
Collaborative zkSNARKs
Zero-knowledge proofs for distributed secrets

Alex Ozdemir, Dan Boneh

To appear in USENIX Security’22

1



Provable properties about secrets

Authentication

I prove that I know my 
password/secret key.

✅ zkSNARKs

2



Provable properties about distributed secrets

Healthcare Statistics

Several hospitals prove that 
procedure prices are “fair”.

Money Laundering

Several banks prove that “Eve” 
has Colonial Pipeline’s ransom.

3



This talk

Applications:

• Authentication

• Money laundering

• Healthcare statistics

Outline:

1. Why zkSNARKs are insufficient

2. New tool: collaborative zkSNARK

3. Building collaborative zkSNARKs

4. Surprising efficiency

4

✅ zkSNARKs

❓

❓



Background
zkSNARKs

5



Witness relations

• 𝑤 may be large
• not private

6



zkSNARKs

7

• Sound: 𝜋 proves 𝑤 exists
• (zk) zero knowledge: hides 𝑤
• (S) succinct: short 𝜋, fast Verify
• (N) non-interactive
• (AR) argument: computationally sound
• (K) knowledge: 𝑃 knows 𝑤



Authentication with a zkSNARK

8



Existing zkSNARKs

• From pairings & elliptic curves

• Groth16

• Marlin (KZG)

• Plonk (KZG)

• …

• From hashing & codes

• Fractal
• …

• …

9[G’16][GWC’19][KZG’10][CHMMVW’20][COS’20]…

For distributed secret data, 
who plays the prover?



Collaborative zkSNARKs
Definitions

10



Collaborative zkSNARKs

• Setup() → 𝑝𝑝

• Prove 𝑝𝑝, 𝑥, 𝑃1 𝑤1 , … , 𝑃𝑁(𝑤𝑁) → 𝜋

• Verify 𝑝𝑝, 𝑥, 𝜋 → 0, 1

conventional collaborative

11

Syntax:



t-zero-knowledge

Any adversary controlling ≤t 
provers learns nothing but 

whether

(x, w) ∈ R

• Formally
• Adversary corrupts ≤t provers

• ZK simulator is given
• the corrupt witnesses

• x

• b = (x, w) ∈ R

• We use the random oracle model

12



Knowledge soundness

• could mean P1 knows w1, …, PN knows wN

• actually means P1, …, PN collectively know w1, …, wN

• “distributed knowledge” [Halpern, Moses ’90]

• Random oracle
• extractor programs RO

13



Our focus: secret-shared R1CS witnesses

R1CS: 

• Class of relations

• Generalize arithmetic 
circuits

• Definition:
• R: 𝐴, 𝐵, 𝐶 ∈ 𝔽𝑛×𝑚

• 𝑥 ∈ 𝔽𝑘 ,𝑤 ∈ 𝔽𝑚−𝑘

• Satisfied when
• 𝑎 ← 𝑤 ∥ 𝑥

• 𝐴𝑎 ∘ 𝐵𝑎 = 𝐶𝑎

14



Designing co-zkSNARKs
Overview of constructions

15



Approach: MPC the Prover

16

GenericMPC zkSNARK.Prove, 𝑤 → 𝜋



Potential Bottlenecks

Single-prover bottlenecks:

• Elliptic curve operations

• Fourier transforms

MPC bottlenecks:

• Polynomial divisions

• Partial products

• Merkle tree evaluations

✅MPC-efficient

✅ special protocol

✅MPC-efficient (for SNARK provers)

❓ This talk: a good solution 

17

❓ This talk: an okay solution 



MPC Crash-Course

Computation: arithmetic circuit 
over a finite field

1. Secret-share wire values 
among N parties

2. Secure protocols for +, * on 
shares

3. Evaluate circuit, inputs to 
outputs

We use two MPCs: SPDZ (authenticated additive shares, malicious majority) and GSZ (Shamir shares, honest majority)18



MPC-friendly elliptic curve arithmetic

Elliptic curve addition

Option 1: Share (x, y) coordinates

Option 2: Elliptic curve sharing

Nasty
Formulas

19

Expensive
• multiple multiplications
• communication

Efficient
• no communication

add
share-wise



Merkle Trees

x1 x2 x3 x4 xn

H H

H

R

x1
(1) x2

(1) x3
(1) x4

(1) xn
(1)

x1
(2) x2

(2) x3
(2) x4

(2) xn
(2)

x1
(N) x2

(N) x3
(N) x4

(N) xn
(N)

non-linear and expensive

R(1)

R(2)

R(N)

merkle

merkle

merkle

proof size
(& verifier work)

× 𝑁

20

Idea (Riad S. Wahby): reduce 
with proof composition



Implementation

21



Implementation Goals

• Three base zkSNARKs
• Groth16

• Marlin/KZG

• Plonk/KZG

• Two base MPCs
• GSZ: 𝑡 < 𝑁/2 (honest majority)

• SPDZ: 𝑡 < 𝑁 (malicious majority)

• Goals:
• Compete with existing zkSNARKs

• (well optimized!)

• Iterate on MPCs, sub-protocols

• Don’t work too hard

22



An Opportunity

1. Arkworks has curve-generic 
provers:

fn prove<E: PairingEngine>(..) {
…

}

2. Curve interfaces define +, *, …

trait PairingEngine {
type ScalarField;
type Curve;
fn field_add(…) …;
fn field_mul(…) …;
fn curve_add(…) …;
…

}

*Radically oversimplified23



Implementation Strategy

1. Implement MPCs for shared 
field and curve operations
1. SDPZ

2. GSZ

2. Wrap MPCs & implement 
arkworks interfaces

3. Instantiate zkSNARK prover
➢Mis-appropriates zkSNARK prover 

as a co-zkSNARK prover!

24

Arkworks
Prover

Arkworks
Curve

Arkworks
MPC Curve

MPC 
Protocols

Network



Performance

25



Experimental Setup

Measure:
• Wall-clock proving time

Vary:
• 𝑁: number of provers

• 𝑛: R1CS size (# constraints)

• 𝑐: link capacity

• Base: Groth16/Marlin/Plonk

• 𝑡: security threshold
• < 𝑁/2 (honest majority, GSZ)

• < 𝑁 (malicious majority, SPDZ)

Simplifications:
• No intra-prover parallelism

• Skip MPC preprocessing
• Small for our computation

26



Experiment 1: Good network, few parties

𝑡 < 𝑁/2 → no slowdown 𝑡 < 𝑁 → 2x slowdown

Fix a 3Gb/s link, vary # rank-1 constraints

27



Experiment 2: Many provers

Slowdown grows with N; better for SPDZ

Fix 1024 constraints, 3Gb/s link, Groth16, vary # of provers

An opportunity!

28



Experiment 3: Low-capacity link

Slowdowns grow, but far better than 1000x

Fix 1024 constraints, 2 provers, malicious majority (SPDZ)

29



Discussion, Future Work

• Bandwidth is the bottleneck for many provers, low link capacity
• Bad news: 2-prover co-zkSNARK (additive sharing) → Ω(𝑛) communication

• From randomized 2-party communication complexity of DISJOINT

• Conjecture: Ω(𝜆𝑛) (needed: generalize DISJOINT from {0,1} to 𝔽)

• Exploit intra-prover parallelism

• A nicer post-quantum co-zkSNARK with o(N) proof-size?

30



Collaborative zkSNARKs

Conclusions:

1. Collaborative zkSNARKs support 
distributed secrets
• Multiple users, hospitals, banks, …

2. Very efficient
• (𝑁/2)-ZK → no slowdown

• (𝑁 − 1)-ZK → 2x slowdown

3. Far better than MPC for typical 
computations → ~1000x slowdown

Groth16 co-zkSNARK proving time

Alex Ozdemir, Dan Boneh

https://ia.cr/2021/1530https://github.com/alex-ozdemir/multiprover-snark
31



Code

Component Lines (Rust)

Network Library ~700

Arkworks 
adapters

~2000

MPC protocols ~3000

Plonk ~1200

32


