, each reducing the size of the exponent in

half, until the verifier manually checks the remaining exponent of size 2t/2
d

. A
single round of Pietrzak is a Σ-protocol, the recursive version of the proof is a
multi-round generalization.

Comparison Boneh et al. [19] provide a detailed comparison of the two proof
constructions. Wesolowski proofs are shorter (two group elements instead of
O(log t)) but more difficult to compute and rely on slightly stronger assumptions.
In this work we observe a new property of both constructions, re-randomizability
(§6.3), and introduce a new zero-knowledge variant of Wesolowski proofs (§7).
We also discuss watermarking (§8.3) which is possible for both proofs.

7

Concrete groups In this work, we will refer to an abstract group of unknown
order G and assume some algorithm GroupGen which randomly samples suitably
sized groups. The best-known family of groups of unknown order (often called
RSA groups) is the multiplicative group (Z/N)∗ of integers modulo a composite
N = pq. Typically, N is chosen to be a product of two safe primes p, q, that
is, p = 2p′ + 1, q = 2q′ + 1 for smaller primes p′, q′. It is important to note
that (Z/N)∗ itself should not be used directly for VDFs, because the low-order
assumption does not hold. Boneh et al. [19] suggest instead using the group
G+ = (Z/N)∗/{±1}.

With any RSA group, the factors p, q act as a trapdoor enabling fast VDF
evaluation (by reducing the exponent 2t modulo ϕ(N) = (p− 1)(q − 1)). Hence
this construction is described as a trapdoor VDF [87]. In our signature applica-
tion, the trapdoor is in fact necessary (§8.2) while in other cases, the existence
of the trapdoor is a risk. N can be computed via a trusted setup which deletes
the prime factors, using a secure multi-party computation [55] or by choosing
using a sufficiently large random modulus [77].

Alternately, class groups of imaginary quadratic fields [24] have been pro-
posed [87,19] as a family of groups of unknown order which can be sampled
efficiently without a trusted setup. However, secure parameter choices and opti-
mized implementations are less well understood for class groups.

3 Related Work

Jakobsson, Sako and Impagliazzo originate the idea of using disjunctive state-
ments to provide deniability [56]. Given a statement x to be proven to Bob in
zero knowledge, the proof is transformed into the statement: {either x or I know
the Bob’s private key}. A proof of this compound statement, which is called a
designated verifier proof, is only convincing to Bob. If Bob is confident that no-
body else knows his private key and that he did not compute the proof, then he
knows the second clause is false and therefore x is true. Anybody else is unsure
if x is true or if Bob ‘forged’ the proof by satisfying the second clause. An-
other approach to constructing signatures with the designated-verifier property
is chameleon signatures [60], which use a standard hash-and-sign construction
but with a chameleon hash function whose trapdoor is known by the intended
verifier, providing deniability if the verifier attempts to transfer the signature to
another party.

Several other works have used disjunctive proofs to provide different no-
tions of deniability. Baldimtsi et al. showed the constructions and applications
for proofs-of-work-or-knowledge (PoWorKs) of the form {either x or someone
solved a proof-of-work puzzle} where the puzzle requires w units of parallelizable
computation [7]. Specter et al. propose {either x or someone has seen value v
released at time T} for a v to be published at a future time T [81].

Many of our constructions follow the same disjunctive template, with the
essential statement being {either x or someone solved a VDF on a beacon value
derived from b which was unknown before time T}. VDFs requires t sequential

8

steps (which approximate elapsed time much more reliably than a parallelizable
proof of work) and does not rely on future action for the second clause to be
true. Of these related approaches, the Specter et al. KeyForge and TimeForge
protocols are the closest in purpose to our own work—we discussed them deeper
in Section 10.2.

Similar time-based deniability notions for signatures specifically have been
considered by several authors (we believe ours is the first to expand to gen-
eral proofs). Ferradi et al. [45] in 2015 presented a protocol for what they call
fading signatures using the RSW time-lock puzzle and a trusted authority to
pre-compute some solutions using the trapdoor. Their notion is weaker in that
verification is slow, requiring t sequential steps. In hindsight, with the benefit of
modern VDFs the slow verification time of their approach could be fixed.

An initial version of this work appeared as a Masters thesis in 2018 by Col-
burn [35] who was supervised with the third author of this paper (Clark). The
thesis was written before the development of VDFs (using proof-of-work instead),
and thus all of the constructions in this paper are new. However we do describe
common applications of short-lived proofs and signatures, including the voting
protocol in Section 10.3 which was originally proposed to Colburn by Clark.

The connection between VDFs and time-based deniability was made by
Wesolowski who presented an interactive identification scheme that becomes
deniable after the passage of time [87, §8]. Interestingly, Wesolowski devel-
oped a time-limited signature protocol in 2016 which improved on the Fer-
radi et al. construction [86], which evolved into his seminal VDF paper. Sadly,
Wesolowski’s manuscript remained unpublished until the time of our own work.
Wesolowski’s protocol is essentially the same as our proposed Sign-Trapdoor
construction (§8.2). Our version embeds a beacon value, making it transferable,
non-interactive, and an actual signature (rather than an authentication proto-
col). While a simple change, the use of beacons are consequential. In fact, beacons
can be used adversarially against his identification scheme—the scheme is still
secure but requires new security bounds (see Appendix D).

Other time-based cryptographic primitives have been proposed including en-
cryption, commitments, and signatures [74,17,84]. In the context of the cited
literature, a timed signature [17] is a commitment to a signature that has been
shared and can later be revealed. However if the committer aborts before reveal-
ing, the recipient can perform sequential work to uncover the signature. Dodis
and Yum introduced a similar idea of time-capsule signatures [39] which become
valid after a certain period of time when a time-server releases some information.
A proof is offered that the commitment is a well-formed signature on a message,
and recent work [84] has proposed new efficient constructions of the required
proof. We are essentially solving the inverse problem: instead of a signature be-
ing hidden for time ∆t and then unforgeable for the rest of time, a short-lived
signature is unforgeable for ∆t and then deniable for the rest of time.

9

Definition 1 (Short-Lived Proofs). Let λ be a security parameter. Let
LR be a language in NP and R be a relation such that (x,w) ∈ R if and only
if w is a witness showing x ∈ LR. Let B be a space of beacon values where
|B| ≥ 2λ. A short-lived proof system Πt

R with time delay t ∈ Z is a quartet
of randomized algorithms (Setup,Prove,Forge,Verify):

• Setup(L, λ, t)→ pp produces a set of public parameters pp
• Prove(pp, x, w, b)→ π produces a proof π if (x,w) ∈ R
• Forge(pp, x, b)→ π produces a proof π for any x
• Verify(pp, x, π, b)→ (Accept,Reject)

Πt
R must satisfy the following properties:

• Completeness: For all (x,w) ∈ R and b ∈ B, π ← Prove(pp, x, w, b)
runs in time less than t and Verify(pp, x, π, b) outputs Accept.

• t-Forgeability: For all x, b ∈ B, π ← Forge(pp, x, b) runs in time (1+ε)t
for some positive constant ε and Verify(pp, x, π, b) outputs Accept.

• t-Soundness: For all x and for any pair of adversary algorithms A0

(precomputation) which runs in total time O(poly(t, λ)) and A1 (online)
which runs in parallel time σ(t) with at most p(t) parallel processors, if

Pr

α← A0(pp, x);

b
$← B;

π ← A1(pp, x, b, α);

Verify(pp, x, π, b) = Accept

 > neg(λ)

then there exists an algorithm Extract with programmable access to the
random oracle O and rewinding access to A1 such that with probability
1− neg(λ) the algorithm Extract(pp, x, b) outputs a witness w such that
(x,w) ∈ R. The probability is over the choice of b and the random coins
used by each algorithm.

• Zero Knowledge: There exists an algorithm Simulate with pro-
grammable access to the random oracle O which runs in total time less
than t such that given pp, for all (x,w) ∈ R and b ∈ B the distribu-
tions {Simulate(pp, x, b)} and {Prove(pp, x, w, b)} (taken over the ran-
dom coins used by each algorithm) are computationally (resp. statisti-
cally) indistinguishable.

• Indistinguishability: For all (x,w) ∈ R, b ∈ B the distributions
{Prove(pp, x, w, b)} and {Forge(pp, x, b)} (taken over the random coins
used by each algorithm) are computationally (resp. statistically) indis-
tinguishable.

10

4 Definitions

Definition 1 provides our main definition of short-lived proofs. The public pa-
rameters pp potentially encapsulate both setup needed for an underlying proof
system and setup needed for an underlying VDF. Either or both may represent
a trusted setup if they require a secret parameter that can be used to break
security assumptions if not destroyed. The Setup algorithm is also given both a
description of the language L and delay parameter t. Some underlying proof sys-
tems may require setup specific to L (others may offer universal setup) and some
underlying VDFs require hard-coding the delay parameter t. In the remainder
of the paper, we will generally omit pp to keep notation simpler.

The critical security property, t-soundness, closely follows that used in defin-
ing security for VDFs [18]. In our case, the (potentially long-running) pre-
processing algorithm A0 receives not only the public parameters of a VDF func-
tion but also the statement x on which the adversary wishes to forge a proof.
Once the random beacon value b is known, the attacker’s clock starts running
and the online algorithm A1 must attempt to forge a proof in fewer than σ(t)
time steps (which in all of our constructions reduces to the intractability of
solving an underlying VDF in fewer than σ(t) time steps).

The definitions of indistinguishability and zero-knowledge are closely related:
the Forge algorithm is able to (slowly) produce proofs indistinguishable from
those of the genuine Prove algorithm whereas Simulate produces indistinguishable
proofs in fewer than t steps (but requires programmable random oracle access).
In a sense, short-lived proof schemes are zero-knowledge without a simulator
because the Forge algorithm is able to produce valid proofs without knowing a
witness. However, it is important to require an efficient simulator (with respect
to t) to be sure that the zero-knowledge property holds even if a distinguisher
can measure the time used to create proofs.

4.1 Reusable forgeability

A basic short-lived proof scheme allows the Forge algorithm time to perform a
unique slow computation for each pair (x, b). In practice, this means that forg-
ing multiple proofs can be expensive, weakening the deniability of any individual
proof. Some short-lived proof schemes offer a stronger reusable forgeability prop-
erty in which performing one slow computation for a beacon value b enables
efficiently forging a proof for any statement x without performing a full addi-
tional slow computation. Even better, some schemes might allow forging a proof
of any statement for any beacon value from a set B = {b1, . . . bk} after just
one slow computation. We call this property k-reusable forgeability (with basic
reusable forgeability being the special case of k = 1). In practice, the set B can
comprise all prior beacon values, enhancing deniability as one slow computation
at any point in the future could enable forgery of all prior proofs.

For simplicity of presentation we denote the special case of 1-reusable forge-
ability as simply reusable forgeability. We provide a definition for k-reusable
forgeability which allows an arbitrary set of size at most k. All of our schemes

11

either provide k-reusable forgeability for arbitrary k or are limited to 1-reusable
forgeability.

Definition 2 (k-Reusable Forgeability). A k-reusably forgeable short-lived
proof system Πt

R is a short-lived proof with two additional functions:

• GenAdvice(pp,B) → α takes a set B of size |B| ≤ k and produces (in time
(1 + ε)t) an advice string α

• FastForge(pp, x, b, α)→ π produces a proof π for any x

These new functions satisfy the following properties, in addition to all prop-
erties of a general short-lived proof system:

• Reusable Forgeability: For all x and for all B ⊆ B and b ∈ B, given
advice string α← GenAdvice(pp,B) the algorithm FastForge(pp, x, b, α)→ π
runs in parallel time less than t and Verify(pp, x, π, b) outputs Accept.

• Indistinguishability II: For all (x,w) ∈ R, B ⊆ B and b ∈ B, given
advice string α ← GenAdvice(pp, b) the distributions {Forge(pp, x, b)} and
{FastForge(pp, x, b, α)} (taken over the random coins used by each algorithm)
are computationally (resp. statistically) indistinguishable.

Our generic protocol (§5) offers 1-reusable forgeability immediately and ex-
tends easily to offer k−reusable forgeability for arbitrary k (with proving over-
head logarithmic in k). Obtaining 1-reusable forgeability is also possible (though
not as easy) for our Σ-constructions.

5 Short-lived proofs from generic zero knowledge

Given any VDF scheme and a non-interactive zero-knowledge proof system Π
for all languages in NP, we can produce a short-lived proof for any relation R
for an NP language LR. We do this by taking the disjunction (∨) of R with the
VDF relation RVDF:

RVDF = {(x = b, w = (y, π))|VDF.Verify(b, y, π))} (1)

The language LRVDF
is in NP because VDF verification must run in polyno-

mial time. Therefore, the disjunction LR∨RVDF
is in NP and the proof protocol

ΠR∨RVDF
is a short-lived proof for R:

Theorem 1 (SLP from Generic Zero-Knowlege). Let R be a relation for
a language in NP, Π be a zero-knowledge proof system for languages in NP and
VDF be a verifiable delay function with delay parameter t. Then Πt

R = ΠR∨RVDF

is a short-lived proof protocol with reusable forgeability for R with time delay t.

12

Proof. The required properties follow directly from definitions of the under-
lying primitives. The completeness of Πt

R is due to the completeness of ΠR.
t-Forgeability follows from the correctness property of the underlying VDF, en-
suring that Forge can produce convincing forgeries in (1 + ε)t steps by running
VDF.Eval(b) and using the output (y, π) to satisfy the VDF half of the dis-
junction. The Indistinguishability and Zero-Knowledge properties both follow
immediately from the zero-knowledge property of Π, preventing the adversary
from knowing which half of the disjunction was satisfied and meaning an efficient
simulator exists as required.

The t-Soundness property relies on the t-Sequentiality of the VDF. The re-
strictions on algorithms A0,A1 in the t-Soundness definition are identical to
those in the t-Sequentiality definition, meaning such algorithms will not be able
to solve the VDF with non-negligible probability. This means that any adversary
able to produce proofs must know a witness w for x, which the extractor for ΠR

can then efficiently extract.
Finally, to show that this scheme offers reusable forgeability, note that the

exact same VDF computation VDF.Eval(b) is required for proving any statement
x. Thus, it can be computed once and reused across proofs. The Indistinguisha-
bility II property is ensured by the zero-knowledge property of the underlying
proof scheme.

5.1 Extending to k-reusable forgeability

The basic scheme offers only 1-reusable forgeability, as a VDF evaluation on a
specific beacon value is required. We briefly outline a construction which pro-
vides k-reusable forgeability. This construction relies on a one-way accumulator
scheme [12] which we denote Acc. As above, our scheme computes a proof on
the disjunction of the original relation R with a new relation RVDF−k:

RVDF−k = { (x = b, w = (b∗, y∗, π∗, A,wb)) | VDF.Verify(b∗, y∗, π∗))∧ (2)

b∗ = Hash(A) ∧ Acc.VerifyMembership(A, b, wb)}

The core idea is that GenAdvice combines the set of past beacon values B
into an accumulator value A = Acc.AccumulateSet(B) and evaluates a VDF
on the value b∗ = Hash(A). The advice string α output by GenAdvice includes
the VDF solution (y∗, π∗) as well as the accumulator value A (and potentially
some additional data to facilitate computing inclusion proofs). The FastForge
algorithm can then satisfy RVDF−k for any included beacon value b by providing
the precomputed VDF solution (y∗, π∗) and an accumulator proof wb showing
that b is included in A. Computing wb is the only required work per proof.
In practice, this can be implemented efficiently using a classic Merkle Tree as
the accumulator (using a circuit-friendly hash function), leading to membership
proofs which are logarithmic in k (and independent of the delay parameter t).

The generic proof system’s underlying zero-knowledge property ensures forg-
eries are indistinguishable from genuine proofs and furthermore that nothing

13

about the set B is revealed. Soundness is maintained because b∗ depends on the
entire set B and hence GenAdvice cannot be run until every beacon value b ∈ B
in the set is known. Because GenAdvice solves the VDF, it will not finish in fewer
than t steps and hence cannot be used to win the t-Soundness game.

Proving security for this scheme requires an additional property of accumu-
lators, namely that computing the accumulator value requires work linear in size
of the accumulated set. Otherwise an attack would exist on soundness in which
GenAdvice is precomputed for a large set |Blarge| = o(polylog(λ)), giving a non-
negligible probability that a randomly chosen b is in Blarge. While this is not a
standard assumption about accumulators, it is true for common constructions
(e.g., Merkle trees or RSA accumulators [12]).

5.2 Supporting variable delay parameters

Some VDF constructions (including those based on repeated squaring) do not
require hardcoding t at the time Setup is called. Instead, any value of t can be
passed as a parameter to Prove and Verify. In this case, we can extend the notion
of reusability such that one VDF evaluation with any delay t′ ≥ t allows forging
a proof for with delay parameter t. This enhances deniability if different provers
use different values for t. This is straightforward with the generic construction,
simply adding an extra parameter to the VDF relation:

RVDF≥t
= {(x = (b, t);w = (y, π, t′))|VDF.Verify(b, y, π, t′)) ∧ t′ ≥ t} (3)

6 Short-lived proofs from Σ-protocols

While our generic construction offers reusable forgeability and works for all NP-
languages, generic zero-knowledge proof systems have practical drawbacks in-
cluding complexity, high prover costs (§9) and trusted setup in some construc-
tions. We would like to construct short-lived variants for Σ-protocols, an impor-
tant class of efficient zero-knowledge proofs. They are also natural to consider
given that Wesolowski proofs [87] are Σ-protocols and Pietrzak proofs are a
multi-round generalization.

6.1 Non-solution: Σ-OR proofs

A first, insecure attempt at a short-lived proof for a relation R with a Σ-protocol
ΣR is to simply combine ΣR with the verification protocol ΣVDF for some VDF
scheme, for example using the classic Σ-OR construction outlined in Section 2.3.

Unfortunately, this generic composition does not yield a short-lived proof
system because proofs are distinguishable from forgeries. Standard VDF proofs
reveal the unique6 value y = VDF.Eval(b) to the verifier as part of the proof

6 Proofs of sequential work do not have unique solutions, unlike VDFs, meaning they
might be used directly in a Σ-OR composition.

14

statement. This means that the algorithm VDF.Prove, which simulates the VDF
half of a Σ-OR composition, must provide a fake value y′ 6= y as part of the proof
whereas the Forge algorithm will simulate the R half of the proof and provide the
genuine y = VDF.Eval(b). Our definition of Indistinguishability does not preclude
the adversary from running for t steps, meaning they can simply compute the
genuine value y themselves by running VDF.Eval(b) and then determine if a proof
was constructed using Prove or Forge.

6.2 Short-lived sigma proofs from precomputed VDFs

To ensure indistinguishability, we introduce the construction Σ-Precomp (Pro-
tocol 1) which works for any Σ-protocol by modifying the input to the VDF
instead of the challenge. Assume the prover has precomputed a VDF on a ran-
dom input value b∗. Just as in the Cramer et al. construction, given a challenge
c, the prover chooses two values c1, c2 such that c1 ⊕ c2 = c and c1 is the chal-
lenge used with ΣR. Instead of using c2 as the challenge for the VDF proof, it is
used to modify the VDF input, evaluating on the point b⊕ c2. The intuition is
that the genuine prover can choose c2 freely and thus set c2 = b ⊕ b∗, mapping
the VDF input to a value b∗ for which it has already precomputed the solution.
However, a forger who is simulating ΣR cannot choose c1 freely and thus c2 is
an unpredictable random value, which requires the forger to solve a VDF on a
random point (b⊕ c2).

Theorem 2 (Proof forΣ-Precomp). Protocol 1 is a short-lived proof scheme.

Proof. The completeness and t-forgeability of Σ-Precomp follow directly from the
completeness of ΣR and correctness of the VDF. Indistinguishability similarly
follows from the underlying schemes. In the output of Prove, the challenge c2 =
b∗ ⊕ b will be randomly distributed as both b and b∗ are random by definition.
This means c1 will similarly be random, as c1 = c⊕ c2 where c is the result of a
random oracle and c2 is randomly distributed. In the output of Forge, the zero-
knowledge property of ΣR implies that the values (ã, c̃1, z̃) output by Simulate
are indistinguishable from the genuine values (a, c1, z) output by Prove (with c1
being randomly distributed). This further implies that the value c2 output by
Forge will be randomly distributed, since c2 = c⊕ c̃1, c is the result of a random
oracle and c̃1 must be randomly distributed to be indistinguishable from c1.
Finally, the values y, πVDF are determined uniquely by b ⊕ c2 as VDF.Eval is a
deterministic function and hence can add no new distinguishing information.

The Zero-Knowledge property can be shown by construction. The simulator
first calls ΣR.Simulate(x) to generate a sub-proof (ã, c̃1, z̃). The simulator then
programs the random oracle such that O(x ‖ b ‖ ã) → b∗ ⊕ c̃1, where b∗ is a
value for which the VDF solution (y∗, π∗VDF) is known, allowing the simulator
to complete the proof quickly.

Finally, to demonstrate t-Soundness, we define an extractor E which, given
a pair of algorithm (A0, A1) which output accepting proofs, either (1) extracts
a witness w from A1 for statement x and relation R or (2) computes a VDF

15

Σ-Precomp

Precompute
input : ∅
output : random point (b∗, y∗, π∗VDF)

1. Choose random b∗
$← B

2. Compute (y∗, π∗VDF)← VDF.Eval(b∗)

Prove
input : statement x, witness: w, beacon value b, precomputed (b∗, y∗, π∗VDF)
output : proof (a, c1, z, y

∗, π∗VDF, c2)

1. Compute a← ΣR.Commit(x)
2. Compute challenge c = O(x ‖ b ‖ a)
3. Set sub-challenge c2 = b∗ ⊕ b
4. Compute sub-challenge c1 = c⊕ c2
5. Compute z = ΣR.Respond(x,w, a, c1).

Forge
input : statement x, beacon value b
output : proof (ã, c̃1, z̃, y, πVDF, c2)

1. Compute (ã, c̃1, z̃)← ΣR.Simulate(x)
2. Obtain challenge c = O(x ‖ b ‖ ã)
3. Set sub-challenge c2 = c⊕ c1
4. Compute (y, πVDF)← VDF.Eval(b⊕ c2).

Verify
input : statement x, beacon value b, proof (a, c1, z, y, c2, πVDF)
output : Accept/Reject

1. Compute c = O(x ‖ b ‖ a).
2. Accept if:

• c = c1 ⊕ c2
• ΣR.Verify(x, a, c1, z) accepts
• VDF.Verify(b⊕ c2, y, πV) accepts

Protocol 1: Short-lived proofs using precomputed VDFs given a relation R
with Σ-protocol ΣR and a VDF scheme VDF.

output on a random input in fewer than t steps, violating the t-Sequentiality of
the underlying VDF.

E first runs A0 and A1 to obtain an accepting transcript (a, c, c1, c2, z, y, π).
E then receives a random VDF input bchal from a challenger for the VDF t-
sequentiality game. Next, the extractor rewinds A1 to obtain a new transcript

16

(a, c′, c′1, c
′
2, z
′, y′, π′) while programming the random oracle to fix c′ = bchal⊕b⊕

c1. As c 6= c′, we have the following two cases:
Case 1: If c1 6= c′1, then from the special soundness of ΣR, a witness for x

can be extracted by calling ΣR.Extract(x, a, c1, c
′
1, z, z

′).
Case 2: If c1 = c′1, the two VDF proofs are on inputs d = b⊕ c2 = b⊕ c⊕ c1

and d′ = b ⊕ c′2 = b ⊕ c′ ⊕ c′1 = b ⊕ c′ ⊕ c1. As the extractor programmed
the random oracle to ensure c′ = bchal ⊕ b ⊕ c1, we have d′ = bchal. As both
transcripts are accepting, VDF.Verify(bchal, y

′, π′) = Accept. As A1 runs in fewer
than t steps, E requires fewer than t steps to produce y′ as it only rewound and
reran the adversary once after obtaining bchal. Thus, E can output y′ and win
the t-Sequentiality game for the underlying VDF.

Assuming the underlying VDF is t-Sequential, case 2 cannot happen except
with non-negligible probability. Therefore E correctly outputs a witness for x
(case 1) with overwhelming probability.

The primary drawback of Σ-Precomp is that each precomputed VDF must
only be used once. If the same VDF challenge b∗ is visible in two proofs, an
adversary can conclude (with overwhelming probability) that both proofs were
generated by Prove, breaking Indistinguishability. Additionally it does not offer
reusable forgeability as a new VDF evaluation on a random point is required for
every run of Forge. Later, we present improved constructions aimed at reducing
precomputation and/or providing reusable forgeability.

Transforming a normal proof into a short-lived one using Σ-Precomp adds
the VDF output, the VDF proof and the sub-challenge used in the VDF. In the
case of Wesolowski’s VDF [87], the output and proof are both a group element
each and the challenge is λ (security parameter) bits long. For 2048-bit RSA
groups with λ = 128, the total size overhead comes to 528 bytes.

6.3 Optimization with re-randomizable VDFs

The biggest drawback of this construction is that it requires precomputation
before every call to Prove. However, the prover simply needs a fresh, random
VDF input/output pair and not a solution on any specific point. We can greatly
improve the practicality of this scheme if it is possible to quickly generate VDF
solutions (and proofs) on random points. We introduce the notion of a re-
randomizable VDF that has this property: given a VDF solution (b, y, π) and pos-
sibly some auxiliary data α, an efficient algorithm VDF.Randomize(b, y, π, α)→
(b′, y′, π′) outputs a randomly distributed solution.

We can use a re-randomizable VDF scheme to improve the efficiency of Pro-
tocol 1, enabling efficient proof of any (true) statement after a single VDF pre-
computation. Each time Prove is called, instead of precomputing a VDF solu-
tion (step 1 of Prove in Protocol 1), a new VDF solution on a random point
is produced by calling VDF.Randomize. Indistinguishability of proofs and forg-
eries reduces to the indistinguishability of random VDF solutions and those
generated by re-randomizing a known solution. We formalize the notion of a re-
randomizable VDF in Appendix A, capturing the necessary indistinguishability
property.

17

For VDFs based on repeated squaring, a random exponent r is chosen and
the input/output pair (b, y) is mapped to (b′ = br, y′ = yr), maintaining the

relationship that y′ = (b′)2
t

. Unfortunately this homomorphism does not apply
to proofs: given (y, π) ← VDF.Eval(b) and a randomized solution (br, yr) we
cannot obtain a correct proof by simply computing πr. However, for repeated-
squaring VDFs we can compute a proof for (br, yr) in fewer than t steps using
the same advice string α used to compute π when y was originally computed.
Wesolowski [87] describes such an advice string of length O(

√
t) that allows a

prover to compute a proof in O(t/ log t) steps. This algorithm may still be to
slow to re-randomize VDF proofs in reasonable time using commodity hardware.
By contrast, Pietrzak proofs can be re-randomized in just O(

√
t) steps using an

advice string of length O(
√
t). We provide the details of this re-randomization

algorithm (originally suggested by Boneh et al. [19]) in Appendix A.1.
This homomorphism was observed by Wesolowski, who warned that it was

a potential security weakness to be prevented by hashing to a random group
element as part of VDF computation [87, Remark 3]; here we use it in a con-
structive way. It has similarly been used by Thyagarajan et al. to build verifiable
timed signatures [84] and by Malavolta and Thygarajan to construct additively
homomorphic and fully homomorphic time-lock puzzles [65].

7 Short-lived proofs from zkVDFs

The previous Σ-based constructions did not provide reusable forgeability (Def-
inition 2). The fundamental problem is that (unlike our generic approach in
Section 5), they require Forge to solve the VDF on a new random value b∗ de-
rived from b for each forgery, rather than a solution on b itself which could be
used for multiple forgeries. We cannot include a standard VDF proof for b in
short-lived proofs because all known VDF proof schemes reveal the VDF output
y = Eval(b) which would clearly distinguish proofs from forgeries.

To avoid this distinguishability problem, we propose using a novel zero-
knowledge VDF (zkVDF) which proves knowledge of the output without re-
vealing it. Of course, since VDF verification is (by definition) an NP statement,
it is possible to construct a zkVDF from any VDF using a generic zero-knowledge
proof system to prove knowledge of VDF solutions. Our construction in Section 5
essentially does this (embedded within a disjunction). Later in this section, we
will present a more efficient construction based on Wesolowski proofs [87].

Given a Σ-protocol for RzkVDF and any relation R for which we have a Σ-
protocol ΣR, we can use the standard Σ-OR construction to create a disjunction
protocol ΣR∨RzkVDF

which we call Σ-zkVDF. To obtain reusable forgeability, we
set the VDF input to be the beacon value b. Thus, VDF.Eval(b) need be performed
only once to generate advice to quickly forge others proofs with b.

Theorem 3 (SLP from zkVDF and Σ-OR). Let R be a relation for a lan-
guage in NP, ΣR be a zero-knowledge Σ-protocol for R and ΣRzkVDF

be a Σ-protocol
for a zkVDF with delay parameter t. Letting x and w be the statement and witness

18

for relation R and b be the beacon, the following is a short-lived proof protocol
with reusable forgeability for R with time delay t:

Σ-zkVDF

• Prove(x,w, b): perform ΣR∨RzkVDF
by simulating ΣRzkVDF

with input b and run-
ning ΣR with statement x and witness w

• Forge(x, b): perform ΣR∨RzkVDF
by simulating ΣR for statement x and running

ΣRzkVDF
with input b

• Verify(x, b, π): verify ΣR∨RzkVDF
with statement x for ΣR and input b for

ΣRzkVDF

Proof. Our proof closely follows the proof for Theorem 1 and stems from the
definition of a short-lived proof and Σ-protocols. The completeness of ΣR∨RzkVDF

is due to the completeness of ΣR. t-Forgeability follows from the correctness
property of the underlying zkVDF: Forge can produce convincing forgeries in
(1 + ε)t steps by running zkVDF.Eval(b) and using the output (y, π) to satisfy
the ΣRzkVDF

half of the disjunction. The Indistinguishability and Zero-Knowledge
properties both follow immediately from the zero-knowledge property of Σ-OR
construction, preventing the adversary from knowing which half of the disjunc-
tion was satisfied and meaning an efficient simulator exists as required.

The t-Soundness property relies on the t-Sequentiality of the zkVDF. The
restrictions on algorithms A0,A1 in the t-Soundness definition are identical to
those in the t-Sequentiality definition, meaning such algorithms will not be able
to solve the zkVDF with non-negligible probability. This means that any adver-
sary able to produce proofs must know a witness w for x, which the extractor
for ΣR can then efficiently extract.

Finally, to show that this scheme is reusable, note that the exact same zkVDF
computation zkVDF.Eval(b) is required for proving any statement x. Thus, it can
be computed once and immediately reused across proofs.

7.1 zkVDF Construction

In this section we present a Σ-based zkVDF construction built off of Wesolowski
proofs [87]. To do so, we introduce a new zero-knowledge Σ-protocol for proof
of knowledge of a power (Protocol 2) using an idea similar to that introduced
by Boneh et al. [20, §3.2] for proof of knowledge of discrete log in a group of
unknown order. Our zero-knowledge proof that y = gu sends a blinded value
y′ = y · hv = guhv (for a random v) instead of y itself.

Theorem 4 (Zero-Knowledge Proof of Knowledge of Power). Proto-
col 2 is an honest-verifier zero-knowledge argument of knowledge for the relation
RPoKP = {((g, u); y) : gu = y}.

A proof of Theorem 4 is provided in Appendix C.

19

zk-PoKP

Parameters: security parameter λ, group of unknown order G ← GGen(λ), h
$← G,

B ≥ 22λ|G|; random oracle HashToPrime which outputs from the set Primes(λ) of the
first 2λ prime numbers

Prove
input: g ∈ G, u ∈ Z, witness y ∈ G such that y = gu

output: proof π = 〈a,Q, r2〉

1. Sample v
$← [−B,B]

2. Compute a = Commit(y, v) = y · hv
3. Compute ` = Challenge(a) = HashToPrime(a)
4. Let u = q1`+ r1, v = q2`+ r2 such that 0 ≤ r1, r2 ≤ `
5. Compute Q = gq1hq2

6. Respond(`) = Q, r2

Simulate
inputs: g ∈ G, u ∈ Z, simulated challenge ˜̀

output: simulated proof π̃ = 〈ã, Q̃, r̃2〉

1. Sample q̃1, ṽ
$←− [−B,B]

2. Let ũ = q̃1 ˜̀+ r̃1 and ṽ = q̃2 ˜̀+ r̃2 such that 0 ≤ r̃1, r̃2 ≤ ˜̀

3. Compute Q̃ = gq̃1hq̃2

4. Compute ã = Q̃
˜̀
gr1hr̃2

Verify
input: g ∈ G, u ∈ Z, proof π = 〈a,Q, r2〉
output: Accept/Reject

1. Compute ` = HashToPrime(a)
2. Let u = q1`+ r1 such that 0 ≤ r1 ≤ `
3. Check that a

?
= Q`gr1hr2

Protocol 2: Σ-protocol for proof-of-knowledge of a power in a group of unknown
order.

7.2 Efficiency of zk-PoKP and Σ-zkVDF

The zk-PoKP Simulate algorithm of Protocol 2 is efficient and takes timeO(λ log |G|+
polylog(t)). The most significant cost is computing five group exponentiations
with small exponents, each involving O(logB) = O(λ log |G|) steps. This makes
the honest Σ-zkVDF prover efficient as it runs the zk-PoKP simulation algo-
rithm.

The Forge algorithm for Σ-zkVDF must execute the Prove algorithm of
zk-PoKP. This naively takes time O(t), as it involves computing a large power
Q`. For multiple forgeries, this can be improved significantly using a precom-

20

puted advice string, identical to that used for re-randomizable VDFs (Sec-
tion 6.3). With an advice string of size O(

√
t), the Prove algorithm requires

only O(t/ log t) steps. Unlike the case for general re-randomizable VDFs, our
zk-PoKP construction is inherently based off of Wesolowski proofs and cannot
utilize the more efficient advice string approach used for re-randomizing Pietrzak
proofs. Designing a Pietrzak-style zk-PoKP is an interesting open problem.

Proof Size: The zkVDF proof contains two group elements (a,Q) and the re-
mainder r2. When using 2048-bit RSA groups and λ = 128, the total size comes
to 528 bytes. The Σ-zkVDF construction additionally includes one sub-challenge
(the other is implicit), which adds an extra λ bits, making the total overhead for
transforming a normal proof into a Σ-zkVDF short-lived proof 544 bytes. The
algorithm Σ-zkVDF.Prove requires running the zk-PoKP simulator. The signif-
icant operations are raising a group element to a power of size B twice, where
B ≈ 22λ|G|, and then raising two elements to a power of up to λ twice.

8 Short-lived signatures

A key special case of zero-knowledge proofs is digital signatures. We define a
short-lived signature scheme as follows:

Definition 3 (Short-Lived Signatures). Let λ be a security parameter and
B be a space of beacon values where |B| ≥ 2λ. A short-lived signature scheme
with time delay t is a tuple of algorithms:

• Setup(λ, t)→ pp
• KeyGen(pp)→ (pk, sk)
• Sign(pp, sk,m, b)→ σ takes a message m and beacon b and outputs (in time

less than t) a signature σ.
• Forge(pp,m, b) → σ takes a message m and beacon b and outputs (in time

less than (1 + ε)t) a signature σ.
• Verify(pp, pk,m, b, σ)→ {Accept, Reject}

The following properties are satisfied:

• Correctness: For all m, b ∈ B, if σ ← Sign(pp, sk,m, b), then Verify(pp, pk,m, b, σ)
accepts.

• Existential Unforgeability: For all pairs of adversary algorithms A0

(precomputation) which runs in total time O(poly(t, λ)) and A1 (online)
which runs in parallel time σ(t) with at most p(t) processors, the probability
that (A0,A1) win the following game is negligible:
1. Challenger C runs pp← Setup(λ, t) and (pk, sk)← KeyGen(pp). C sends

pp, pk to (A0,A1).
2. The adversary runs A0(pp, pk) ↔ C interactively with the challenger,

adaptively sending chosen message/beacon queries (mi, bi) to the chal-
lenger and receiving σi ← Sign(pp, sk, bi,mi) in response.

21

3. A0 outputs an advice string α.

4. C samples a random beacon value b
$← B and sends it to the adversary.

5. The adversary runs A1(pp, pk, α, b) ↔ C interactively with the chal-
lenger, adaptively sending chosen message/beacon queries (mi, bi) to the
challenger and receiving σi ← Sign(pp, sk, bi,mi) in response.

6. A1 outputs a claimed forgery (m∗, b, σ∗) and wins if (m∗, b) 6= (mi, bi)
for all i and Verify(pp, pk,m∗, b, σ∗) = Accept.

• Indistinguishability: For all m, b ∈ B, given a random (pk, sk)← KeyGen(pp)
the distributions {Sign(pp, sk,m, b)} and {Forge(pp,m, b)} (taken over the
random coins used by each algorithm and randomly generated private key)
are computationally (resp. statistically) indistinguishable.

This definition closely follows our definition of short-lived proofs and stan-
dard security properties for signatures. We present a game-based definition for
short-lived signature unforgeability, in contrast with our probabilistic soundness
definition for short-lived proofs, to more closely match standard unforgeability
definitions for signature schemes. The primary distinction is that the second ad-
versary A1 is required to run in fewer than t steps (otherwise it could simply
run the provided Forge algorithm).

Note that while our Indistinguishability definition compares distributions of
output, some signature schemes are deterministic(e.g., RSA [75], BLS [21]). In
this case, it is necessary that Sign and Forge produce the same exact signature
with overwhelming probability.

8.1 Constructions from Short-lived Proofs

We observe that our generic constructions in Section 5 can be used to trans-
form any signature scheme into short-lived signature scheme by implementing
a zero-knowledge proof for knowledge of a signature. Furthermore, our Σ-based
constructions in Section 6 can also be used for Σ-based signature schemes such
as Schnorr [79] or DSA[1,58].

8.2 Construction from Trapdoor VDFs

We present a short-lived signature construction from trapdoor VDFs [87] in Pro-
tocol 3. Trapdoor VDFs require a trusted setup which yields a secret evaluation
key (the trapdoor) enabling efficient evaluation. Normally, this trapdoor repre-
sents a security risk if not destroyed. However, we observe that in the case of
short-lived signatures, the trapdoor can serve as a signing key. Repeated-squaring
VDFs in RSA groups are trapdoor VDFs: the public parameters include an RSA
modulus N and the trapdoor is the factors p, q such that N = p · q. With the
trapdoor, raising an element to any large exponent z (e.g. z = 2t) is efficient, as
z can be reduced modulo ϕ(N) = (p− 1)(q − 1) into an equivalent exponent of
size less than N . Note that this trapdoor is equivalent to the private key used
for traditional RSA signatures.

Theorem 5 (Short-Lived Signatures from Trapdoor VDFs). Assuming
that Hash is a random oracle, Protocol 3 is a short-lived signature scheme.

22

Sign-Trapdoor

KeyGen
input : ∅
output : public key pk, private key sk

1. Generate keys (pk, sk)← tdVDF.Setup()

Sign
input : message m, beacon value b
output : signature σ

1. Compute x = Hash(m ‖ b)
2. Compute σ = (y, π)← tdVDF.TrapdoorEval(sk, x)

Forge
input : message m, beacon value b
output : signature σ

1. Compute x = Hash(m ‖ b)
2. Compute (with delay) σ = (y, π)← tdVDF.Eval(x)

Verify
input : message m, signature σ = (y, π)
output : Accept/Reject

1. Compute x = Hash(m ‖ b)
2. Check that tdVDF.Verify(pk, x, y, π, t)

Protocol 3: Short-Lived Signatures from a trapdoor VDF scheme

Proof. The correctness of this scheme comes from the correctness of the underly-
ing trapdoor VDF. Indistinguishability is trivial as signing and forgery produce
the exact same VDF output, given that VDFs are deterministic.

Existential unforgeability comes from the definition of a trapdoor VDF and
modeling Hash as a random oracle. Since the challenger chooses b randomly
during the existential forgery game after the precomputation of A0, the value
x∗ = Hash(m∗||b) will be randomly distributed for any message m∗. Thus, the
online algorithm A1 must evaluate the VDF on a random input in fewer than
t steps. The adversary’s ability to query for signatures on chosen pairs (mi, bi)
is new from the traditional VDF security model. However since each such pair
leads to a VDF evaluation by the challenger on xi = Hash(mi||bi), the adversary
can only learn VDF evaluations on a polynomial number of random inputs. This
ability could be simulated byA0 precomputing the VDF on a polynomial number
of random inputs and passing the results as part of the advice string α. Thus,
any pair (A0,A1) which make queries could be converted into an equivalent

23

Sign-Watermark

KeyGen
input : ∅
output : public key pk, private key sk

1. Generate keys (pk, sk)← wtVDF.Setup()

Sign
input : message m, beacon value b
output : signature σ

1. Compute watermark µ = Hash(m)
2. Compute σ = (y, π)← wtVDF.WatermarkTrapdoorEval(sk,Hash(b), µ)

GenAdvice
input : beacon value b
output : VDF output y, advice α

1. Compute (with delay t) y, α = wtVDF.Eval(Hash(b))

FastForge
input : message m, VDF output y, advice α
output : signature σ

1. Compute watermark µ = Hash(m)
2. Compute proof π = wtVDF.WatermarkEvalWithAdvice(Hash(b), µ, y, α)
3. Output σ = (y, π)

Verify
input : message m, signature σ = (y, π)
output : Accept/Reject

1. Compute watermark µ = Hash(m)
2. Check that wtVDF.WatermarkVerify(pk,Hash(b), µ, y, π)

Protocol 4: Reusably Forgeable Short-Lived Signatures from a Watermarkable
Trapdoor VDFs. wtVDF.WatermarkTrapdoorEval(sk, b, µ) takes secret trapdoor
sk, input b and watermark µ; the latter two are used to generate the challenge.

pair (A′0,A′1) which make no queries but rely on A′0 to precompute random
VDF solutions instead. Winning the signature forgery game with no querying
capability is then equivalent to evaluating the VDF on a random input. The
VDF security definition states that no suitably bounded algorithms (A′0,A′1)
can do so with non-negligible probability.

24

8.3 Construction from Watermarkable VDFs

The construction in Protocol 3 does not offer reusable forgeability, as the Forge al-
gorithm works by evaluating a VDF on a message-dependent value x = Hash(m ‖
b). We construct an efficient signature scheme (Protocol 4) with reusable forge-
ability using watermarkable VDFs which embed a prover-chosen watermark (µ)
during proof generation. Watermarkable VDFs were presented informally by
Wesolowski [87, §7.2]; we provide a formal definition with the essential security
property (watermark unforgeability) in Appendix B.

To build a short-lived signature scheme using a watermarkable VDF, we use
the beacon value as the input to the VDF and the message as the watermark.
This enables reusable forgeability, as once a forger has computed y = VDF.Eval(b)
for a specific beacon value, along with its associated advice string α, they can
sign a new message by computing a new proof using the same advice string. This
is equivalent to proof re-randomization, which can be done in significantly fewer
than t steps as discussed in Section 6.3. We note that reusability is more limited
for this signature scheme as the precomputation is specific to an individual user’s
public key. A single VDF evaluation enables efficient forgery of any statement
by a given signer, but will not work between different signers. Constructing an
efficient short-lived signature scheme with reusable forgeability between different
signers is an interesting open problem.

Theorem 6 (Short-Lived Sigs from Watermarkable Trapdoor VDFs).
Assuming that Hash is a random oracle, Protocol 4 is a short-lived signature
scheme with reusable forgeability.

Proof. The proof is substantially similar to that of Theorem 5. Correctness fol-
lows the correctness of the underlying watermarkable trapdoor VDF. Reusable
forgeability comes from the fact that computing different watermarked proofs
requires fewer than t steps once the VDF solution y and advice α have been pre-
computed. Indistinguishability and Indistinguishability II are trivial as signing,
forgery and fast forgery all produce the exact same VDF output.

Existential unforgeability comes directly from the essential security property
of watermarkable VDFs [87]. In the security game for a watermarked VDF, a t-
Sequential adversary is given a VDF output y = VDF.Eval(x) on a random point
x and the ability to query a number of watermarks (µi) from the challenger,
receiving (yi, πi) = VDF.WatermarkEval(x, µi) in response. The adversary wins
by producing a new proof (y, π∗) for a watermark µ∗ 6= µi for any queried wi,
such that VDF.WatermarkVerify(x, y, π∗, µ∗) accepts. This game maps exactly to
our unforgeability definition for short-lived signatures, therefore if no adversary
is able to win this game then our signature scheme is existentially unforgeable.
Similar to the proof for our trapdoor signature scheme, the extra capability of
the adversary to query for watermarks on any values bi 6= b can be simulated by
A0 precomputing random VDF solutions and therefore cannot help to win the
watermark forgeability game.

The key idea to construction a watermarkable VDF is to embed the wa-
termark into the Fiat-Shamir challenge, computing `← HashToPrime(y ‖ µ) in-

25

Protocol Size Overhead Proving Time Overhead

zk-SNARKs (§5) none 60-70 seconds

Σ-Precomp (§6.2) 2〈G〉+ λ 528 bytes O(T) precomputation

Σ-rrVDF (§6.3) 2〈G〉+ λ 528 bytes O(T/k) precomputation

Σ-zkVDF (§7) 2〈G〉+ 2λ 544 bytes 2expG(22λ|G|) + 2expG(2λ) 120 ms

Sign-Trapdoor (§8.2) 〈G〉+ λ 272 bytes expG(2λ) 10 ms

Sign-Watermark (§8.3) 〈G〉+ λ 272 bytes expG(2λ) 10 ms

Table 2. Additional costs required to transform a standard proof/signature into a
short-lived proof/signature. λ is the security parameter, 〈G〉 denotes the size of a
group element, expG(e) is the cost of raising a group element to a power of size e, t
is the VDF delay parameter. For concrete evaluations, λ = 128 and G is an 2048-bit
RSA group. Evaluation of the Generic zk-SNARK method was done using Groth16
zk-SNARKs [53].

stead of `← HashToPrime(y). This approach is possible for both Wesolowski [87]
and Pietrzak proofs [72]. Watermark unforgeability is claimed to hold for Wesolowski
proofs, though proving security is an open problem because the proof reveals a
value bq for a large q which may speed up computing y = b2

t

. We advocate a
more conservative approach, employing a watermarked version of our zkVDF
(§7) which is guaranteed not to reveal any such information.

9 Implementation and performance evaluation

9.1 zk-SNARK Construction

We implement the generic ZK algorithm using zk-SNARKs, which produce suc-
cinct non-interactive proofs for large computations. With zk-SNARKs, the state-
ment is represented in a format similar to algebraic circuits and prover efficiency
depends on the size of the circuit in gates. Given a base circuit for relation R and
an efficient circuit representation of VDF.Verify, it is straightforward to compile a
circuit that is the disjunction of the two as outline in Section 5. We implemented
a VDF circuit using Wesolowski VDF proofs [87] using a 2048-bit RSA modulus
and the “bellman-bignat” library [70].

The total size of the VDF verification circuit is just over 5 million gates.
The large size is due to the number of RSA group operations involved in the
verification. SNARK proofs were generated using the Groth16 construction [53]
which produces proofs of constant size around 300 bytes and with verification
time under 10 ms. As proofs are constant size and the verification cost is minimal,
there is no added overhead on verifiers for short-lived proofs. However, proof
generation incurs a significant added cost of around 60–70 seconds. The exact
time depends on the base circuit that the VDF circuit is combined with.

26

9.2 Σ-based Constructions

Table 2 compares the performance of our algorithms. Our Σ-constructions, which
require only a few exponentiations in a group of unknown order, are signifi-
cantly more efficient than the zk-SNARK method. We evaluated them using
Wesolowski proofs in a 2048-bit RSA group, which is conjectured to provide
close to λ = 128 bits of security [8]. We denote the cost of raising a group ele-
ment to an exponent of magnitude 22λ|G| as expG(22λ|G|) (this is the value of
B in Protocol 4). A single exponentiation takes around 40 ms. The costliest of
the Σ-constructions is Σ-zkVDF which takes two expG(22λ|G|) operations and
three expG(2λ) operations (<10 ms each), leading to a total overhead of under
0.12 seconds. Our constructions add one or two more group elements to the size
of the base proof/signature. With 2048-bit RSA groups, each element is of size
〈G〉 = 256 bytes.

10 Applications

Deniability is a foundational subject in cryptography that has been studied
from many angles, including group signatures [28], designated verifier signa-
tures/proofs [56], deniable encryption [27], ring signatures [76], secure mes-
saging [23], deniable authentication [42], and receipt-free [16] and coercion-
resistant [59] voting protocols. Terminology varies between deniable, reputable,
signer-ambiguous, non-transferable, and non-attributable. We highlight three
potential applications of short-lived proofs/signatures here.

10.1 Deniable Messaging and Email

Assume an adversary produces a purported transcript of a secure communication
session between Alice and Bob, along with copies of all cryptographic keys used:
is this sufficient to prove Alice participated? Does it prove what was said? Does
it prove, more specifically, what Alice said? Deniable messaging protocols aim
to answer no to as many of these questions as possible.

Generally, a secure messaging (chat) protocol is run between two partici-
pants, identified by public keys bound somehow to their real-world identities.
When both participants are online, with a synchronous, bidirectional channel,
they can use a key agreement protocol to establish an ephemeral shared MAC
key for message integrity. Even if the long-term keys are compromised, the tran-
script could be forged by either party [76], as popularized by Off-the-Record
messaging (OTR) [23]. Deliberate publication of the MAC key after the ses-
sion can extend forgeability to anyone. In group chat protocols, communication
complexity generally scales (at least linearly) with the number of participants.
Much research (see Unger et al. [85] for a survey) has focused on achieving the
properties of OTR in a group scenario.

Deniability can be extended to offline recipients in a store-and-forward sys-
tem through non-interactive designated verifier signatures [56] or ring signatures

27

formed between a sender and a recipient [76,23]—however both require prior
knowledge of each recipient’s public key. Email is a particularly challenging en-
vironment, as in addition to being asynchronous and unidirectional the sender
cannot assume knowledge of the recipient’s public key. OTR’s authors believed
email is too difficult for an OTR-like protocol [23].

Our work suggests a different (and complementary) approach to deniability:
a sender with an identifiable public key can provide a short-lived signature on
their messages. Recipients within the validity period of the signature can validate
the message’s authenticity, while the message becomes indistinguishable from a
forgery after a period of time and therefore deniable by the original sender.
Short-lived messages do not require any knowledge about the recipient, inter-
action, or follow-up steps, making them very versatile. They can be broadcast
asynchronously to a group of unidentified recipients with a single communica-
tion, and even forwarded with no additional cryptographic effort, making them
suitable for email as well as messaging protocols.

10.2 Deniable Domain Authentication

A specific case of deniable authentication arises with the DomainKeys Identified
Mail (DKIM) standard for email. Originally proposed to address email forgeries
and spam, DKIM requires that the sender’s mail server sign every outbound
email with a domain-bound key. For example, all email originating from the
mail server for example.com would be signed with a key bound to the DNS
record of example.com, however (unlike the use case above) the signature will
not distinguish between mail from alice@example.com and bob@example.com.
By 2015, DKIM headers were present in 83% of all inbound mail to Gmail [40].

Over the past two decades, email dumps—the public release of private email
messages from breached servers—have received extensive news coverage [32].
DKIM signatures increase the value of email dumps by certifying their authen-
ticity. The call to periodically release past DKIM private signing keys was popu-
larized by Matthew Green [51]. DKIM signatures do not require validity beyond
the network latency of reaching a recipient’s mail server.

Specter et al. proposed KeyForge and TimeForge [81] to replace DKIM with
Forward Forgeable Signatures (FFS) that become non-attributable after a speci-
fied time (e.g., 15 minutes). Both KeyForge and TimeForge require future action
to ensure deniability: respectively, a secret value released by the signer, or a fu-
ture signed update to a beacon-like service called a publicly verifiable timekeeper.
If the time-keeper’s private key is lost then all signatures become permanently
attributable. Alternately, if the time-keeper is silently compromised then signa-
tures are immediately forgeable. Short-lived signatures can fulfill the same role
as a drop-in replacement for DKIM, while requiring no follow-up action by any-
one and hence deniability is guaranteed at the time of signing. Both TimeForge
and short-live signatures expand the current length of a 2048-bit RSA DKIM
signature. Our trapdoor RSA-based short-lived signature adds a single group
element (200% expansion) while TimeForge signatures expand by 329% [81].

28

TimeForge also has advantages: no costly VDFs need to be evaluated (or
threatened) to provide deniability and the timing of deniability is precise, whereas
for short-lived signatures the deniability time period depends on how fast VDFs
can be evaluated. Our approaches are complementary: a signature could be both
short-lived and forgeable after the release of information as in TimeForge, at-
taining the advantages of both.

10.3 Receipt-Free Voting

Numerous cryptographic voting protocols involve encoding a voter’s selection
with an additively homomorphic encryption scheme [13,38]. Assuming the voter
operates a computational device she does not fully trust, she wants ballot casting
assurance [15] that a posted ciphertext decrypts to her choice, however she
should not be able to transfer this assurance to anyone else. As the literature
moves toward a more realistic view of voters as humans casting ballots at polling
places, vote casting needs to be accessible and bare-handed (i.e., no assumption
of an additional device at casting time). The dominant approach (exemplified
in Helios [5], STAR-Vote [9], and Microsoft’s ElectionGuard [3]) is the Benaloh
challenge [14,15]: (1) a voter asks for an encryption of a candidate si, (2) the
voting machine commits (e.g., on paper) a ciphertext c, (3) the voter chooses
to audit the ballot or cast it, and (4) if auditing, the voting machine produces
the plaintext and randomness (si, r) such that c = Enc(si, r); and the voter
restarts at (1). Later, aided by a computer, the voter validates all transcripts.
This protocol has two drawbacks. If a voter asks for an encryption of candidate
Bob, receives one for candidate Alice instead, audits it and receives a proof for
Alice, the voter is convinced the machine is malicious (she knows she asked
for Bob) but the transcript will not convince a third party that the machine
misbehaved. The second drawback is that auditing is probabilistic (and a low
audit frequency is observable by the machine itself).

Alternatives to the ‘Benaloh challenge’ mitigate these drawbacks but add
complexity for the voter. A collection of techniques [56,68,67] use quite different
protocols to produce a similar outcome: the voter leaves with a receipt that con-
tains the ciphertext c and n proofs that c = Enc(si) for each of the n candidates.
One proof is real and the rest are forgeries, but the transcript does not reveal
which one is real. These protocols vary, but at a high level, either the machine
prepares the forgeries and the voter releases a value (e.g., a challenge) for con-
struction of the real proof; or the machine prepares the real proof, and the voter
releases a value (e.g., a trapdoor or private key) for the forgeries.

A short-lived proof can be used in this second paradigm to eliminate all the
pre-constructed values (i.e., challenges, keys, trapdoors) the voter must bring
into the polling place, replacing them with a simple clock. The voter experience
is as follows: (1) a voter selects candidate si, (2) the voting machine commits
(e.g., on paper) the time T , the name of si (in plaintext), a ciphertext c, and
a short-lived (e.g., 60 second) proof that c = Enc(si), (3) the voter checks that
T and si are correct, (4) after two minutes, the machine (possibly a different

29

machine at a different station within the polling place) produces n − 1 forged
receipts for each leftover si with the same c and same (and now outdated) T .

Commonly used encryption schemes for voting, like exponential Elgamal and
Paillier, have efficient Σ-protocol proofs of plaintext values and be adapted to
use any of our Σ-protocol-based short-lived proof constructions. A time param-
eter of 60 seconds provides reasonable assurance if the beacon and voter’s clock
are synchronized to within one second, while not delaying the time to vote sub-
stantially. Voters could choose to shred their initial receipt or wait for a set of
forged receipts. Attention is required to mitigate side-channel information (like
forensics of the paper) to infer the order in which the proofs are printed. One
drawback, common to all of the other the ballot assurance methods, is that the
process becomes onerous as the ballot complexity increases (more candidates,
multiple contests, ranked choice voting, etc.).

11 Concluding Remarks

We observe that the existence of the Forge algorithm for short-lived proofs cir-
cumvents Pass’ observation [71] that non-interactive zero-knowledge proofs in the
random oracle model are not deniable. Normally, because the simulator requires
programmable access to the random oracle, verifiers cannot simulate proofs and
hence possession of a proof demonstrates interaction with a genuine prover. In
our case, the Forge algorithm does not require programmable random oracle ac-
cess, only the ability to compute a slow function. Short-lived proofs therefore
can offer deniability as they can be forged with no special ability except time.

In practice, this is an important limitation if the time taken to compute a
proof is known and is insufficient to produce a forgery. For example, if a short-
lived proof π is convincingly timestamped at time T1 and the beacon value b
used to compute π was not known until time T0, with T1− T0 < t, then π could
not have been computed via Forge. Thus, deniability for short-lived proofs relies
on the assumption that it is not feasible to convincingly timestamp all data. For
example, in the case of deniable DKIM signatures, it must be the case that signed
emails are not routinely timestamped en masse. We note that other solutions to
this problem, including key expiry/rollover or the KeyForge/TimeForge schemes
of Specter et al. [81], have the exact same limitation.

Recall that we offer constructions for proofs and signatures based on Σ-
protocols, where deniability is added by combining the original statement with
a VDF-related statement in a disjunction. As noted in Section 3, designated
verifier proofs, proofs of work-or-knowledge, and KeyForge/TimeForge also add
deniability via disjunction with a second statement. It is straightforward to com-
bine these approaches. For example, a statement could be proven in zero knowl-
edge to be true only if the proof is received by a specific recipient before a signed
timekeeper statement is released or a VDF could have been computed. In this
way, a proof can gain deniability in the absence of any trusted third party action
in the future (as with short-lived proofs) while also gaining deniability without
requiring anybody to solve a VDF if the third party acts faithfully.

30

We conclude with several open problems arising from our work:

• Short lived proofs require someone to evaluate a VDF. It might be possible to
piggyback off of an existing party computing VDFs, such as a computational
time-stamping service [62], some other party computing a long-running con-
tinuous VDF [43] or a decentralized protocol using chained VDFs [78,34,47].

• Our Σ-zkVDF construction (§7) only provides 1-reusable forgeability. It
might be possible to extend this to k-reusable forgeability (as in §5.1) using
an RSA-style accumulator to combine past beacon values (while keeping the
accumulator value secret to avoid undermining deniability).

• Our zk-PoKP construction in Protocol 2 is based on Wesolowski proofs.
Constructing a zk-PoKP algorithm based on Pietrzak proofs would allow a
Σ-zkVDF forger to leverage the more efficient re-randomization algorithm
for Pietrzak proofs, enabling significantly faster forging times.

• While our watermarkable VDF signature construction (§8.3) offers reusable
forgeability, it requires a VDF computation per-signer (as each signer uses
unique public parameters). An ideal scheme might use similar accumulator
techniques to forge proofs from a set of signers after just one VDF evaluation.

• Another, potentially much more efficient, approach to achieve generic short-
lived proofs is to take an existing generic proof scheme which relies on a
Σ-protocol and replace that component with a short-lived equivalent (e.g.
our Σ-zkVDF construction). While this would not retain the k-reusability of
our generic approach in §5, it would avoid the cost of verifying a VDF within
the proof system itself. This approach potentially applies to many popu-
lar zero-knowledge proof systems, including Bulletproofs [25], Marlin [29],
PLONK [48], Sonic [66], Spartan [80], Supersonic [26], or STARKs [10].

Acknowledgments

We give a special acknowledgement to Michael Colburn who initially pursued
the idea of short-lived signatures and proofs in his MASc thesis [35] supervised
by Jeremy Clark. The constructions in this paper are new, and any ideas or
text from [35] incorporated into this paper were originated by Clark. We thank
Benjamin Wesolowski, Justin Thaler, Bünz, Ben Fisch, Dan Boneh, Matthew
Green, Michael Specter, and Michael Walfish and for helpful feedback and dis-
cussion. We thank Alex Ozdemir and Riad Wahby for help with implementing
our SNARK-based construction.

Arasu Arun and Joseph Bonneau were supported by DARPA under Agree-
ment No. HR00112020022. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily
reflect the views of the United States Government or DARPA.

Jeremy Clark acknowledges support for this research project from (i) the Na-
tional Sciences and Engineering Research Council (NSERC), Raymond Chabot
Grant Thornton, and Catallaxy Industrial Research Chair in Blockchain Tech-
nologies, and (ii) NSERC through a Discovery Grant.

31

References

1. The digital signature standard. Communications of the ACM 35(7), 36–40 (1992)
2. drand Randomness Beacon. drand.love (2021)
3. ElectionGuard. github.com/microsoft/electionguard (2021)
4. NIST Randomness Beacon Version 2.0. beacon.nist.gov/home (2021)
5. Adida, B.: Helios: Web-based Open-audit Voting. In: USENIX Security (2008)
6. Baignères, T., Delerablée, C., Finiasz, M., Goubin, L., Lepoint, T., Rivain, M.:

Trap Me If You Can – Million Dollar Curve. Cryptology ePrint Archive, Report
2015/1249 (2015)

7. Baldimtsi, F., Kiayias, A., Zacharias, T., Zhang, B.: Indistinguishable Proofs of
Work or Knowledge. In: Eurocrypt (2016)

8. Barker, E., Dang, Q.: Recommendation for Key Management. NIST Special Pub-
lication 800-57 (2015)

9. Bell, S., Benaloh, J., Byrne, M.D., Debeauvoir, D., Eakin, B., Kortum, P., McBur-
nett, N., Pereira, O., Stark, P.B., Wallach, D.S., Fisher, G., Montoya, J., Parker,
M., Winn, M.: STAR-Vote: A Secure, Transparent, Auditable, and Reliable Voting
System. In: JETS (2013)

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/46 (2018)

11. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: Ver-
ifying program executions succinctly and in zero knowledge. In: CRYPTO (2013)

12. Benaloh, J., de Mare, M.: One-way Accumulators: A Decentralized Alternative to
Digital Signatures. In: Eurocrypt (1993)

13. Benaloh, J.: Verifiable secret-ballot elections. Ph.D. thesis, Yale University (1987)
14. Benaloh, J.: Simple Verifiable Elections. In: EVT (2006)
15. Benaloh, J.: Ballot Casting Assurance via Voter-Initiated Poll Station Auditing.

In: EVT (2007)
16. Benaloh, J., Tuinstra, D.: Receipt-Free Secret-Ballot Elections. In: STOC (1994)
17. Boneh, D., Naor, M.: Timed Commitments. In: CRYPTO (2000)
18. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable Delay Functions. In:

CRYPTO (2018)
19. Boneh, D., Bünz, B., Fisch, B.: A Survey of Two Verifiable Delay Functions. Cryp-

tology ePrint Archive, Report 2018/712 (2018)
20. Boneh, D., Bünz, B., Fisch, B.: Batching Techniques for Accumulators with Ap-

plications to IOPs and Stateless Blockchains. In: CRYPTO (2019)
21. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:

Eurocrypt (2001)
22. Bonneau, J., Clark, J., Goldfeder, S.: On Bitcoin as a public randomness source.

Cryptology ePrint Archive, Report 2015/1015 (2015)
23. Borisov, N., Goldberg, I., Brewer, E.: Off-the-record communication, or, why not

to use PGP. In: ACM WPES (2004)
24. Buchmann, J., Hamdy, S.: A survey on IQ cryptography. In: Public-Key Cryptog-

raphy and Computational Number Theory (2011)
25. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:

Short proofs for confidential transactions and more. In: IEEE Security & Privacy
(2018)

26. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: CRYPTO (2020)

32

drand.love
github.com/microsoft/electionguard
beacon.nist.gov/home

27. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable Encryption. In:
CRYPTO (1997)

28. Chaum, D., van Heyst, E.: Group Signatures. In: Eurocrypt (1991)
29. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: Prepro-

cessing zkSNARKs with universal and updatable SRS. In: CRYPTO (2020)
30. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved OR

Composition of Sigma-Protocols. In: TCC (2016)
31. Clark, J., Hengartner, U.: On the Use of Financial Data as a Random Beacon. In:

EVT/WOTE (2010)
32. Clark, J., van Oorschot, P.C., Ruoti, S., Seamons, K., Zappala, D.: SoK: Securing

email: A stakeholder-based analysis. In: Financial Cryptography (2021)
33. Cohen, B., Pietrzak, K.: Simple Proofs of Sequential Work. In: CRYPTO (2018)
34. Cohen, B., Pietrzak, K.: The Chia network blockchain (2019)
35. Colburn, M.: Short-lived signatures. Master’s thesis, Concordia University (August

2018)
36. Couteau, G., Klooß, M., Lin, H., Reichle, M.: Efficient Range Proofs with Trans-

parent Setup from Bounded Integer Commitments. In: Eurocrypt (2021)
37. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of Partial Knowledge and

Simplified Design of Witness Hiding Protocols. In: CRYPTO (1994)
38. Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient

Multi-authority Election Scheme. In: Eurocrypt (1997)
39. Dodis, Y., Yum, D.H.: Time Capsule Signature. In: Financial Cryptography (2005)
40. Durumeric, Z., Adrian, D., Mirian, A., Kasten, J., Bursztein, E., Lidzborski, N.,

Thomas, K., Eranti, V., Bailey, M., Halderman, J.A.: Neither snow nor rain nor
MITM: An empirical analysis of email delivery security. In: ACM CCS (2015)

41. Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail. In:
CRYPTO (1992)

42. Dwork, C., Naor, M., Sahai, A.: Concurrent Zero-Knowledge. Journal of the ACM
(JACM) 51(6) (2004)

43. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous Verifiable Delay
Functions. In: CRYPTO (2020)

44. Feo, L.D., Masson, S., Petit, C., Sanso, A.: Verifiable Delay Functions from Su-
persingular Isogenies and Pairings. Cryptology ePrint Archive, Report 2019/166
(2019)

45. Ferradi, H., Géraud, R., Naccache, D.: Slow Motion Zero Knowledge Identifying
with Colliding Commitments. In: ICISC (2015)

46. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Eurocrypt. Springer (1986)

47. Foundation, E.: Ethereum 2.0 Beacon Chain (2020)
48. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over

Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. Cryp-
tology ePrint Archive, Report 2019/953 (2019)

49. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: CRYPTO (2013)

50. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the ACM
(JACM) 38(3) (1991)

51. Green, M.: Ok Google: please publish your DKIM secret keys (November 2020)
52. Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In:

Eurocrypt (2010)

33

53. Groth, J.: On the Size of Pairing-Based Non-interactive Arguments. In: CRYPTO
(2016)

54. Halderman, J.A., Waters, B.: Harvesting Verifiable Challenges from Oblivious On-
line Sources. In: CCS (2007)

55. Hazay, C., Chen, M., Ishai, Y., Kashnikov, Y., Micciancio, D., Riviere, T., abhi
shelat, Wang, R., Venkitasubramaniam, M.: Diogenes: Lightweight Scalable RSA
Modulus Generation with a Dishonest Majority. IEEE Security & Privacy (2021)

56. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and their
Applications. In: Eurocrypt (1996)

57. Jaques, S., Montgomery, H., Roy, A.: Time-release Cryptography from Minimal
Circuit Assumptions. Cryptology ePrint Archive, Report 2020/755 (2020)

58. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). International Journal of Information Security 1(1), 36–63 (2001)

59. Juels, A., Catalano, D., Jacobsson, M.: Coercion-Resistant Electronic Elections.
In: WPES (2005)

60. Krawczyk, H., Rabin, T.: Chameleon Signatures. In: NDSS (2000)

61. Kucherawy, M., Crocker, D., Hansen, T.: DomainKeys identified mail (DKIM)
signatures. RFC 6376 (2011)

62. Landerreche, E., Stevens, M., Schaffner, C.: Non-interactive Cryptographic Times-
tamping based on Verifiable Delay Functions. In: Financial Cryptography (2020)

63. Lenstra, A.K., Wesolowski, B.: Trustworthy public randomness with sloth, unicorn,
and trx. International Journal of Applied Cryptography 3(4), 330–343 (2017)

64. Mahmoody, M., Moran, T., Vadhan, S.: Publicly Verifiable Proofs of Sequential
Work. In: ITCS (2013)

65. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic Time-Lock Puzzles and Appli-
cations. In: CRYPTO (2019)

66. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings.
In: ACM CCS (2019)

67. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting
privacy. In: CRYPTO (2006)

68. Neff, C.A.: Practical High Certainty Intent Verification for Encrypted Votes. Tech.
rep., VoteHere Whitepaper (2004)

69. Okamoto, T., Uchiyama, S.: A New Public-Key Cryptosystem as Secure as Fac-
toring. In: Eurocrypt (1998)

70. Ozdemir, A., Wahby, R., Whitehat, B., Boneh, D.: Scaling Verifiable Computation
Using Efficient Set Accumulators. In: USENIX Security (2020)

71. Pass, R.: On Deniability in the Common Reference String and Random Oracle
Model. In: CRYPTO (2003)

72. Pietrzak, K.: Simple Verifiable Delay Functions. In: ITCS (2018)

73. Rabin, M.: Transaction protection by beacons. Journal of Computer and System
Sciences 27(2) (1983)

74. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
Crypto. Tech. Rep. TR-684, MIT (1996)

75. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126
(1978)

76. Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Asiacrypt (2001)

77. Sander, T.: Efficient Accumulators Without Trapdoor. In: ICICS (1999)

34

78. Schindler, P., Judmayer, A., Hittmeir, M., Stifter, N., Weippl, E.: RandRunner:
Distributed Randomness from Trapdoor VDFs with Strong Uniqueness. Cryptol-
ogy ePrint Archive, Report 2020/942 (2020)

79. Schnorr, C.P.: Efficient Signature Generation by Smart Cards. Journal of Cryptol-
ogy 4(3), 161–174 (1991)

80. Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup.
In: CRYPTO (2020)

81. Specter, M.A., Park, S., Green, M.: KeyForge: Non-Attributable Email from
Forward-Forgeable Signatures. In: USENIX Security (2021)

82. Syta, E., Jovanovic, P., Kogias, E.K., Gailly, N., Gasser, L., Khoffi, I., Fischer, M.J.,
Ford, B.: Scalable Bias-Resistant Distributed Randomness. In: IEEE Security &
Privacy (2017)

83. Thaler, J.: Proofs, Arguments, and Zero-Knowledge (2021)
84. Thyagarajan, S.A.K., Bhat, A., Malavolta, G., Döttling, N., Kate, A., Schröder,

D.: Verifiable Timed Signatures Made Practical. In: ACM CCS (2020)
85. Unger, N., Dechand, S., Bonneau, J., Fahl, S., Perl, H., Goldberg, I., Smith, M.:

SoK: Secure messaging. In: IEEE Security & Privacy (2015)
86. Wesolowski, B.: A proof of time or knowledge, https://hal.archives-ouvertes.

fr/hal-03380471

87. Wesolowski, B.: Efficient Verifiable Delay Functions. In: Eurocrypt (2019)

A Re-randomizable VDFs

We provide a complete definition of re-randomizable VDFs, as proposed in Sec-
tion 6.3 as an optimization to avoid precomputation in Protocol 1.

Definition 4 (Re-randomizable VDFs). A re-randomizable VDF is a set of
algorithms (Setup,Eval,Verify,Randomize) with the following functionality:

• Setup,Eval,Verify are the same as basic VDFs, though Eval may output an
additional advice string α.

• Randomize(pp, b, y, α) → (b′, y′, π′) is a randomized function that takes as
input b, y, α such that (y, α) = VDF.Eval(pp, b) and outputs a tuple (b′, y′, π′).

Additionally, the following two properties are satisfied:

• Re-randomizability: For all b, given (y, α) = VDF.Eval(pp, b), Randomize(pp, b, y, α)→
(b′, y′, π′) runs in fewer than t sequential steps and Verify(pp, b′, y′, π′) ac-
cepts.

• Indistinguishability: No pair of polynomial time algorithms (A0,A1) can
win the following game with probability non-negligibly greater than 1

2 :

1. Challenger C runs pp ← Setup(λ), chooses an element b0
$←− G, runs

(y, α)← rrVDF.Eval(pp, b0) and sends pp, b0, y, α to A0

2. Adversary A generates α′ ← A0(pp, b0, y, α)

3. C flips a coin c
$←− {0, 1}. If c = 0, C generates a random b′

$←− G and
computes y′, π′ ← rrVDF.Eval(pp, b′). If c = 1, C computes b′, y′, π′ ←
rrVDF.Randomize(pp, b0, y, α). C sends b′, y′, π′ to the adversary.

35

https://hal.archives-ouvertes.fr/hal-03380471
https://hal.archives-ouvertes.fr/hal-03380471

4. The adversary computes c∗ ← A1(b0, y, α, α
′, b′, y′, π′) and wins if it cor-

rectly guesses c∗ = c.

Repeated-squaring VDFs can be re-randomized via the homomorphism (b, y)→
(br, yr) for a random exponent r. Sampling r

$←− [0, order(G)] ensures that the
distribution of br is statistically indistinguishable from a random element of
G when b is a generator. However, this requires r to be large – for example,
it would be 2048 bits long when using RSA2048. Under the S-bounded short
exponent indistinguishability (SEI) assumption [36, Definition 11], it is compu-

tationally hard to distinguish between the distributions {gz | z $←− [0, order(G]}
and {gz | z $←− [0, S]} when S ≥ 22λ. Thus, it suffices to sample r ∈ [0, 22λ] to
ensure a negligible probability of distinguishing between br for a fixed b and a
random element in G.

A.1 Efficiently Re-Randomizing Pietrzak Proofs

Protocol 5 recaps Pietrzak proofs and describe our advice string and re-randomization
algorithm. Let (g, h) where g, h ∈ G be the input-output pair for which a Pietrzak
proof is to be produced. Let vi be the value produced by the Prover and ri be the
corresponding challenge given by the Verifier in round i. The intuition behind
the advice string, informally presented in [19], is the following observation about
the structure of the value of vi:

v1 = g2
t/2

v2 = g2
t/4

1 = (gr1v1)2
t/4

= (g2
t/4

)r1g2
3t/4

v3 = g2
t/8

2 = (gr11 v2)2
t/8

= (g2
t/8

)r1r2(g2
3t/8

)r1(g2
5t/8

)r2g2
t/8

. . .

vi =

j<2i∏
odd j

(g2
t/2i·j

)combination of r values

The parts not involving ri can be pre-computed and used as advice for future

proofs. Thus, the advice string will thus consist of {g2t/2
i·j | i ≤ k, odd j < 2i}.

This is equivalent to {g2t/2
k·j | j ∈ 1, . . . , 2k − 1}.

Theorem 7 (Re-Randomizing Pietrzak). The advice string specified in Pro-
tocol 5 computed for element g ∈ G and parameter k enables computing Pietrzak
proofs for any power pair (gu, hu) with just (2k + t

2k
)λ group multiplications.

Moreover, the size of the advice string is 2k elements long. In particular, when
k = (log t)/2 re-randomization takes time O(

√
t).

Proof. The proof is by construction. At the start of round i of the Pietrzak proof
protocol, let r1, . . . , ri−1 be the random values sent so far. At round i, the Prover

36

Pietrzak Proof and Re-Randomization

Prove
parameters: delay t; d < log t
input : g, h ∈ G
claim: h = g2

t

1. Let (g0, h0) = (g, h)
2. For round i = 1, . . . , d:

• Prover computes and sends vi = g2
t/2i

i−1

• Verifier samples and sends ri
$←− {0, 1}λ

• Both parties compute gi = grii−1vi, hi = vrii hi−1.

3. Verifier manually checks that hd = g2
t/2d

d

GenAdvice
parameters: delay t, k such that k < log t
input : g ∈ G
output : advice α

The advice string is α = g2
(t/2k)·i

for i = 1, 2, . . . , 2k − 1.

We enumerate the elements of the advice string as follows:

∀i ∈ [1, k], odd j < 2i : αi,j = pow(g, pow(2,
t

2i
j))

Randomize
parameters: delay t, k, d st k < d < log t;
input : g, h ∈ G
claim: h = g2

t

private input: The prover has access to advice string α for element g∗ and knows u
such that g = gu∗ . Advice α and g∗ may be public, but u is private.

Let g0, h0 = g, h: For rounds i = 1, . . . , k:

1. Prover sends vi, computed as follows. Let Ri,j =
j′<i∏

j′ /∈bin(j)
rj′

Compute vi =

2i∏
j=1

((αi,2j+1)u)Ri,j

2. Verifier samples and sends ri
$←− {0, 1}λ

3. Both parties compute gi = grii−1vi, hi = vrii hi−1.

Conduct rounds k + 1, . . . , d as in protocol Prove to complete the proof π.

Protocol 5: Pietrzak proof re-randomization. bin(j) denotes the set of indices
of the binary representation of j that are 1, with index 0 the least significant.

37

sends vi and the Verifier sends ri. Using this, we derive:

gi = grii−1vi = grii−1g
2t/2

i

i−1 = (gi−1)ri+2t/2
i

This leads to the following recursive formula:

gi = g
∏i

j=1(Ri,j+2t/2
j
)

We can expand the exponent as follows: (let PS([i]) denote the power set of
{1, . . . , i}).

gi = g(r1+2t/2)(r2+2t/4)...(ri+2t/2
i
)

=
∏

J∈PS(i)

(g

∏
j∈J

2t/2
j

)

∏
j /∈J

ri

The exponent of g is
∏
j∈J

2t/2
j

= 2
t

2i
·
∑
j∈J

2i−j

. As J goes through all of PS(i),

the whole expression is equivalent to:

gi =

2i∏
j=1

(gpow(2,(
t

2i
·j)))

j′<i∏
j′ /∈bin(j)

rj′

where bin(j) is the set of indices in the binary representation of j (starting
with index 0 being the least significant bit).

Let Ri,j =
j′<i∏

j′ /∈bin(j)
rj′ . We can now represent vi+1 as:

vi = g2
t/2i+1

i

= (

2i∏
j=1

(g2
(t
2i

j)

)Ri,j)2
t/2i+1

=

2i∏
j=1

((g2
(t
2i

j)

)2
t/2i+1

)Ri,j

=

2i∏
j=1

(g2
(t
2i+1)·(2j+1)

)Ri,j

=

2i∏
j=1

(αi,2j+1)Ri,j

38

The key idea is that αi,2j+1 can be precomputed as it depends only on g, t
and not on the ri values sampled in the proofs. Thus, it can be stored as part
of the advice string.

The algorithm to compute a proof with the advice string is given in Protocol
5. The required operations in each round i are:

1. Querying 2i−1 advice elements: αi,2j+1 for odd j < 2i

→ 2i advice elements
2. Raising each advice element to the power u×

∏
subset j

rj

→ 2i × (log u+ λi) per advice element, as rj < 2λ

3. Multiplying the elements from step 2 together to obtain vi:
→ 2i multiplications per round

4. Computing gi, hi by raising both vi, gi to the power ri:
→ λ multiplications at the end of each round

The remaining rounds i = k+1, . . . , d take up to 2k+1 group multiplications.
Thus, the total number of group multiplications involved is:

2k+1 +

k∑
i=1

(2i(log u+ λi) + 2i + λ) = 2k+1 +

k∑
i=1

(2i log u) +

k∑
i=1

(2iλi) +

k∑
i=1

2i +

k∑
i=1

λ

= 2k+1 + log u2k+1 + λ(k + 1)2k+1 + 2k+1 + λ(k)

< 2k+1(log u+ (k + 1)λ+ 3)

With k = (log t)/2, we get that this takes under 2
√
t(log u+λ log t+λ+3) <

4
√
t(log u+λ(log t+1)+3), which is asymptoticallyO(

√
t(log u+λ log t) = Õ(

√
t).

Concretely, with log u = 4098, λ = 128, log t ≤ 40, this is 2
√
t(212 + 2720 +

3) < 234. This is a 64x speed-up. The advice string would be of size
√
t = 220

elements, which is 256 GB for 2048-bit RSA groups.

B Watermarkable VDFs

The notion of watermarkable VDFs was proposed at the 2018 Stanford VDF
workshop and presented informally by Wesolowski [87]. Motivated by our reusably
forgeable signature scheme (Protocol 4, §8.3) we present a formal definition and
security properties here:

Definition 5 (Watermarkble VDFs). A watermarkable VDF is a set of al-
gorithms (Setup, Eval, WatermarkProve, Verify) with the following functionality:

• Setup,Eval are the same as basic VDFs, though Eval may output an addi-
tional advice string α.

39

• WatermarkProve(pp, b, µ, y, α) → (y, πµ) outputs a proof for (b, y) with em-
bedded watermark µ.

• Verify(pp, b, µ̃, y, πµ) → Accept/Reject works as for basic VDFs but in addi-
tion to verifying that y = Eval(pp, b) checks that the watermark µ̃ is embedded
in πµ.

A watermarkable VDF scheme must satisfy the security properties of a basic
VDF scheme (correctness, uniqueness, sequentiality) as well as the following
property:

• Watermark Unforgeability: For all pairs of adversary algorithms A0

(precomputation) which runs in total time O(poly(t, λ)) and A1 (online)
which runs in parallel time σ(t) with at most p(t) processors, the probability
that (A0,A1) win the following game is negligible:
1. Challenger C runs pp← Setup(λ, t) and sends pp to (A0,A1).
2. The adversary precomputes its advice string α← A0(pp).
3. C samples a random VDF input value b, computes y, α ← Eval(pp, b)

and sends (b, y) to the adversary.
4. The adversary runs A1(pp, b, α) ↔ C interactively with the challenger,

adaptively sending chosen watermark queries µi to the challenger and
receiving πµi ←WatermarkProve(pp, b, µi, y, α) in response.

5. A1 outputs a forgery pair (µ∗, πµ∗) and wins if µ∗ 6= µi for all i and
Verify(pp, b, µ∗, y, πµ∗) = Accept

Watermarkable VDFs can be constructed for any Fiat-Shamir based VDF by
generating the challenge as ` = HashToPrime(y, µ) instead of ` = HashToPrime(y)
for a suitable hash-to-prime function. This approach is possible for repeated-
squaring VDFs using Wesolowski proofs [87] or Pietrzak proofs [72]. We leave
proving that this approach satisfies watermark unforgeability as an open prob-
lem and note that it may not hold for either proof system as both proofs reveal
some information which might help compute the solution y faster. However, it
should hold for our zero-knowledge variant of Wesolowski’s proof.

C Proof of zero-knowledge proof-of-knowledge of a power

We now prove Theorem 4, originally stated in Section 7.1.

Theorem 4 (Zero-Knowledge Proof of Knowledge of Power). Proto-
col 2 is an honest-verifier zero-knowledge argument of knowledge for the relation
RPoKP = {((g, u); y) : gu = y}.

Proof. Completeness follows trivially. We can reduce soundness to the Adaptive
Root Assumption [19], which holds if no pair of polynomial time algorithms
(B0,B1) can win the following game with non-negligible probability: First, a
group G ← GroupGen(λ) is given to B0, who outputs (z, α) ← B0(G). Then, a
random prime ` is chosen and B1(z, α, `) outputs z1/` ∈ G. More formally, for
all polynomial time (B0,B1) we have:

40

Pr

u` = z :

G← GroupGen(λ)

z, α← B0(G)

`← Primes(λ)

u← B1(`, α)

 < neg(λ)

After the first step of Protocol 2 (where the Prover provides a), the rest of
the protocol is a special case of the Proof-of-knowledge-of-representation protocol
(PoKRep) of Boneh et al. [20] for n = 2 with input a and in which one of the
exponents, u is public. Thus, we can use PoKRep extractor [20, Theorem 7] to
obtain u′, v′ such that a = gu

′
hv
′
. From the same theorem, we also have that

r2 = v′ mod ` with overwhelming probability.
Let (A0,A1) be an adversary for zk-PoKP where α← A0(G) andA1(α,G, g, h, u)

causes the Verifier to accept with non-negligible probability. We will show that
A1 either knows y = gu or can be used to construct a successful adaptive-root
adversary (B0,B1) as follows:

1. α← A0(G).
2. B0 interacts with A1(G, g, h, u) to obtain a and runs the PoKRep extractor

to obtain u′, v′ such that a = gu
′
hv
′
.

3. If u′ = u then we have that A1 indeed knows y = gu.
4. Otherwise, B0 outputs z = a/(guhv

′
) to the Adaptive Root challenger. As

u′ 6= u, we have that z 6= 1.
5. B1 receives the adaptive root challenge `.
6. B1 rewinds A1 to provide the new challenge ` and obtains response (Q, r2).

If the verifier accepts, we know Qlgr1hr2 = a. The PoKRep also guarantees
that r2 = v′ mod ` with overwhelming probability.

7. B1 calculates q1, q2 such that u = q1` + r and v′ = q2` + r2 and outputs
Q/(gq1hq2), which is a correct response in the Adaptive Root game for z

1
` :

(
Q

gq1hq2
)` =

Q`

gq1`hq2`

=
a

gq1`hq2`gr1hr2

=
a

guhv′
= z

Thus, these algorithms must either know gu or win the Adaptive Root game
with overwhelming probability.

Zero-Knowledge: To show that the protocol is zero-knowledge, we must show

that the simulated transcript (ã, ˜̀, Q̃, r̃2) is indistinguishable from a real tran-
script (a, `,Q, r2) between an honest prover and verifier. To show this, we first
note that a and ã are both uniquely defined by the rest of the transcript and
hence cannot be used in a distinguishing attack. The distributions of ` and ˜̀

are identical, as are the distributions of r2 and r̃2, because in both cases the
honest prover and simulator generate them in the same manner. Specifically, `

41

and ˜̀ are both sampled uniformly at random from Primes(λ) while r2 and r̃2 are
computed by sampling v (resp. ṽ) uniformly at random and taking a remainder
modulo ` (resp. ˜̀).

Additionally, we require that the joint distribution of (Q, r2) and (Q̃, r̃2) are
indistinguishable. This is indeed the case as the joint distributions of (q2, r2)
and (q̃2, r̃2) are identical and q1 and q̃1 are independent of r2 and r̃2, respec-
tively. As Q, Q̃ are uniquely defined by (q1, q2) and (q̃1, q̃2) respectively, the joint
distributions with (Q, r2) and (Q̃, r̃2) are thus identical.

It remains to be shown only that the distributions of Q and Q̃ are indis-
tinguishable. We first claim that the distribution of hq2 is statistically indistin-
guishable from the uniform distribution over the subgroup Gh generated by h.
The distribution of hq2 depends on the distribution of q2 mod ord(h), where
ord(h) = |Gh|. As v is uniformly sampled from [−B,B], the distribution of
q2 = bv/`c is statistically indistinguishable from the uniform distribution UY
over Y = [−bB/`c, bB/`c] as B > 22λn|G| and ` < 2λ. Note that Y has at least
2B
` − 1 elements. This means that the distance between the distribution of q2

and U|Gh| is at most Gh/Y more than the distance between the distribution of
q2 and |UY |[20, Theorem 10, Fact 1]. This additional distance is also negligible
with given our choice of B. Thus, the distribution of q2 is statistically indis-
tinguishable from U|Gh| which implies that hq2 is statistically indistinguishable
from a randomly chosen element from the subgroup Gh.

As ṽ is generated in the same manner as v, the distributions of q2 and q̃2 are
indistinguishable. Therefore by an equivalent argument to that for hq2 , it follows
that hq̃2 is statistically indistinguishable from a randomly chosen element from
the subgroup Gh.

Statistical Indistinguishability: We obtain statistical indistinguishability of

Q, Q̃ when h can generate g (in particular, when Gh = Gg). In this case, there
must exist some k ∈ Z for which hk = g. This means that Q = gq1hq2 = hkq1+q2 .
As the distribution of q2 mod |Gh| is statistically indistinguishable from U|Gh|,
so is (kq1 + q2) mod |Gh|, as kq1 is independent of q2. The same argument
applies to Q̃ = gq̃1hq̃2 = hkq̃1+q̃2 . Thus, both Q and Q̃ are both statistically
indistinguishable from the uniform distribution over Gh (and therefore from
each other).

It is possible to efficiently generate pairs (g, h) such that h generates g within
an RSA group with a modulus N generated using safe primes. In such a group,
we can efficiently sample a random generator of QRN , the subgroup of quadratic
residues modulo N , along with a random member of QRN . By sampling h to be
a generator of QRN and g to be a random element of QRN , we obtain statistical
indistinguishability as h always generates g.

Computational Indistinguishability: In general, we can obtain computational

indistinguishability of Q and Q̃ when it is difficult to efficiently check if g can be
generated by h. This can be seen using a hybrid argument where the first hybrid
creates Q, Q̃ with (g, h) such that g is generated by h. We have seen that Q, Q̃
are statistically indistinguishable in this case. We then swap g with g′ where g′

cannot be generated by h. If there exists an efficient distinguisher of Q and Q̃

42

in the new hybrid, then we can use it to distinguish between the two hybrids,
violating the assumption.

We can also obtain computational indistinguishability when elements from
different cosets of Gh in G cannot be efficiently distinguished (which is true under
the p-subgroup assumption for RSA groups [69]). Since we have shown hq̃2 to be
indistinguishable from Gh, it holds that Q and Q̃ are indistinguishable from the
distributions of gq1Gh and gq̃1Gh, respectively. Equivalently, Q and Q̃ are each
uniformly distributed over a different coset of Gh depending on the choices of q1
and q̃. Thus, if it is computationally difficult to decide if two elements belong to
the same coset of Gh in G, then Q and Q̃ are computationally indistinguishable.

D Wesolowski’s Deniable Identification

We point out a subtle issue in the deniable identification scheme proposed by
Wesolowski [87]. The protocol enables Alice to identify herself to a server, while
a third-party adversary Judy tries to determine if an identification attempt has
been made. The protocol is deniable if Judy cannot reliably distinguish real
authentications from forgeries, even when Judy corrupts the server.

Alice generates a key pair tdVDF.Setup()→ (pk, sk) for a trapdoor VDF and
the server registers pk. Alice sends pk to the server. An honest server starts a
timer and responds with an unpredictable random challenge c. Alice computes
tdVDF.Eval(c)→ (y, π) and sends (y, π) for verification. The server accepts (y, π)
if the timer is less than time parameter ∆ where ∆ is the estimated elapsed time
of computing the sequential steps of tdVDF.Eval.

Assume for simplicity that Alice and the server have negligible distance be-
tween them, while Judy’s distance from both is such that she cannot communi-
cate faster than ∆/2 with either of them. Consider one strategy Judy might use
to break deniability: she corrupts the server so she can program the challenges it
will send to Alice. If she sees a response from Alice of (y, π) any time earlier than
∆ after she sent the challenge to the server, she can correctly identify it as a valid
authentication attempt. However her distance from the server ensures that the
challenge takes at least ∆/2 time to travel to the server and once Alice’s response
is available to the server, it takes another ∆/2 to return. The critical property
of Wesolowski’s security argument is the following property: “the challenge c is
independent of anything Judy sent after point in time t0 −∆/2” [87].

We make a small observation: the existence of beacons imply the distance
between Judy needs to be doubled from ∆/2 to ∆. Assume the beacon is neg-
ligibly close to server and outputs b at a particular time t0. While Judy will
not learn the beacon value immediately because of her distance, we assume that
when she comes to know b, she also knows it was known to the beacon (and thus
the server and Alice) at t0. With these assumptions, she corrupts the server to
use beacon values as the challenge. Thus if she can hear Alice’s response in time
∆/2 (as in Wesolowski’s original proposal) for a trapdoor VDF with delay ∆,
she concludes it is a legitimate authentication request. However if she is greater

43

than ∆ time-distance, she cannot distinguish it as legitimate. The broader point
is that using beacons, which are in all of our constructions, is not a minor addi-
tion to these kinds of time-delay protocols, but is a foundational primitive that
affects security properties in a meaningful way.

44

	Short-lived zero-knowledge proofs and signatures

