
FROST: Flexible Round-Optimized Schnorr
Threshold signatures [Extended Abstract]

Chelsea Komlo1 and Ian Goldberg2

1University of Waterloo, Zcash Foundation
2University of Waterloo

January 7, 2020

Abstract

Unlike signatures in a single-party setting, threshold signatures require coop-
eration among a threshold number of signers each holding a share of a common
private key. Consequently, generating signatures in a threshold setting imposes
overhead due to network rounds among signers, proving costly when secret shares
are stored on network-limited devices or when coordination occurs over unreliable
networks. In this work, we present FROST, a Flexible Round-Optimized Schnorr
Threshold signature scheme that improves upon the state of the art to reduce net-
work overhead during signing operations. We present two variants of signing oper-
ations in FROST, the first requiring participants to send and receive two messages
in total, and an optimized single-round variant with a batched non-interactive pre-
processing stage. FROST achieves its efficiency improvements by allowing the
protocol to abort in the presence of a misbehaving party (who is then identified
and excluded from future operations)—a reasonable model for practical deploy-
ment scenarios. We present two use cases of threshold signatures demonstrating
the practicality of this tradeoff to real-world implementations, and prove FROST
is as secure as Schnorr’s signature scheme in a single-party setting.

1 Introduction
Threshold signature schemes are a cryptographic primitive to facilitate joint ownership
over a private key by a set of participants, such that a threshold number of participants
must cooperate to issue a signature that can be verified by a single public key. Thresh-
old signatures are useful across a range of settings that require a distributed root of trust
among a set of equally trusted parties.

Similarly to signing operations in a single-party setting, some implementations of
threshold signature schemes require performing signing operations at scale and under
heavy load. For example, threshold signatures can be used by a set of signers to au-
thenticate financial transactions in cryptocurrencies [9], or to sign a network consensus

1

produced by a set of trusted authorities [11]. In both of these examples, as the num-
ber of signing parties or signing operations increases, the number of communication
rounds between participants required to produce the joint signature becomes a perfor-
mance bottleneck, in addition to the increased load experienced by each signing party.
This problem is further exacerbated when signers utilize network-limited devices or
unreliable networks for transmission, or protocols that wish to allow signers to partici-
pate in signing operations asynchronously. As such, optimizing the network overhead
of signing operations is highly beneficial to real-world applications of threshold signa-
tures.

Today in the literature, the best threshold signature schemes are those that rely
on pairing-based cryptography [2, 3], and can perform signing operations in a single
round among participants. However, relying on pairing-based signature schemes is
undesirable for some implementations in practice, such as those that do not wish to
introduce a new cryptographic assumption, or that wish to maintain backwards com-
patibility with an existing signature scheme such as Schnorr signatures. Surprisingly,
today’s best non-pairing-based threshold schemes require multiple rounds of interac-
tion during signing operations. The best threshold signature constructions that produce
Schnorr signatures [7, 16] require at least three rounds of communication during sign-
ing operations: two rounds to generate a random nonce (where participants send values
to every other participant in each round) and one round to publish and aggregate each
participant’s signature share. Notably, these Schnorr-based schemes have assumed ro-
bustness as a critical protocol feature, such that if any participant misbehaves, honest
participants can detect this misbehaviour, disqualify the misbehaving participant, and
continue the protocol to produce a signature, so long as at least the threshold number
of honest parties remain.

In this work, we present FROST, a Flexible Round-Optimized Schnorr Threshold
signature scheme1 that addresses the need for efficient threshold signing operations
in real-world settings. We present two variants of FROST; the first is a two-round
variant where participants send and receive two messages in total, and the second is
an optimization of the first, such that signing operations can be performed in a single
(non-broadcast) round with a batched non-interactive pre-processing stage. In lieu of
robustness, FROST achieves improved efficiency in the optimistic case that no party
misbehaves. However, in the case where a misbehaving participant contributes mal-
formed values during the protocol, honest parties can identify and exclude the misbe-
having party, and re-run the protocol. We present two use cases of threshold signatures
demonstrating the practicality of this tradeoff to real-world settings.

Contributions. In this extended abstract of our work, we present the following
contributions.

- We review related Schnorr-based threshold signature schemes and present a de-
tailed analysis of their performance and designs.

- We discuss two use cases of threshold signatures to demonstrate practical trade-
offs between robustness and efficiency.

- We present FROST, a Flexible Round-Optimized Schnorr Threshold signature
scheme. We define two variants for performing signing operations, the first a

1Signatures generated using the FROST protocol can also be referred to as ”FROSTy signatures.”

2

two-round protocol where participants send and receive two messages in total,
and the second an optimization to a single-round variant with a batched non-
interactive preprocessing stage.

- We give a high-level sketch of the security and correctness of FROST, build-
ing upon proofs of security for prior related schemes. We present our complete
security proofs in the full version of this work.

Organization. We present background information important to understanding our
work in Section 2. In Section 3, we outline two use cases of threshold signatures
demonstrating that the strongest notions of robustness are not always required in real-
istic deployments of threshold schemes. In Section 4 we give an overview of related
threshold Schnorr signature constructions in the literature. In Section 5 we review no-
tation and security assumptions maintained for our work. In Section 6 we introduce
FROST and describe its protocols in detail. In Section 7 we give intuition for our
proofs of security, which we include in greater detail in the full version of this work,
and conclude in Section 8.

2 Background

2.1 Threshold Schemes
Threshold schemes are cryptographic protocols allowing a set of n participants to share
a secret s, such that any t out of the n participants are required to cooperate in order to
recover s, but any subset of fewer than t participants cannot recover any information
about the secret.

Shamir Secret Sharing. Many threshold schemes build upon Shamir secret shar-
ing [15], a (t, n) threshold scheme that relies on Lagrange interpolation to recover a
secret. In Shamir secret sharing, a trusted central dealer distributes a secret s to n par-
ticipants in such a way that any cooperating subset of t participants can recover the
secret. To distribute this secret, the dealer first selects t− 1 coefficients a1, . . . , at−1 at
random, and uses the randomly selected values as coefficients to define a polynomial
f(x) = s+

∑t−1
i=1 aix

i of degree t−1 where f(0) = s. The secret shares for each par-
ticipant Pi are subsequently (i, f(i)), which the dealer is trusted to distribute honestly
to each participant P1, . . . , Pn. To reconstruct the secret, at least t participants perform
Lagrange interpolation to reconstruct the polynomial and thus find the value s = f(0).
However, no group of fewer than t participants can reconstruct the secret, as at least t
points are required to reconstruct a polynomial of degree t− 1.

Verifiable Secret Sharing. Feldman’s Verifiable Secret Sharing (VSS) Scheme [5]
builds upon Shamir secret sharing, adding a verification step to demonstrate the consis-
tency of a participant’s share with a public commitment that is assumed to be correctly
visible to all participants. To validate that a share is well formed, each participant vali-
dates their share using this commitment. If the validation fails, the participant can issue
a complaint against the dealer, and take actions such as broadcasting this complaint to
all other participants. FROST similarly uses this technique as well.

3

The commitment produced in Feldman’s scheme is as follows. As before in Shamir
secret sharing, a dealer samples t − 1 random values (a1, . . . , at−1), and uses these
values as coefficients to define a polynomial fi of degree t − 1 such that f(0) = s.
However, along with distributing the private share (i, f(i)) to each participant Pi, the
dealer also distributes the public commitment

~C = 〈φ0, . . . , φt−1〉, where φ0 = gs and φj = gaj

Note that in a distributed setting, each participant Pi must be sure to have the same
view of ~C as all other participants. In practice, implementations guarantee consistency
of participants’ views by using techniques such as posting commitments to a central-
ized server that is trusted to provide a single view to all participants, or adding another
protocol round where participants compare their received commitment values to ensure
they are identical.

2.2 Threshold Signatures Schemes
Threshold signature schemes leverage the (t, n) security properties of threshold schemes,
but allow participants to produce signatures over a message using their secret shares
such that anyone can validate the integrity of the message, without ever reconstructing
the secret. In threshold signature schemes, the secret key s is distributed among the n
participants, while a single public key Y is used to represent the group. Signatures can
be generated by a threshold of t cooperating signers.

For our work, we require the resulting signature produced by the threshold signa-
ture scheme to be valid under the Schnorr signature scheme [14]. We introduce Schnorr
signatures in Section 2.4.

Because threshold signature schemes ensure that no party (or indeed any group of
fewer than t parties) ever learns the secret key s, the generation of s and distribution
of shares s1, . . . , sn often require generating shares using a less-trusted method than
relying on a central dealer. Instead, these schemes (including FROST) make use of a
Distributed Key Generation (DKG) protocol, which we describe next.

2.3 Distributed Key Generation
While some threshold schemes such as Shamir secret sharing rely on a trusted dealer
to generate and distribute secret shares to all participants, not all threat models can
allow for such a high degree of trust in a single individual. Distributed Key Gener-
ation (DKG) supports such threat models by enabling every participant to contribute
equally to the generation of the shared secret. At the end of running the protocol, all
participants share a joint public key Y , but each participant holds only a share si of the
corresponding secret s such that no set of participants smaller than the threshold knows
s.

Pedersen [12] presents a two-round DKG where each participant acts as the central
dealer of Feldman’s VSS [5] protocol, resulting in n parallel executions of the protocol.
Consequently, this protocol requires two rounds of communication between all partic-
ipants; after each participant selects a secret xi, they first broadcast a commitment to
xi to all other participants, and then send all other participants a secret share of xi.

4

Gennaro et al. [8] demonstrate a weakness of Pedersen’s DKG [12] such that a mis-
behaving participant can bias the distribution of the resulting shared secret by issuing
complaints against a participant after seeing the shares issued to them by this partici-
pant, thereby disqualifying them from contributing to the key generation. To address
this issue, the authors define a modification to Pedersen’s DKG to utilize both Feld-
man’s VSS as well as a verifiable secret sharing scheme by Pedersen [13] resulting in a
three-round protocol. To prevent adversaries from adaptively disqualifying participants
based on their input, the authors add an additional “commitment round”, such that the
value of the resulting secret is determined after participants perform this commitment
round (before having revealed their inputs).

In a later work, Gennaro et al. [7] prove that Pedersen’s DKG as originally de-
scribed [12] is secure enough in certain contexts, as the resulting secret is sufficiently
random despite the chance for bias from a misbehaving participant adaptively select-
ing their input after seeing inputs from other participants. However, Pedersen’s DKG
requires larger security parameters to achieve the same level of security as the mod-
ified variant by Gennaro et al. [8] that requires the additional commitment round. In
short, the two-round Pedersen’s DKG [12] requires a larger group to be as secure as
the three-round DKG presented by Gennaro et al. [8].

2.4 Schnorr Signatures
Often, it is desirable for signatures produced by threshold signing operations to be in-
distinguishable from signatures produced by a single party, consequently being back-
wards compatible with existing systems, and also preventing a privacy leak of the
identities of the individual signers. For our work, we require signatures produced by
FROST signing operations to be indistinguishable from Schnorr signatures, and thus
verifiable using the standard Schnorr verification operations. To this end, we now de-
scribe Schnorr signing and verification operations [14] in a single-signer setting.

Let G be a group with prime order q and generator g, and let H be a cryptographic
hash function mapping to Z∗q . A Schnorr signature is generated over a message m by
the following steps:

1. Sample a random nonce k ∈R Zq; compute the commitment R← gk ∈ G
2. Compute the challenge c = H(m,R)
3. Using the secret key s, compute the response z = k + s · c ∈ Zq
4. Define the signature over m to be σ = (z, c)

Validating the integrity of m using the public key Y = gs and the signature σ is
performed as follows:

1. Parse σ as (z, c).
2. Compute R′ = gz · Y −c
3. Compute z′ = H(m,R′)
4. Output 1 if z = z′ to indicate success; otherwise, output 0.

Schnorr signatures are simply the standard Σ-protocol proof of knowledge of the
discrete logarithm of Y , made non-interactive (and bound to the message m) with the
Fiat-Shamir transform.

5

2.5 Additive Secret Sharing
Similarly to the single-party setting described above, FROST requires generating a ran-
dom nonce k for each signing operation. However, in the threshold setting, k should be
generated in such a way that each participant contributes to but does not know the re-
sulting k (properties that performing a DKG as described in Section 2.3 also achieve).
Key to our design of FROST is the observation that while an arbitrary t out of n enti-
ties are required to participate in a signing operation, a simpler t-out-of-t scheme will
suffice to generate the random nonce k.

While Shamir secret sharing and derived constructions require shares to be points
on a secret polynomial f where f(0) = s, an additive secret sharing scheme allows
t participants to jointly compute a shared secret s by each participant Pi contributing
a value si such that the resulting shared secret is s =

∑t
i=1 si, the summation of

each participant’s secret. Consequently, this t-out-of-t secret sharing can be performed
non-interactively; each participant directly chooses their own si.

Benaloh and Leichter [1] generalize this scheme to arbitrary access structures; the
threshold t-out-of-n case (the “CNF” scheme) corresponds to, for each subset A ⊂
{1, . . . , n} of size n− (t−1), selecting a random sA, a copy of which is given to every
participant Pi for i ∈ A. The secret is the sum of all the sA, as before. Note that for
general n and t, this scheme is inefficient because each participant holds

(
n−1
t−1
)

shares.
However, in the case n = t, this scheme reduces to exactly the simpler t-out-of-t
additive scheme above.

Share Conversion. Cramer, Damgård, and Ishai [4] present a non-interactive
mechanism for participants to locally convert additive shares generated via the above
generalized additive secret sharing scheme to polynomial (Shamir) form. To perform
share conversion using this technique, a secret polynomial f is constructed such that
each participant Pi can evaluate f only at point i.

We start with the same setup as above: we consider subsets of {1, . . . , n} of size
n− (t− 1). Let U be the universe of all

(
n
t−1
)

such subsets. For each A ∈ U (so that
A is a particular subset of size n − (t − 1)), there is a secret share sA, such that the
secret s is the sum

∑
A∈U sA. Then for each i ∈ A, participant Pi holds a copy of sA.

Cramer et al. [4] then show how to non-interactively convert these t-out-of-n ad-
ditive secret shares of s to t-out-of-n Shamir shares of s. For each A ∈ U , define the
polynomial gA(x) =

∏
i∈{1,...,n}\A

(i−x)
i . Note that for each A of size n − (t − 1),

gA(x) is of degree t − 1, satisfies g(i) = 0 for each i ∈ {1, . . . , n}\A, and g(0) = 1.
Now define f(x) =

∑
A∈U sAgA(x), which will also be a degree t − 1 polynomial.

Each participant Pi can compute f(i) using their knowledge of sA for each A that
contains i, but no other evaluation of f . Therefore, since f(0) =

∑
A∈U sAgA(0) =∑

A∈U sA = s, the f(i) are indeed t-out-of-n Shamir secret shares of s.
In our work, we will use the special case of this technique for when n = t. In

that case, each set A is of size 1, and so each party Pi can simply choose their own
s{i}. Then g{i}(x) is a degree t − 1 polynomial with g{i}(0) = 1, g{i}(j) = 0 for
j ∈ {1, . . . , t}\{i}, and g{i}(i) =

∏
j∈{1,...,t}\{i}

j−i
j = 1

λi
, where λi is the ith

Langrange coefficient for interpolating on the set {1, . . . , t}. Therefore f(i) is simply
s{i}
λi

. The key observation is that if t parties each select si at random, then si
λi

are t-
out-of-t Shamir secret shares of s =

∑
i si, and no communication was needed at all

6

to create this Shamir secret sharing of a random value.
In FROST, participants use this technique during signing operations to non-interactively

generate a one-time secret nonce (as is required by Schnorr signatures, described in
Section 2.4) that is Shamir secret shared among all t signing parties.

3 Motivation
Prior threshold signature constructions [7,16] provide the property of robustness; if one
participant misbehaves and provides malformed shares, the remaining honest partici-
pants can detect the misbehaviour, exclude the misbehaving participant, and complete
the protocol, so long as the number of remaining honest participants is at least the
threshold t. However, in settings where one can expect misbehaving participants to
be rare, one can use a protocol that is more efficient in the “optimistic” case that all
participants honestly follow the protocol, even if it means aborting and restarting the
protocol (having kicked out the misbehaving participant) otherwise.

We now present two use cases of threshold signatures demonstrating when robust-
ness as a security property for threshold signatures is not strictly required in real-world
settings, so long as misbehaviour can be detected when it occurs and the misbehaving
party identified and excluded in the future.

Use Case One: Single Owner, Partitioned Secret. In a setting when a secret sign-
ing key s is partitioned among a set of devices owned by the same entity, robustness is
not a strict requirement for signing operations. In this setting, s is partitioned to ensure
redundancy in the case of device failure, while limiting the exposure of s to any single
device. Notably, a device that issues malformed signatures during signing operations
can be simply removed from the set of trusted devices, as the misbehaving device could
either be broken or compromised. Because the set of devices is owned entirely by a
single entity, simply aborting the protocol and replacing the malfunctioning device is
sufficient for this setting.

Use Case Two: Required Abort on Misbehaviour. When s is divided among a
set of n mutually untrusted parties, misbehaviour by one of the parties warrants im-
mediate investigation in some settings. In other words, the misbehaviour by one par-
ticipant requires immediate investigation and consequently aborting the protocol. One
appropriate response after detecting misbehaviour in this setting can be to remove the
participant from the set of trusted signers. In sum, while the act of misbehaving and
the identity of the misbehaving participant should be identifiable, the protocol does not
require robustness.

Observations. Importantly, both use cases underscore the practicality of favouring
improved efficiency over robustness in the optimistic case that no party misbehaves.
However, if one party does misbehave and contributes malformed shares, honest parties
can identify the misbehaving party and abort the protocol. The honest parties can then
simply re-run the protocol amongst themselves, excluding the misbehaving participant.
Consequently, we can leverage this insight to improve upon prior threshold signature
constructions, trading off robustness in the protocol for improved efficiency.

7

4 Related Work
Stinson and Strobl [16] present a threshold signature scheme producing Schnorr sig-
natures, using the modification of Pedersen’s DKG presented by Gennaro et al. [8] to
generate both the secret key s during key generation as well as the random nonce k
during each signing operations, as required by Schnorr signatures. In total, this con-
struction requires at minimum four rounds for each signing operation (assuming no
participant misbehaves): three rounds to perform the DKG to obtain k, and one round
to distribute signature shares and compute the resulting group signature. Each round
requires participants to send values to every other participant.

Gennaro et al. [7] present a threshold Schnorr signature protocol that uses Peder-
sen’s DKG as presented originally [12] to generate both s during key generation and
the random nonce k during signing operations. Recall from Section 2.3 that Pedersen’s
DKG requires two rounds to obtain the k value. In the setting that all participants main-
tain equal levels of trust, signing operations in this construction require three rounds
of communication in total, where all participants send values to all other participants
in each round. The authors also discuss an optimization that leverages a signature
aggregator role, an entity trusted to gather signatures from each participant, perform
validation, and publish the resulting signature, a role we also adopt in our work. In
their optimized variant, participants can perform Pedersen’s DKG to generate multiple
k values in a pre-processing stage independently of performing signing operations. In
this variant, to compute ` number of signatures, signers first perform two rounds of
` parallel executions of Pedersen’s DKG, thereby generating ` random nonces. The
signers can then store these pre-processed values to later perform ` single-round sign-
ing operations.

Along with standard security notions of correctness and protection against adap-
tive chosen-message attacks, the schemes presented by Stinson and Strobl [16] and
Gennaro et al. [7] are both robust; participants that contribute malformed values can
be discarded and the protocol can complete, so long as at least t valid participants
correctly follow the protocol.

Our work builds upon both of the above schemes; we adapt the proof of security
presented by Stinson and Strobl [16] to prove the security of our scheme, and we use
Pedersen’s DKG for key generation with a requirement that in the case of misbehaviour,
the protocol aborts and the cause investigated out of band. However, our work has one
key difference. Notably, we do not perform a DKG during signing operations as is
done in both of the above schemes, but instead make use of additive secret sharing and
share conversion. Consequently, our scheme trades off robustness for more efficient
signing operations, such that a misbehaving participant can cause the signing operation
to abort. However, as described in Section 3, this tradeoff is practical to many real-
world settings. Further, because FROST does not provide robustness, FROST is secure
so long as the adversary controls fewer than the threshold t participants for any t ≤ n;
protocols that provide both secrecy and robustness can at best provide security for
t ≤ n/2 [8].

While FROST is the first Schnorr threshold signature scheme to exchange robust-
ness for improved network round efficiency, other threshold scheme constructions have
followed a similar trend. Gennaro and Goldfeder [6] present a threshold ECDSA

8

scheme that similarly requires aborting the protocol in the case of participant mis-
behaviour. Their signing construction uses a two-round DKG to generate the nonce
required for the ECDSA signature, leveraging additive-to-multiplicative share conver-
sion.

5 Preliminaries
Let G be a group of prime order q in which the Decisional Diffie-Hellman problem is
hard, and let g be a generator of G. Let H be a cryptographic hash function mapping
to Z∗q .

Let n be the number of participants in the signature scheme, and t denote the thresh-
old of the secret-sharing scheme. Let i denote the participant identifier for participant
Pi where 1 ≤ i ≤ n. Let si be the long-lived secret share for participant Pi. Let Y
denote the long-lived public key shared by all participants in the threshold signature
scheme, and let Yi = gsi be the public key share for the participant Pi. Finally, let m
be the message to be signed.

For a fixed set S = {p1, . . . , pt} of t participant identifiers in the signing operation,
let λi =

∏t
j=1,j 6=i

xpj

xpj
−xpi

denote the ith Lagrange coefficient for interpolating over
S. Note that the information to derive these values depends on which t (out of n)
participants are selected.2

Security Assumptions. We maintain the following assumptions, which implemen-
tations need to account for in practice.
- Message Validation. We assume every participant checks the validity of the message
m to be signed before issuing its signature share. If the message is invalid, the partic-
ipant should take actions to discard the message and report the misbehaviour to other
participants.
- Reliable Message Delivery. We assume messages are sent between participants using
a reliable network channel.
- Participant Identification. In order to report misbehaving participants, we require
that values submitted by participants to be identifiable within the signing group. Our
protocols assume participants are not forging messages by other participants, but im-
plementations can enforce this using a method of participant authentication within the
signing group.3

6 FROST: Flexible Round-Optimized Schnorr Thresh-
old signatures

We now present FROST, a Schnorr-based threshold signature scheme that addresses the
network performance requirements of threshold signatures used in practice, including

2Note that if n is small, the λi for every possible S can be precomputed by each participant during the
key generation phase of the protocol as a performance optimization to avoid re-computing these values for
each signing operation.

3For example, authentication tokens or TLS certificates could serve to authenticate participants to one
another.

9

the use cases presented in Section 3. While prior constructions described in Section 2.3
use Pedersen’s DKG to generate shared random values during both key generation
and signing operations, FROST leverages additive secret sharing (further discussed in
Section 2.5) to non-interactively generate random values for signing operations. We
present two variants of signing operations in FROST to demonstrate its flexibility in
different settings.

6.1 Key Generation
To generate long-lived key shares in our scheme’s key generation protocol, FROST
uses Pedersen’s DKG for key generation. Similarly to Gennaro et al. [7], we refer
to Pedersen’s DKG as Ped-DKG for the remainder of this work, and present detailed
protocol steps in Figure 1.

To begin the key generation protocol, a set of participants must be formed using
some out-of-band mechanism decided upon by the implementation. After participating
in the Ped-DKG protocol, each participant Pi holds a value (i, si) that is their long-
lived secret signing share. Participant Pi’s public key share Yi = gsi is used by other
participants to verify the correctness of Pi’s signature shares in the following signing
phase, while the group public key Y can be used by parties external to the group to
verify signatures issued by the group in the future.

View of Commitment Values. As required for any multi-party protocol using
Feldman’s VSS, the key generation stage in FROST similarly requires participants to
maintain a consistent view of commitments issued during the execution of Ped-DKG.
In this work, we assume participants broadcast the commitment values honestly (e.g.,
participants do not provide different commitment values to a subset of participants);
recall Section 2.1 where we described techniques to achieve this guarantee in practice.

Security tradeoffs. While Gennaro et al. [8] describe the “Stop, Kill, and Rewind”
variant of Ped-DKG (where the protocol terminates and is re-run if misbehaviour is de-
tected) as vulnerable to influence by the adversary, we note that in a real-world setting,
good security practices typically require that the cause of misbehaviour is investigated
once it has been detected; the protocol is not allowed to terminate and re-run continu-
ously until the adversary finds a desirable output. However, implementations wishing
for a robust DKG can use the construction presented by Gennaro et al. [8]. Note that
the efficiency of the DKG for the key generation phase is not extremely critical, be-
cause this operation must be done only once per key generation for long-lived keys.
For the per-signature operations, FROST optimizes the generation of random values
without utilizing a DKG, as discussed next.

6.2 Signing
We now present two variants of the signing protocol for FROST. Note that both variants
leverage the use of a signature aggregator, which we now describe.4

4FROST protocols can also be instantiated without a signature aggregator; we present this variant in the
full version of this work.

10

Distributed Key Generation (DKG) Protocol: Ped-DKG [12]

Round One

1. Every participant Pi samples t random values (ai0, . . . , ai(t−1))) ∈R Zq ,
and uses these values as coefficients to define a polynomial fi(x) =∑t−1
j=0 aijx

j of degree t− 1 over Zq .
2. Every participant Pi computes a public commitment and broadcasts this

commitment to all other participants.

~Xi = 〈φi0, . . . , φi(t−1)〉, where φj = gaij , 0 ≤ j ≤ t− 1

Round Two

1. Each participant Pi securely sends to each other participant Pj a secret share
(j, fi(j)).

2. Every participant Pi verifies the share they received from each other partic-
ipant Pj , where i 6= j, by verifying:

gfj(i)
?
=
∏t−1
k=0 φ

ik mod q
jk

If the check fails, abort the protocol and investigate the participant that re-
sulted in the failed check. Otherwise, continue to the next step.

3. Each participant Pi calculates their long-lived private signing share by com-
puting the sum of all their received shares si =

∑n
j=1 fj(i), and stores si

securely.

4. Each participant then calculates their own public verification share Yi =
gsi , and the group’s public key Y =

∏n
j=1 φj0. Note that any participant

can compute the public verification share of any other participant as Yi =∏n
j=1

∏t−1
k=0 φ

ik mod q
jk .

Figure 1: Ped-DKG. A distributed key generation protocol introduced by Peder-
sen [12] where each of n participants executes Feldman’s VSS as the dealer in parallel,
and derives their secret share as the sum of the shares received from each of the n VSS
executions. This variant requires aborting the protocol on misbehaviour.

11

Signature Aggregator Role. FROST assumes a semi-trusted role, which we call
the signature aggregatorA. This role can be performed by any participant in the proto-
col, or even an external party, provided they know the participants’ public-key shares
Yi. A is trusted to report misbehaving parties (we assume values submitted by par-
ticipants can be authenticated, as discussed in Section 5) and to publish the group’s
signature at the end of the protocol. As we further describe in Section 7, if A devi-
ates from the protocol, the protocol remains secure against adaptive chosen message
attacks. A maliciousA has the power to perform denial of service attacks and to falsely
report misbehaviour by participants, but cannot learn the private key or cause improper
messages to be signed. Note this signature aggregator role is also used by Gennaro et
al. [7] to enable the optimized variant of their construction.

6.2.1 Two-Round Interactive Signing Protocol

We present a two-round protocol in Figure 2; notably, this design requires participants
to send and receive only two messages in total (one message in each round). The signa-
ture aggregator A performs coordination among all the participants and consequently
sends and receives t messages in each round (or t − 1 messages if A is also a partici-
pant).

At the beginning of the signing protocol, A selects t participants (possibly includ-
ing itself) to participate in the signing. Let S be the set of those t participants. In
the first round, A asks each participant in S for a commitment share, which serves as
a secret share to a random commitment for the group (corresponding to the commit-
ment gk to the nonce value k in step 1 of the single-party Schnorr signature scheme in
Section 2.4). This technique is a t-out-of-t additive secret sharing; the resulting secret
nonce is k =

∑
i∈S di, with each di selected by participant Pi, i ∈ S. Recall from

Section 2.5, however, that if the di values are additive shares of k, then di
λi

are t-out-of-t
Shamir shares of k. After generating their nonce value di locally and non-interactively,
each participant sends a commitment share Di = gdi to A.

In the second round, each participant in S receives from A the message m to be
signed and the group’s public commitment R to k. Each participant checks that m
is a message they are willing to sign. Then, as in single-party Schnorr signatures,
each participant computes the challenge c = H(m,R). The response to the challenge
(z = k + s · c in the single-party case) can be computed using the long-term secret
shares si, which are t-out-of-n (degree t− 1) Shamir secret shares of the group’s long-
lived secret key s. Recalling that diλi

are degree t− 1 Shamir secret shares of k, we see
that diλi

+si ·c are degree t−1 Shamir secret shares of z. Using share conversion again,
we get that zi = di + λi · si · c are t-out-of-t additive shares of z.
A finally checks the consistency of each participant’s reported zi with their com-

mitment share Di and their public key share Yi and if every party issued a correct zi,
then the sum of the zi values, along with c, forms the Schnorr signature on m.

6.2.2 Single-Round Signing Protocol with Preprocessing

We now describe an optimization to the signing protocol presented in Figure 2. Instead
of each participant generating one random nonce and commitment share at the time

12

Sign(m)→ (m,σ)

Let A denote the signature aggregator. Let S form the set of identifiers corre-
sponding to the participants selected for the signing operation, where |S| = t.
Note that A can themselves be one of the t participants.

Round 1

1. The signature aggregator A initializes a signing operation by sending a re-
quest for a commitment share to each participant Pi : i ∈ S.

2. Each Pi samples a fresh nonce di ∈R Zq .
3. Each Pi derives a corresponding single-use public commitment share Di =
gdi .

4. Each Pi returns Di to A, and stores (di, Di) locally.

Round 2

1. The signature aggregator A computes the public commitment R =∏
i∈S Di for the set of selected participants.

2. For i ∈ S, A sends Pi the tuple (m,R, S).
3. After receiving (m,R, S), each participant Pi for i ∈ S first validates the

message m, aborting if the check fails.
4. Each Pi computes the challenge c = H(m,R).
5. Each Pi computes their response using their long-lived secret share si by

computing zi = di + λi · si · c, using S to determine λi.
6. Each Pi securely deletes (di, Di), and then returns zi to A.
7. The signature aggregator A performs the following steps:

7.a Verifies the validity of each response by checking gzi ?
= Di ·Yic·λi for

each signing share z1, . . . , zt. If the equality does not hold, first iden-
tify and report the misbehaving participant, and then abort. Otherwise,
continue.

7.b Compute the group’s response z =
∑
zi

7.c Publish the signature σ = (z, c) along with the message m.

Figure 2: FROST Two-Round Signing Protocol

13

of each signing operation, participants instead generate a set of these values during
an asynchronous and non-interactive batched pre-processing stage. We present this
variant assuming the availability of a centralized location to store commitment shares
which we term a commitment server, further described below. After performing this
pre-processing step, this variant of FROST can support signing operations in a single
(non-broadcast) round.

One feature of the single-round variant that we wish to highlight is the ability to per-
form asynchronous signing operations. Specifically, signers only need to receive one
message and reply eventually. Because the protocol occurs in one round, signers are
not required to be online simultaneously and instead can process requests and respond
with signature shares asynchronously; the final signature can be computed after the
tth signer provides their signature share. This computation can be done by A, or even
publicly, if the set of which particular t participants contributed to a given signature is
not required to be secret.

Commitment Server Role. The commitment server role performs storage and
management of participants’ commitment shares, and consequently must be accessible
to all participants. While the commitment server may be a separate entity, we note that
the signature aggregator A can also provide this service in addition to its other duties.
In this setting, the commitment server is trusted to provide the correct commitment
shares upon request. If the commitment server chose to act maliciously, it could either
prevent participants from performing the protocol by denial of service, or it could pro-
vide stale or malformed commitment values on behalf of honest participants, causing
uncertainty as to whether the commitment server or the participant was the misbehav-
ing entity. We note that ifA assumes the commitment server role itself, this uncertainly
is avoided; in addition, by performing the role of commitment server,A has a complete
view of what participants have published and consequently can carry out their role to
report misbehaviour when it occurs.

Preprocessing Stage. In the preprocessing stage, each participant begins by gen-
erating a set of single-use private nonces and corresponding public commitment shares
(dij , Dij) : j ∈ {1, . . . , ζ}, such that ζ ∈ Z is a constant term indicating the num-
ber of nonce/commitment shares generated by each participant in a single batch. In
this setting, j is a counter maintained by each participant locally to identify the next
nonce/commitment share pair available to use for signing.

Each participant Pi then publishes this set of commitment shares and their own
participant identifier (i, {Dij : j ∈ {1, . . . , ζ}}) to the commitment server. The com-
mitment server stores this information for use in subsequent signing operations.

We present the complete set of steps for this preprocessing stage in Figure 3. Each
participant must separately perform this operation at least once per each ζ signing
operations.

Signing Protocol. The signing protocol in this variant remains largely the same
as in Section 6.2.1, as demonstrated in Figure 3. However, instead of the signature
aggregator A requesting Dij from each participant, A instead fetches these values
from the commitment server, which deletes each one (or marks it as used) after serving
it to A. Upon receiving the request from A to begin the signing protocol that includes
the commitment shareDij indicating which nonce to use in the signing operation, each
participant first checks to ensure thatDij corresponds to a valid nonce and commitment

14

Preprocess(ζ)→ (i, {Dij : j ∈ {1, . . . , ζ}})
Each participant Pi performs this stage independently as a prerequisite to
participate in future signing operations. Let j be a counter denoting a specific
nonce/commitment share pair, and let ζ be a constant indicating the number
of such pairs generated in a single batch.

1. Create an empty list ρ.
2. For j : (1, . . . , ζ), perform the following steps:

2.a Sample dij ← Zq as a single-use private nonce.
2.b Derive a corresponding single-use public commitment share

Dij = gdij .
2.c Append Dij to the list ρ, and store (dij , Dij) locally.

3. Publish (i, ρ) to the commitment server, where i is the identifier for
participant Pi.

Sign(m)→ (m,σ)
Let A denote the signature aggregator. Let S be the set of identifiers corre-
sponding to the participants selected for the signing operation, where |S| = t.

1. The signature aggregator A fetches the next unused commitment share
for each participant (i,Dij) : i ∈ S from the commitment server. The
commitment server returns these values, and deletes them to prevent
their use in future signing operations.

2. A computes the signing group’s public commitment R =
∏
i∈S Dij .

3. The signature aggregator A sends each selected participant the tuple
(m,R, S,Dij), including Dij to indicate which nonce/commitment
share the participant should use to perform signing.

4. After receiving (m,R, S,Dij), each participant Pi checks to make sure
that Dij corresponds to a valid unused nonce dij . If not, the participant
responds to A to indicate that the signing protocol must be re-run, and
aborts.

5. Each participant validates the message m, aborting if m is invalid.
6. The signature aggregator and participants follow the remaining steps

4–7 in Round 2 of Figure 2.

Figure 3: FROST Single-Round Signing Protocol with a Non-Interactive and Batched
Pre-Processing Stage

15

share (e.g., the participant has not yet deleted dij after using it in an earlier signing
round).

Because each nonce and commitment share generated during the preprocessing
stage described in Figure 3 must be used at most once, participants delete these val-
ues after using them in a signing operation, as indicated in Step 5 in Figure 2. An
accidentally reused dij can lead to exposure of the participant’s long-term secret si, so
participants must securely delete them, and defend against snapshot rollback attacks as
in any implementation of Schnorr signatures.

On the other hand, if the commitment server serves an already-used commitment
share Dij to A during the signing protocol (e.g, the commitment server fails to delete
or mark as used Dij after its use in a previous signing operation), the commitment
server will cause a denial of service on the signing protocol. Further, as above, settings
where the commitment server is not run by A itself, the commitment server may cause
ambiguity as to whether it was the commitment server (serving a stale Dij) or the par-
ticipant (refusing to respond to a valid Dij) that is misbehaving. However, private keys
of participants will never be revealed as a result of misbehaviour by the commitment
server, and the security of the scheme remains the same as single-party Schnorr, as
described in Section 7.

7 Security
In the full version of this work, we present detailed proofs of our protocol’s security and
correctness by employing proof techniques first presented by Stinson and Strobl [16]
but adapted for our work. We now review high-level proof sketches for the intuition of
these proofs.

7.1 Correctness
As in the proof of correctness by Stinson and Strobl, we can similarly prove the cor-
rectness for FROST as signatures in FROST are also constructed using secrets from
two separate secret polynomials. The first polynomial f1(·) is defined in the key gen-
eration stage via Ped-DKG. The second polynomial f2(·) is defined during the signing
phase by the random nonces selected by the t participants participating in signing, after
each participant converts their random nonce (serving as an additive secret share) to a
Shamir share using share conversion (as described in Sections 2.5 and 6.2.1).

Finally, the composition of f1 and f2 results in the third secret polynomial:

f3(·) = f2(·) +H(m,R) · f1(·)

As such, the correctness of FROST stems from the fact that the signature σ = (c, z)
is defined by c = H(m,R) and z = f3(0) = f2(0) + c · f1(0) via additive operations.

7.2 Security Against Chosen Message Attacks
To demonstrate that signatures in FROST are unforgeable under adaptively chosen
message attack in the random oracle model so long as the adversary controls fewer than

16

the threshold t participants for t ≤ n, we demonstrate that an adversaryAThreshSchnorr
working against FROST can be reduced to a adversary ANormSchnorr in Schnorr’s
signature scheme, and vice versa. This proof strategy is first presented by Stinson and
Strobl [16] to demonstrate the security of their scheme in which a DKG is used to gen-
erate the shared random value in both key generation and signing phases. We adopt
this proof strategy to demonstrate that the use of additive secret sharing and share con-
version is similarly secure when generating a shared-but-secret random value during
signing operations. Here, we provide a high-level intuition for this proof but present
the complete proof in our full work.

In the proof presented by Stinson and Strobl, honest party behaviours during the
DKG are emulated by a simulator, which the proof demonstrates to be indistinguishable
from honest parties in the view of AThreshSchnorr. ANormSchnorr thereby employs
this simulator when invokingAThreshSchnorr to emulate honest participants during the
DKG phase. To simulate the signing of the honest participants, ANormSchnorr feeds
valid partial signatures to AThreshSchnorr when requested. To compute these par-
tial signatures without actually compromising an honest party, the proof leverages the
structure of threshold signatures such that if the AThreshSchnorr controls t− 1 parties,
ANormSchnorr can produce the partial signature for the tth (honest) participant (and
thus simulate them to AThreshSchnorr), even without knowing the long-lived secret
share si held by that participant.

To prove the security of FROST against chosen message attacks, we employ this
same proof strategy. However, because each participant produces their single-use se-
cret non-interactively in FROST, our proof does not require a multi-party simulator as
is required by Stinson and Strobl. Instead, ANormSchnorr can directly produce the
commitment shares and the signature shares for the tth (honest) participant without
simulating rounds of interaction, using only the knowledge of the public and private
values for the t − 1 corrupted participants. Consequently, by feeding these values to
AThreshSchnorr when requested, ANormSchnorr can simulate the complete view to
AThreshSchnorr in the threshold setting.

7.3 Aborting Due to Malformed Inputs
The FROST signing protocol will abort when a participant submits a malformed partial
signature, assuming the signature aggregator A correctly follows the protocol; other-
wise, the resulting signature will be invalid. As demonstrated in both signing variants
in Figures 2 and 3, because the public group commitment R is included in the signa-
ture’s challenge c = H(m,R =

∏
i∈X Di), if any participant’s partial signature zi

fails the validity check performed by A (specified in step 7.a in Figure 3), an honest A
will abort the protocol. Even if A acts maliciously and does not report a failed validity
check, the proof established in Section 7.2 demonstrates that the difficulty to produce
a valid signature that requires the cooperation of at least one honest party (where the
adversary controls up to t − 1 signing parties) is as difficult to an adversary as in the
single-party Schnorr case.

17

8 Conclusion
While threshold signatures provide a unique cryptographic functionality that is appli-
cable across a range of settings, implementations incur network overhead costs when
performing signing operations under heavy load. As such, minimizing the number of
network rounds when generating signatures in threshold signature schemes will reduce
the cost of network overhead, benefiting implementations such as those with network-
limited devices, where network transmission is costly, or where signers can go offline
but wish to perform a signing operation asynchronously.

In this extended abstract, we introduce FROST, a flexible Schnorr-based threshold
signature scheme that trades protocol robustness in exchange for optimizing the num-
ber of rounds required for signing. We present two signing protocol variants; the first is
a two-round protocol where participants send and receive only two messages in total,
and the second is an optimization of the first, to a single-round signing operation with a
batched non-interactive pre-processing stage. We present two use cases demonstrating
examples when trading protocol robustness for improved efficiency is desirable for im-
plementations of threshold signatures, and discuss how aborting the signing protocol
is practical in these settings, so long as misbehaviour is detected and the misbehav-
ing participant is identified. We present high-level security proof sketches for FROST
building on prior proofs of security demonstrating its security relative to Schnorr’s sig-
nature scheme in a single-party setting; we expand upon these proofs in the full version
of this work.

Acknowledgments
We thank George Tankersley, Henry DeValence, and Deirdre Connolly for their helpful
feedback and discussions about real-world applications of threshold signatures.

We acknowledge the helpful description of additive secret sharing and share con-
version as a useful technique to non-interactively generate secrets for Shamir secret-
sharing schemes by Lueks [10, §2.5.2].

We thank the Royal Bank of Canada and NSERC grant CRDPJ-534381 for funding
this work. This research was undertaken, in part, thanks to funding from the Canada
Research Chairs program.

References
[1] Josh Benaloh and Jerry Leichter. Generalized Secret Sharing and Monotone

Functions. In CRYPTO’88, 1988.

[2] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact Multi-signatures for
Smaller Blockchains. In Thomas Peyrin and Steven Galbraith, editors, Advances
in Cryptology – ASIACRYPT 2018, pages 435–464, Cham, 2018. Springer Inter-
national Publishing.

18

[3] Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the Weil
Pairing. Journal of Cryptology, 17(4):297–319, Sep 2004.

[4] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion, pseudoran-
dom secret-sharing and applications to secure computation. In Joe Kilian, editor,
Theory of Cryptography, pages 342–362. Springer, 2005.

[5] Paul Feldman. A Practical Scheme for Non-interactive Verifiable Secret Sharing.
In Proceedings of the 28th Annual Symposium on Foundations of Computer Sci-
ence, SFCS ’87, pages 427–438, Washington, DC, USA, 1987. IEEE Computer
Society.

[6] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ecdsa with
fast trustless setup. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, pages 1179–1194, New York,
NY, USA, 2018. Association for Computing Machinery.

[7] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
applications of pedersen’s distributed key generation protocol. In Marc Joye,
editor, Topics in Cryptology — CT-RSA 2003, pages 373–390. Springer, 2003.

[8] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
Distributed Key Generation for Discrete-Log Based Cryptosystems. Journal of
Cryptology, 20:51–83, 2007.

[9] Steven Goldfeder, Rosario Gennaro, Harry Kalodner, Joseph Bonneau, Joshua A.
Kroll, Edward W. Felten, and Arvind Narayanan. Securing Bitcoin wallets via
a new DSA/ECDSA threshold signature scheme. http://stevengoldfeder.com/
papers/threshold sigs.pdf, 2015. Accessed Dec 2019.

[10] Wouter Lueks. Security and Privacy via Cryptography — Having your cake and
eating it too. https://wouterlueks.nl/assets/docs/thesis lueks def.pdf, 2017.

[11] Prateek Mittal, Femi Olumofin, Carmela Troncoso, Nikita Borisov, and Ian Gold-
berg. PIR-Tor: Scalable Anonymous Communication Using Private Information
Retrieval. In Proceedings of the 20th USENIX Conference on Security, SEC’11,
Berkeley, CA, USA, 2011. USENIX Association.

[12] Torben P. Pedersen. A Threshold Cryptosystem without a Trusted Party (Ex-
tended Abstract). In Advances in Cryptology - EUROCRYPT ’91, Workshop on
the Theory and Application of of Cryptographic Techniques, Brighton, UK, April
8-11, 1991, Proceedings, volume 547 of Lecture Notes in Computer Science,
pages 522–526. Springer, 1991.

[13] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Proceedings of the 11th Annual International Cryptology Con-
ference on Advances in Cryptology, CRYPTO ’91, pages 129–140. Springer-
Verlag, 1991.

19

[14] Claus-Peter Schnorr. Efficient Identification and Signatures for Smart Cards. In
CRYPTO, 1989.

[15] Adi Shamir. How to share a secret. Communications of the ACM, 22:612–613,
1979.

[16] Douglas R. Stinson and Reto Strobl. Provably Secure Distributed Schnorr Sig-
natures and a (t, n) Threshold Scheme for Implicit Certificates. In Proceedings
of the 6th Australasian Conference on Information Security and Privacy, ACISP
’01, pages 417–434, London, UK, 2001. Springer-Verlag.

20

