Collaborative zkSNARKS

Zero-knowledge proofs for distributed secrets

Alex Ozdemir, Dan Boneh
To appear in USENIX Security’22

Provable properties about secrets

Authentication | [zkSNARKs

| prove that | know my
password/secret key.

C\ient (seott)

q—

Provable properties about distributed secrets

%
Money Laundering %03/‘0\\ ./k B
W]
Several banks prove that “Eve” | o/
has Colonial Pipeline’s ransom. °/| ~.
Healthcare Statistics
2 A (A

Several hospitals prove that

procedure prices are “fair”. //ﬁ J”\ (,/7\\,}

This talk

Applications:

e Authentication zkSNARKSs

* Money laundering
* Healthcare statistics

?

?

Outline:
1. Why zkSNARKs are insufficient

B W N

New tool: collaborative zkSNARK
Building collaborative zkSNARKSs
Surprising efficiency

Background

Witness relations

T Y
@TQ‘V:. (%, W) eR 3
OO W,

P(x, w) V(%)

e W may be large

?
W 5 (xwek * not private

{
0, 1}

ZkSNARKS

280

:—;\?‘ W) . (,X(w36R 3
OO \/\M

P(x, w) V()

e Sound: T proves w exists

Te Proelep . 0) AV“‘%(W'X’“\ e (zk) zero knowledge: hides w
’ * (S) succinct: short m, fast Verify
\ * (N) non-interactive
A}

e (AR) argument: computationally sound
{C),J% e (K) knowledge: P knows w

Authentication with a zkSNARK

Existing zkSNARKSs

* From pairings & elliptic curves
* Groth16
* Marlin (KZG)
* Plonk (KZG)

* From hashing & codes
* Fractal

[G"16][GWC’'19][KZG"10][CHMMVW’20][COS’20]...

For distributed secret data,
who plays the prover?

Collaborative zkSNARKS

Collaborative zkSNARKs

P(w)

|
-‘TCJ

conventional

Pz(‘*’b
P, (w ,) GL;-;\a PJ(.(JD&B

lm

\

collaborative

Syntax:

* Setup() - pp

* Prove(pp, x, Py (W1), ..., Py(Wy)) »

* Verify(pp, x,m) — {0, 1}

11

t-zero-knowledge

Any adversary controlling <t
provers learns nothing but
whether

(x, W) E R

(w\
, P (.)

Ps (.\'35

Plwd = ?(w

* Formally

* Adversary corrupts <t provers

e ZK simulatoris given
* the corrupt witnesses
* X
* b=(x,W)ER
* We use the random oracle model

12

Knowledge soundness

* could mean P, knows wy, ..., Py knows wy

* actually means P, ..., Py collectively know wy, ..., wy
e “distributed knowledge” [Halpern, Moses "90]

e Random oracle
e extractor programs RO

5 &
O O
P

Our focus: secret-shared R1CS witnesses

R1CS:

i AR,C
e Class of relations
e Generalize arithmetic
circuits
 Definition: > [wl, X

S@L UP rics

\PP
v

e R: A, B, C € F™*™m
e x € Ff,w e Fmk
o Satisfied when

cacwlx Socrd - Shord among proars

e AaoBa= Ca

|

14

Designing co-zkSNARKS

Approach: MPC the Prover

AN
GenericMPC(zkSNARK. Prove, [w]) = & P (w,BGL;;\a AN
— ——
|000x slower 1000 % slowes” lﬂ_,

L/\/\/ of 93 xdeR
000 000x swdowm ?\ V Q

—
(a\}O‘lCX. 'lvxsjrmd O\@‘/\ine, 100 % — 20Q0+% 6bwdow\/\,

16

Potential Bottlenecks

Single-prover bottlenecks:

* Elliptic curve operations | 9 This talk: a good solution

* Fourier transforms MPC-efficient

MPC bottlenecks:

* Polynomial divisions MPC-efficient (for SNARK provers)
* Partial products special protocol

 Merkle tree evaluations ? This talk: an okay solution

MPC Crash-Course

Computation: arithmetic circuit 1. Secret-share wire values
over a finite field among N parties
€9 X= X 4 P W
W
X [<1
ﬁ*ﬂ 2. S s for +, *
. Secure protocols for +, * on
[Y]-/‘ \’®._A o&d’ shares
4

3. Evaluate circuit, inputs to
outputs

We use two MPCs: SPDZ (authenticated additive shares, malicious majority) and GSZ (Shamir shares, honest majority)

MPC-friendly elliptic curve arithmetic

Option 1: Share (x, y) coordinates

L3 @[3 = %= Nast Expensive
asty . e
o o ([\c,‘),[y,]x 3] ([m'cy;b — Farmalas | —— multlple.muljclpllcatlons
Elliptic curve addition N= * communication
q.= (%, ¥ \
9= (¥a, Yo) eE(\F Option 2: Elliptic curve sharing
K add Efficient
3 A %) ‘—,9] = sm <) 3”@ - gl SW) - <hare-wise ? no communication
' T °

19

Merkle Trees

merkle

merkle

R
)
//) L
H :
F\
H
~ > N\ N\

X; || X [X3 | X . X,
x| xm | [0 L. x, (1)
X2 | %@ | %@ | x,@ x, (2
Xy M) | M| x|, x, (N

merkle

>

>

non-linear and expensive

ldea (Riad S. Wahby): reduce

with proof composition

proof size

(& verifier work)
X N

20

Implementation

Implementation Goals

* Three base zkSNARKs * Goals:
* Groth16 * Compete with existing zkSNARKSs
e Marlin/KZG * (well optimized!)
* Plonk/KZG * lterate on MPCs, sub-protocols

e Two base MPCs * Don’t work too hard

* GSZ:t < N/2 (honest majority)
 SPDZ:t < N (malicious majority)

An Opportunity

1. Arkworks has curve-generic 2. Curve interfaces define +, *, ...
provers:
trait PairingEngine {
type ScalarField;
type Curve;
j fn field add(...) ...
fn field_mul(...) ...;
fn curve_add(...) ...;

fn prove<E: PairingEngine>(..) {

*Radically oversimplified

Implementation Strategy

1. Implement MPCs for shared Arkworks
field and curve operations Prover
1. SDPZ J
2. G Arkworks | MPC
2. Wrap MPCs & implement MPC Curve Protocols
arkworks interfaces - J
3. Instantiate zkSNARK prover Arkworks
- . Network
» Mis-appropriates zkSNARK prover Curve

as a co-zkSNARK prover!

Performance

Experimental Setup

Measure:
* Wall-clock proving time

Vary:
 N: number of provers
n: R1CS size (# constraints)
e c: link capacity
Base: Groth16/Marlin/Plonk

t: security threshold
< N/2 (honest majority, GSZ)
e < N (malicious majority, SPDZ)

Simplifications:
* No intra-prover parallelism
» Skip MPC preprocessing

* Small for our computation

Experiment 1: Good network, few parties

Fix a 3Gb/s link, vary # rank-1 constraints

Groth16

2'0 2'5 2'10 2l15 2I20
Constraints

Provers

Single Prover

t <N/2 — noslowdown

t <N - 2xslowdown

27

Experiment 2: Many provers

Fix 1024 constraints, 3Gb/s link, Groth16, vary # of provers

, An opportunity!

4
4
\ .

3.
S 2 ZK Threshold
3 22 N
i t
:)
o 2'- —A— t<N/2
20 _ single prover

Parties

Slowdown grows with N; better for SPDZ

28

Experiment 3: Low-capacity link

Fix 1024 constraints, 2 provers, malicious majority (SPDZ)

25 -
C 2% - Proof System
c;) 23 - Groth16
'D 4
E 52 - —&— Marlin
D i Plonk

20 | single prover

2IO 2'2 2I4 2lG
Bandwidth (Mb/s)

Slowdowns grow, but far better than 1000x

29

Discussion, Future Work

* Bandwidth is the bottleneck for many provers, low link capacity

* Bad news: 2-prover co-zkSNARK (additive sharing) — (1(n) communication

* From randomized 2-party communication complexity of DISJOINT
* Conjecture: 1(An) (needed: generalize DISJOINT from {0,1} to [F)

e Exploit intra-prover parallelism
* A nicer post-quantum co-zkSNARK with o(N) proof-size?

Collaborative zkSNARKSs

Alex Ozdemir, Dan Boneh

Groth16 co-zkSNARK proving time

25 -
Provers
1 of 2 corrupt
@
© 0 1 of 3 corrupt
£
= 2 of 3 corrupt
one prover
(baseline)
2—5
05 10 015
Size of ¢ (R1CS canstraints)

https://github.com/alex-ozdemir/multiprover-snark

Conclusions:

1. Collaborative zkSNARKs support
distributed secrets
* Multiple users, hospitals, banks, ...

2. Very efficient
e (N/2)-ZK -
e (N —1)-ZK -

3. Far better than MPC for typical
computations = ~1000x slowdown

https://ia.cr/2021/1530

Code

Network Library ~700
Arkworks ~2000
adapters

MPC protocols ~3000

Plonk ~1200

32

