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SECURE COMMUNICATIONS OVER INSECURE CHANNELS 

People have been communicating with each other for many 

millenia. Often they wish to communicate privately. Since 

the first use of Caesar's cipher, some two millenia ago, people 

have employed a number of ciphers and codes in attempts to keep 

their correspondence private. These have met with varying 

degrees of success, up until the modern age. With the advent 

of the modern digital computer, it has proven possible to create 

ciPhers which are, in practical terms, unbreakable. (At least, 

I 

if anyone has broken them, they are maintaing a discrete silenee.) 

Underlying this success has been a very definite paradigm, which 

makes very definite assumptions about the nature of the encryption 
which 

process, and the conditions under/private communications can 

take place. It is the purpose of this paper to consider this 

paradigm, and to explicitly state assumptions which are implicit 

in it. Once these assumptions have been made explicit, it is 

possible to question them. It so happens that one of the assumptions 

which is currently regarded as a necassar,y precondition for 

cryptographically secure communications, does not, in fact, hold. 

This is demonstrated by exhibiting a partial solution. I say 

the solution is partial only because there is no reason to believe 

that there is not a better solution. The partial solution, however, 
to 

is logically complete in its own right, and ap.pears ·/have practical 

applications. -The body of the paper will begin with an explanation 

of the paradigm currently in use, and will develop from there. 



Communication takes place between two individuals. Secure 

communications takes place between two individuals, in the face 

of efforts by a third to learn what was communicated. (If 

communication takes place between more than two individuals, 

we shall simply regard that situation as the composite of several 

conversations between two individuals.) We shall, therefore, 

introduce three protagonists into our paradigm, A·and B, the 

two communicants, and E, the enemy, who Wishes to find out 

what A and B are communicating. A and B have available some 

method of encrypting messages for each other. It is a cardinal 

rule of cryptography that we must assume that the general method 

of encryption is known to the enemy. Thus, A, B, and E all 

know the general method for encrypting and decrypting messages. 

A and B, however, also mow the key. This key is not known to 

E, and E is unable to deduce it, even with a fairly large number 

of messages. Thus, the security of the method relies on the 

fact that E does not mow the key being used, and cannot deduce 

it. These observations are not mew, and have appeared many 

times before. The following observations, while obvious, are 

not usually stated explicitly. 

According to the paradigm, A and B can communicate securely 

because they know the key, and E does not. How did this situation 

come about? Clearly, either A transmitted the key to B, or 

B transmitted the xey to A, or some third party, that A and B 

both trust, transmitted the key to both of them. We shall 



ignore the third possibility, for it contributes nothing 

essentially new. The following logic could be extended to 

include this case without undue difficulty. 

In view of this need to transmit the key from A to B, or 

vice-versa, we will extend the paradigm by creating a key-channel, 
will distinguish it from 

over which key information is to be sent, and/the normal channel, 

over which the bulk of communications is to take place. 

While the normal channel need satisfy no particular property, 
the practical one 

save only/that some of the messages do, indeed, get through, the 

key channel must satisfy a very restridive set of properties. 

In particular, it would appear that the key channel must 

satisfy the following two properties: 

1.) E is unable to modify or alter messages, and 

is unable to inject false messages into the 

key 'channel. 

2.) E is unable to determine the content of any message 

sent over the key channel, i.e., E cannot intercept 

the messages. 

If such a key channel is available, then A and B can 

communicate securely by sending the key over it, and then 

encrypting all further messages and sending them over the 

normal channel. The reason that the key channel is not used 

for normal communications is because of its expense. If the 

reader will pause a moment, and consider over what communication 

media it is safe to transmit a key, he will realize the severity 

of this restriction. Radio communications, in any form, are 



eliminated. Long distance telephone is eliminated, for almost 

all long distance calls are routed over microwave communication 

links. The local telephone can be tapped. Even word of mouth 

is unsafe, unless special precautions are taken to eliminate bugs. 

We might use the mails, if we could mail a small safe, or perhaps 

we could mail the information on an undeveloped piece of film. 

Safes can be broken, though, and someone might develop the film, 

and create a copy of it that was undeveloped. Perhaps the only 

safe method is to send a trusted courier, with an attache case 

chained to his wrist. This, of course, requires that you trust 

the courier. Whatever the method used, if E should manage to 

discover the key by "practical cryptanalysis", then A and B 

might very well continue in blissful ignorance of the fact. 

The first assumption, that E cannot modify messages, appears 

to be a self-evident truism. If E could modify the messages, 

then E could imitate the actions of B while talking with A, and 

likewise E could imitate the actions of A while talking with B. 

The second assumption, too, appears to be a self-evident 

truiSm. No matter what A transmits to B, B must respond to it 

in some fashion. However B responds, i.e., whatever program 

governs B' s behavior, E can imitate It- Thus, it would appear 

that both assumptions are necassary prerequisites for secure 

communications. 

It is the thesis of this paper that the second assumption 

is unnecessary, i.e., that secure communications can take place 

when E is able to read all messages sent on the key channel. 



Before continuing with the solution, it would be wise to 

restate the problem in more precise terms. In particular, 

we shall assume that A and B are both computers. They are 

connected by two communications ohannels, a normal channel, 

and a key channel. The key channel satisfies assumption 1, 

but does not satisfy assumption 2. In fact, we assume that 

E can receive all messages sent over the key channel with 

no noise or distortion at all. E can read the messages at 

least as well as A and B. (Naturally, E can also read the normal channel 

We also desire that E know the "method" being used. We 

shall simplify this requirement to the following: E knows 

everything known to A or B before we attempt to communicate 

securely. This can be visualized in the follOwing way: a 

dump of the current states of A and B is made~ onto a magnetic 

tape. This tape is given to E. After the dump has been made, 

A and B can communicate only over the key channel and the normal 

channel. In addition, no other agency communicates with either 

A or B. Thus, the initial states of A and B are both known·.to E. 

However, E is unable to obtain further information about A and 

B, except what they transmit over the key channel and the normal 

channel. 

The reader might wonder why E would wish to listen to further 

communications. After all, E knows everything there is to know 

about A and B. The answer is, of course, that for the sake of 

the problem, we have selected the most difficult set of circumstances 

imaginable. Also, even if E knows everything available to A and 

B now, A and B might wish to determine, by chance, which one of 



several already considered strategies they wish to follow. 

This situation arises in game theory, where the correct strategy 
to 

is selected according/a predetermined weighting pattern. 

To complete our description of the problem, we must consider 

what constitues a solution. If A and B eventually agree upon 

a key, and if the work required of E to determine the key is 

much higher than the work put in by either A or. B to select 

the key, then we have a solution. Note that, in theory at least, 

E can determine the key used in most current methods simply by 

trying all possible keys and seeing which one produces a legible 

message. However, this means that E must put in an amount of 

work that is exponentia;lly larger than the amount of work put 

in by A or B. As mentioned earlier, the current solution is 

"partial." It is partial in the sense that the amount of work 

required of E to determine the key will increase as the square 

of the amount of work put in by A and B to select the keyo 

Clearly, it would be desirable to find a solution in which the 

amount of work put in by E increased exponentially as a function 

of the amount of work put in by A and B. This has not proven, 

(so far!) to be possible. 

We now continue our attempt to solve the problem. E knows 

the current state of both A and B. If A and B are deterministic 

devices, then E can predict, given the inputs, i.e., the information 

on the normal channel and the key channel, all future states of 

A and B. The conclusion we reach is that neither A nor B is 

deterministic, both must be, in some sense, random. The'~most 



graphic way of illustrating this is by assuming that both A 

and B have a new input device: a geiger counter. From time to 

time, A and B will issue a command, LDFG, Load Accumulator From 

Geiger counter. While E will be able to simUlate the activity 

of either A or B up to the time that this command is first 

issued, after that, __ E~ will not know the correct contents to 

place in the accumulator, and as the program takes further 

actions, based on the random information, E will become increasingly 

muddled-about exactly what is going on. 

We now assume that A (or B), selects a key and attempts to 

transmit it to the other computer. No matter what encoding 

technique is used, no matter what clever use is made of random 

information, if A tries to transmit the key to B, then B, 

a physically realizable device, must be able to determine what 

that key is. E can now simulate B's actions, and will be able 

to determine the key, even though B is behaving in a random 

fashion. The point is, that no matter what random information 

Buses, B must still be able to determine the key. Therefore, 

~ choice of random information will result in B's determining 

what the key is. The conclusion we reach is that neither A nor 

B attempts to transmit the key to the other. They must both 

participate in a process of key selection. Intuitively, we 

can justify this decision by the following consideration. 

There is some random information mown to A, and some random 

information mown to B. A must guess at B' s random information, 



and B must guess at A's random information. E however, must 

guess at the random information of both A and B. Thus, E has 

a harder problem than that of either A or B. 

With the foregoing explanations as partial motivation, we 

will now consider the method of solution. A randomly generates 

some information. This information is then divided into N 

seperate pieces, and is encrypted into N seperate messages. 

The encryption used is deliberately weak, and each message, 

or "puzzle", deliberately provides enough redundant information 

so that it can, with some effort, be broken. Thus, A has 

generated a series of N puzzles, each of which requires a ~~~fy 

amount of effort to break. Once a puzzle has been calculated 

broken, it contains two pieces of information, which can be 

summarized as "! am puzzle number ######", and "Use key ######tt. 

B, upon receiving these N seperate puzzles, discards all but 

one of them. This one puzzle, selected at random by B, can, 

with an expenditure of a fixed effort, be broken by B. B then 

finds himself in possession of two pieces of information. 

The puzzle number, and the key. Neither pieee of information 

is available to E, unless E should chance to break exactly the 

same puzzle that B has selected. E however, does not know 

which'puzzle B selected, for B selected the puzzle at random. 

Thus, E must break all, (or, on an average, ~) of the puzzles 

that A sent to B before E, too, can acquire the information that 

is known to B. 

Once B has the two pieces of information, it can then use 

the key which it found in the puzzle to encrypt messages over 

the normal channel, and can transmit the puzzle number, in the 



clear, over the key channel. The puzzle number will not convey 

any information to E, for the puzzles were numbered in some random 

fashion. However, A, which generated all,the puzzles in the first 

place, has a record of what key value was associated with what 

puzzle number. Thus, A will also know what key to use to encrypt 
. r 

and decrypt future messages. 

To summarize the above outline of the method: A creates 

a "menu" of N puzzles. Each puzzle- contains, within itself, 

two pieces of information. Neither piece of information is 

readily available to anyone examining the puzzle. By devoting 

a carefully calibrated amount of effort to breaking the puzzle, 

it is possible to determine both these pieces of information. 

One piece of information is a puzzle number, which uniquely 

identifies the puzzle. The puzzle numbers were assigned by 

A at random. The other piece of information is a key. The 

key was also selected by A at random. A transmits these N 

puzzles to B over the key channel. 

When B is presented with this menu of puzzles, he can select 

any one he pleases. B selects a puzzle at random. B then spends 

the amount of effort required to break the puzzle. B then 

transmits the puzzle id back to A over the key channel, and 
encrypted 

uses the key found in the puzzle as the key for further/communications 

over the normal channel. 

If E desires to determine the key which A and B are using, 

then E must solve all N puzzles. On an average, E will have to 

solve iN puzzles before reaching the puzzle that B solved. 

If each puzzle has been carefully constructed so that it requires 

N units of effort to break, then E must spend tN*N units of effort 

to determine t~ a®.8Fm~~ the key, i.e., E must 
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spend !N2 unit s of effort. B, on the other hand, need only spend 

N units of effort to break the one puzzle he selected. If we 

can mass produce puzzles at a cost of 1 unit apiece, then A 

need only spend N units of effort to manufacture the N puzzles. 

Thus, both A and B will only put in N units of effort. 

The success of this scheme depends on our ability to 

mass produce puzzles which require a known amount of effort 

to break. This can easily be done by encrypting the two 

pieces of information with some key, (not to be confused with 

the key in the puzzle,) which is deliberately selected from 

a small key space. In particular, if we select a key from a 

key space with 2*N different values, then it is certain the 

puzzle can be broken by trying each one of these values in turn. 

To insure that we must proceed by this method, we will select 

a very strong encryption scheme. In particular, if we use the 

Lucifer encryption scheme, it is doubtful that any approach 

towards breaking the puzzle will be successful except that of 

eXhaustive search~among the possible keys. Thus, our approach 

to the construction of a puzzle is simply to encrypt the 

puzzle id and the associated puzzle key with a powerful encryption 

method, already proven to be effective, but to deliberately 

limit the number of possible keys to a particular number, 

namely, :2*N. In this fashion, we guarantee that the puzzle can 

be broken With N units of effort, on an average, and we rely on 

the power of the encryption method to assure us that it will not 
with 

be broken im/much less effort. There is one point that must be 
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brought out. In breaking an encrypted message, the cryptanalyst 

relies on the redundancy in the message. If we select both the 

puzzle id and the key at random, there will be no redundancy, 

and thus no way of breaking the puzzle. 'When we try a particular 

key with which to decrypt the puzzle, we will get a bunch of 

random bits, and will have no way of knowing if this bunch of 

random bits is the solution, or WIXkEX whether it's just a bunch 

of random bits. Thus, we must deliberately introduce redundancy 

into our puzzle, so that it can be broken. This can be done 

easily enough by encrypting, along with the puzzle id and the 

puzzle key, a constant piece of information that is known to 

A, B, and E. When we try to decrypt the puzzle with a particular 

key, then the recovery of this constant part can be taken as 

evidence that we have selected the right key, and thus have 

broken the puzzle. Contrariwise, the absence of the constant 

part in the decrypted puzzle indicates that we have used the 

wrong key, and should try again. 

Having given an outline of the method, we shall now turn 

to a detailed look at its implementation. The following method 

has the virtue that it can be implemented in a very small amount 

of memory, and has, in fact, been implemented in lines of 

Fortran. The small memory requirements of the method imply that 

it can be run on any minicomputer or;'micro-computer. 

Before describing the method in detail, a few points of notation 

must be cleared up. F will be used to designate an encryption 
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function. Note that F can be any encryption function that the 

reader feels is particularly powerful and effective. As mentioned 

earlier, I like to imagine that F is actually an implementation 

of Lucifer. F will accept an arbitrary number of arguements. 

The first arguement is the key, and the remaining arguements 

are the message to be encrypted. All of the data objects will 

be bit strings of arbitrary length. Thus, the key might be a 

20 bit bit string, the message might consist of several bit 

strings of varying length. We imagine that the bit strings 

that make up the message are first concatenated into one long 

bit string, which is then encrypted using F. 

we might have the following calIon F: 

To illustrate, 

F(100111011010001,001100001,0101001100111,00100) 

The first bit string is to be used as the key, and the remaining 

three bit strings form the message. In addition, to make matters 

easier, we assume that N=2K, i.e., that N is actually a power 

of 2, or that numbers which take on one of N possible values 

are actually bit strings of length K. In the course of the 

description, we shall designate variables as being of length 

X, or length 2K, or length 100, and so forth. This indicates 

the number of bits in the representation of the corresponding 

variable. When m:m:xQ[~I!:m: a variable has length 100, this :ks 
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means only that it is very large, and can take on any one of a 

large number of possible values. It is roughly equivalent to 

saying "many". (In computer SCience, instead of saying "1, 2, 

3, many." we say "1, 2, 3, 4, 5, •••• 98, 99, many"). The 

reader should therefore not attempt to read deep value into the 

selection of the length 100. In general, the other values have 

been carefully selected, and where the reason for a particular 

selection is not immediately obvious, it should be made apparent 

in the ensuing text. 

We shall also use the function, RAND. RAND(P) generates 

a random number between 1 and P, inclusive. Note that the normal 

random number generator on a computer is not suited for this. 

We require either truly random numbers, or at least pseudo random 

numbers using a very powerful method of generating the next number 

in the sequence, (such as an encryption function), and also wi·th 

a large seed, i.eo, a seed selected from anyone of 2L values, 

where L is very large, i.e., several hundred. 

Finally, when we have finished the message, we will transmit 

it using the function, TRANSMIT(ARG). Using these conventions, 

we can write the algorithm for A, who is generating the puzzles, 

in the following fashion: 

VAR ID,:KEY1, KEY2; BIT STRING OF LENGTH K; 

CONSTANT: BIT STRING OF LENGTH K+20; 

K1,K2,K3: BITSTRING OF LENGTH 100; 

BEGIN 

K1 : =RAND ( 2 100 ) ; 

K2: =RAND( 2100 ); 

K3:=RAND(2100 ); 

CONSTANT:=RAND(2K+20I 



END; 

TRANSMIT(CONSTANT); 

FOR I:= 1 TO N DO 

BEGIN 

ID:=F(K1,I); 

KEY1 : =F(K2, ID); 

KEY 2 : =F(K3, ID); 

TRANSMIT (F~1LUm(.2N) ,ID,KEY1 ,KEY2, CONSTANT»; 

END; 

('-{-

Assuming the same variable declarations for B, we can then 

write Bfs code. We will need two new primitives for B, RECEIVE (ARG) 

is a procedure which returns the value of the next puzzle in ARG. 

We will also need a primitive which will allow us to decompose 

a bit string into its pieces, i.e., to do field extraction. 

We will do this simply by allowing multiple variables~.on the left 

hand side of an assignment statement, thusly: 

~JR~~x!f~~;kJR~ 
i:ptxdxix 

A,B:=F-1 (SOMEKEY,F(SOMEKEY,A,B» 

All that this is intended to indicate is that the different fields 

in the decrypted result can be identified as distinct entities, 

and can be dealt with as such, in spite of the fact that the 

encrypted message should be regarded as a monolithic blob of bits. 

The code for B would then appear as follows: 

VAR DECLARATIONS FOR ID, KEY 1 , KEY 2, AND CONSTANT AS BEFORE; 

SELECTEDPUZZLE: BIT STRING OF LENGTH K; 

THEPUZZLE,CURRENTPUZZLE: BIT STRING OF LENGTH LONG ENOUGH; 

TEMPCONSTANT: BIT STRING OF LENGTH K+20; 



BEGIN 

SELECTEDPUZZLE:=RAND(N); 

RECEIVE(CONSTANT); 

FOR 1:= 1 TO N DO 

BEGIN 

RECEIVE ( CURRENT PUZZLE ) ; 

IF I=SELECTEDPUZZLE THEN THEPUZZLE:=CURRENTPUZZLE; 

END; 

FOR I:= 1 TO 2*N DO 

BEGIN 

-1 ID,KEY1 , KEY2, TEMPCONSTANT : =F (I ,!CHEPBZ·ZLE) ; 

IF TEMPCONSTANT=CONSTANT THEN GOTO DONE; 
END; 

PRINT (" SHOULD NOT REACH THIS POINT."); 

PANIC; 

DONE: TRANSMIT (ID); 

END; 

COMMENT KEY1 AND KEY2 CAN NOW BE CONCATENATED, AND USED 

TO ENCRYPl' FURTHER TRANSlVIISSIONS; 

At the very end, A must receive the ID that B transmitted, 

and do something with it. The last actions that A must perform 

are as follows: 

BEGIN 

RECEIVE (ID ) ; 

KEY1 :=F(K2, ID); 

KEY2: =F(K3, ID); 

COMMENT KEY1 AND:,KEY2 NOW HAVE .THE SAlVIE VALUE IN BOTH A 

AND B. ALL A HAS TO DO IS CONCATENATE THEM, AND 

USE THE RESULT AS THE KEY WITH WHICH TO ENCRYPl' 

:.FTIRTHER TRANSMISSIONS. 
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The astute reader will have noticed that the puzzles now 

have four components. The ID and CONSTANT have been mentioned 

before, but we now have two KEY's, instead of one. The additional 

key was added for the following reason: lCEY1 and KEY2 are both 

K bits long. If we only provided one K bit key, then there would 

be a total of N possible keys, (N=2K). This is bad, because 

E could then check all possible values of the key in time N. 

With two keys, E must check N2 possible combinations of values, 
r) 

and thus, E gains nothing by _:this approach. 

The reader will also notice that we are not selecting the 

values of the ID and of the two KEY values at random, but are, 

instead, computing them via the encryption function F, and some 

auxilliary keys, K1,K2, and K3. By letting ID:=F(K1,I), we 

guarantee that each ID will be distinct, for each ID is the 

encryption of a distinct value of I. E does not know the values 

of any of the auxiliary keys, K1, K2, or K3. Only A knows the 

value of these keys, and never transmits the value to B. By 

making the two key values, KEY 1 and KEY2, depend on ID in a 

functional way, we are freed from the need for keeping them in 

a table. Given the ID, we can readily compute the two key values. 

The reader will notice that if E breaks a handful of puzzles, 

he will be in possession of several pairs of values, Y=F(SOMEKEY,X). 

We assume that the encryption function, F, is powerful enough 

to withstand this mistreatment. As was mentioned earlier, 

modern encryption schemes are indeed this powerful. 

The only information available to E is the code executed 

by A and B,' and the values actually transmitted over the key channel. 
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Thus, E is in possession of the ID that B transmitted to A, and 

is also in possession of the puzzles that A transmitted to B. 

While it is true that the ID uniquely identifies the puzzle which 

B selected, it is also true that the only way that E can determine 

the puzzle ID for any of the puzzles is by breaking the puzzle. 

Because of the way the ID is selected, each puzzle will be 

unique. The only point remaining is this: why is CONSTANT 

a bit string of length K+20? Clearly, we require some redundancy. 

How much, however, is enough? Examining the code for B reveals 

that the redundancy is used in one test, TEMPCONSTANT=CONSTANT. 

That is, when we decrypt a puzzle, using one of 2N possible 

keys, we wish to determine whether we have found the correct 

solution or not. If, by chance, we should decrypt a puzzle 

and get the correct CONSTANT, even though this is not the correct 

answer, then we have problems. We are examining a total of 

2N possible decryptions. If we assume that our encryption 

function reduces its input to a good approximation of white noise, 

then we are, in essence, selecting 2N values for the CONSTANT 

at random. If any of these values should chance to equal the 

CONSTANT, then B will pick the wrong values of KEY1 and KEY2, 

as well as an erroneous ID. We must, therefore, make the space 

of possible CONSTANTS large enough that 2N samples looks like 

a drop in the bucket. We do this by making our constant space 

roughly 1,000,000 times bigger than 2N, i.e., 2K+20 is roughly 

equal to 1,000,000 N. Our chances of getting a false solution 

are thus about 1 in 1,000,000. If this is not enough, we can 

adrfO more bits, and reduce the chances to about 1 in 1,000,000,000. 



We will now summarize the essential properties of the 

method described, ignoring the details of how it works. In 

essence, the method allows the use of channels satisfying 

assumption 1, and not satisfying assumption 2, for the transmission 

of key information. We need only guarantee that messages get 

through, unmodified, and we no longer require that they get 

through unread. If the two communicants, A and B, put in N 

units of effort, then the enemy, E, must put in O(N2) units 

of effort to determine the key. We now turn to the consideration 

of possible practical applications. In the course of the ensuing 

discussion, we shall consider various weaknesses in the S«HKm 

method as described, and consider techniques for overcoming them. 

Upon first considering the matter, it would appear that we 

have purchased a less severe restriction on the nature of the 

key channel, at the cost of an increased bulk of information 

that must be transmitted over that channel to establish a key. 

To put it another way, if we wish to insure that E must spend 

at least $1,000,000 dollars to break current encryption methods, 

then we must transmit a small amount of information, perhaps 

a few hundred bits, over a key channel which E cannot read. 

To accomplish the same effect using the current method, we 
puzzle 

must transmit N puzzles, each/consisting of perhaps one hundred 

bits, over a key channel which E can read, but can't modify. 

We must select N large enough so that the cost of breaking 

tN2 puzzles is greater than $1,000,000 dollars. This might 



require that we transmit a few megabytes of data. 

Upon considering the matter more closely, W we realize 

that we need not transmit the bulk of the ~ data over the 

key channel, but can instead transmit all the puzzles over the 

normal channel, and confirm their proper reception via the 

key channel. All we need do is to maintain a hash total of 

the transmitted puzzles, and then transmit this hash total over 

the key channel. If A and B both compute hash totals directly 

from the transmitted puzzles, then they can compare these 

hash totals over the key channel. If the hash totals match, 

then the puzzles were correctly received. If the hash totals 

do not match, then someone or something has tampered with the 

communications. The alert reader might notice certain logical 

difficulties with this scheme, but they will be dealt with in 

detail later on. 'flrrlddcx:k:kl!mfC 

With this addition, we see that the capacity of the key 

channel need only be a few hundred bits in either case. We 

have, therefore, significantly reduced the restrictions on the 

key channel, at the cost of an increased bulk of transmitted 

information on the normal channel, as well as increase~ processor 

time to generate and break the puzzles. fihere are several 

interesting properties of this arrangement, that will be brought 

out in the following paragraphs. 

First, we do not care if E knows the hash total. Therefore, 

we can maintain multiple copies of the hash total without a loss 

of security. We can maintain a permanent log of the hash total, and 

we can transmit the hash total by any means that is available 

to us. We can publish the hash total, and propogatel\copies of 

fl> IICItq "'7 



it, that E will be hard pressed to find them all, let alone 

alter them. 

Second,' we no longer have to transmit information over the 

key channel prior to using the key that we have agreed upon. 

Thus, it is ~ossible to establish a key today, use it, and 
I 

confirm, som~time next week, that no one tampered with our 

communications. 

Third, we can detect a violation of assumption 1. If E 

does, in fac~, falsify or alter messagest,~then what A transmitted, 

and what B rbceived, will be different. There is no way that 
! 

E can get around this fact. In effect, if E wishes to break 

the method by tampering with the messages actually sent, he must 
I 
I 

post a largei sign, saying "I know and understand your current 

cryptographic set up, I have broken your current keys, and even 

now, I am listening to what you say." Needless to say, E might 

be reluctant: to do this. 
I 

lear»Irl:kJ I 
I 

I 

It should also be noted that if E attempts to determine 

what key will be selected by tampering with transmissions, then 

we can creatr the following interesting situation. For the 

key that we ~ctually use to encrypt and decrypt, messages, we 
I 
I 

can use the concatenation of the key that we select from the 
! 

puzzle, and the hash total. Thus, if E tampered with transmissions, 

and by this method, determined the key being used, we can still 

force the key used by A, and the key used by B, to be different. 
I 
I 

If A transmits messages using one key, and B receives messages 

and attempts to decrypt them using a different key, then we have 



one of two possible situations. Either B gets complete garbage, 

or he gets messages that make sense. The only way he can get 

messages that make sense is if E is encrypting them with the 

correct key. The only way a message can get from A to B, is 

if E first decrypts it using the key that A knows, add then 

recrypts it using the key B knows. E is not only listening 

to messages being sent, he is an integral part of the communications 

system! The opportunities for detecting Ets presence are 

correspondingly increased. 

It was mentioned earlier that there are certain logical 

difficulties with maintaining the hash total. In particular, 

if all that we remember of the puzzles is the hash total, then 

we must insure that E cannot create a different series of puzzles 

which produces the same hash total. Normal hashing methods will 

not insure this. Simply adding the puzzles together is not 

enough, for E can then inject false puzzles into the channel, 

and then inject a final "puzzle" which was chosen to make the 

sum come out right. If E should do this, then he can fool 

A and B into thinking the transmission took place correctly, 

when in fact it didn't. We must, therefore, create a hash method 

x~ which has the interesting property that it is virtually 

impossible to find a message sequence that produces a given 

hash total. Those familiar with the concept of one-way encryption 

will see the analogy at once. For those who are unfamiliar 

with it, I shall give a brief summary of the problem, and how 

it can be solved. 

As its name implies, one-way encryption may be viewed as 

a form of encryption. The object is to encrypt a message or 

arguement in such a fashion that it may never be decrypted with 



any merely human amount of effort. We desire that no one can 

decrypt the message even though everyone is aware of the method 

used to encrypt it. Unlike normal encryption, we do n21 assume 

that there is a key, which is unknown to the enemy. The enemy 

knows everything about what occured, with the sole exception 

that he does not know what the message actually was. To put 

it another way, we wish to find a function, G, which is easy 

to compute, but for which the inverse, G-1, is very: 'hard 

to compute. A method for doing this is, in fact, given in 

the literature. It relies upon the following observation. 

In a normal encryption scheme, E knows a great deal of message 

traffic, but does not know the key. Even though the key is, 

in all probability, uniquely specified by the message traffic, 

E will be unable to deduce what it is. In effect, the message 

traffic uniquely defines the key, and we may therefore regard 

the key as the result applying some function, G-1, to the 

message traffic. On the other hand, given the key, and given 

the messages actually sent, we can easily compute the message 

traffic. We can select almost any sample of message traffic 

that we desire, and, for the sake 6f convenience, we might 

select the one piece of message traffic which is most convenient, 

the arguement of the one-way encryption function itself. 

To summarize, if F is a powerful encryption function, then 

G(X)=F(X,X) is an effective one-way encryption function. It 

is hard to invert this function for precisely the same reason 

that it is hard to deduce the key of an encryption function, 

given the messages that were encrypted, and their encryption. 



With this concept safely in hand, we see that we are simply 
J'c1ea-

attempting to extend the &encepot of one-way encryption to encompass 

the current situation. We wish to compute a one-way hash total. 

To do so, we will start by assuming that we have available a 

one-way encryption function, as described, and will then use 

this function, G, to aid us in computing the hash total. 

In a normal hash total, all we do is keep a running sum of the 

numbers concerned. We shall adopt a similiar strategy for a 

one-way hash total, but will simply insert G at strategic points 

in the operation. Thus, we might code a normal hash total 

as follows: 

BEGIN 

END; 

TOTAL: =0; 

FOR I:= 1 TO N DO 

BEGIN 

RECElVE(MESSAGE); 

TOTAL: ='I'OTAL+MESSAGEj 

END; 

For our one-way hash total, we will proceed in a similiar 

fashion, but with a few small changes. 

BEGIN 

END; 

TOTAL: =0; 

FOR I:= 1 TO N DO 

BEGIN 

RECEIVE(MESSAGE); 

TOTAL: ='I'OTAL+G(MESSAGE); 

TOTAL:=G(TOTAL) ; 

END; 



The reader might wish to try and break this method, to 

convince himself that it works. 

There is one flaw yet remaining in the method of agreeing 

on a key. While it is true that E must, on the average, put 

in tN2 units of effort, E might be lucky, and select the correct 

puzzle after only a few tries. A and B might wish to guarantee 

that E must put in a certain amount of effort before he can 

obtain a solution, and might be unwilling to gamble that E 

will prob"a.biy have to put in tN2 units of effo"rt, but might 

luck out, and.'put in significantly less effort. This can 

be done, but only for a price. Let us examine how. 

E might be lucky, and select the correct puzzle after only 

a few tries. There is no reason, however, for B to break only 

one puzzle. B could, in fact, have broken two puzzles. Before 

E can determine the key used, E must break the same two puzzles. 

While E might be lucky, and find one of the puzzles quickly, 

his chances of selecting both puzzles quickly is significantly 

less. In general, if B selects P puzzles to break, then the 

chance that E will happen to break all P puzzles, after breaking 
G Q 

only ~ of the N puzzles transmitted, is (~/N)**Po If E has 
Q 

broken~ puzzles, then the chance that he has broken a particular 

puzzle is itNo E must break all P puzzles, however, and so the 

chance that E has broken all of them is just the product of the 

probability that E has broken each puzzle, i.e., ~/N)*of/N)* 
(~N)*o •••• o*(~N). where the factor oriN) is repeated P times, 

i.e., (~N)**P. If P is 10, i.e., B breaks 10 puzzles, then the 

chance that E will have broken all ten puzzles after having 

broken ! of the N puzzles, is just t**10, or about 1/1,000,000. 



As can be seen, we can reduce the chance that E lucks out 

to an arbitrarily small amount, but only at the price of increasing 

the amount of work that B puts in. The trade-off involved must 

be considered in the context of a particular application. If 

improved reliability is desired, however, then it can be obtained. 

In summary of the discussion to the current point, we can 

say the following. The paradigm for cryptographically secure 

communications was examined. This paradigm was extended to 

include two seperate channels of communication: the key channel, 

and the normal channel. A method was described which reduced 

the (severe) restrictions on the key channel. Various difficulties 

with the method as initially described were considered, and 

overcome. The only remaining weakness in the method is the 

inherent one that it is O(N2), and not exponential. The weaker 

restrictions on the key channel open up the possibility of using 

more normal, i.e., cheaper, channels of communication with which 

to update the keys. In addition, violation of the weaker 

restriction on the key channel can be detected, and corrective 

action taken. Violation of the stronger restriction that the 

key channel must be unreadable, might go unnoticed. In the event 

that there is ~ channel available which satisfies the stronger 

restriction, but there is a channel which sat~sfies the weaker 

restriction, then the current method provides an option which 

is otherwise unavailable. We now turn to some examples to 

illustrate the ideas developed sO far, and to provide the 
feel for 

reader with some mmm~~x~x~xzm~~~/just how much safety 

can be provided by O(N2). 



The first example we shall consider is the application of 

the current method to the security of a computer network, such 

as 'the ARPA net. In this situation, we have available a communications 

channel with a large enough capacity to handle a large N without 

excessive strain. The ARPA net, in particular, is connected by 

50 kilobit lines. Also, in a network, we frequently have more 

than a single channel connecting two nodes of the network. This 

makes it more difficult to block message transmission. The ARPA 

net is, in fact, a two connected network. If E were to try and 

defeat the current method by altering message transmissions between 

nodes of the ARPA net, he would have to successfully block most 

transmissions along two 50 kilobit lines, and then inject his 

own. Once he succeeded in dOing this, his actions could be 

easily detected. 

To be specific, let us assume that we desire to change 

keys once a week, and that we are willing to tolerate a 1% 

overhead for this operation. Let us further assume that each 

puzzle is 100 bits long. With 50 kilobit transmission lines, 

100 bits per puzzle implies we can send 500 puzzles per second. 

Restricting ourselves to 1% of this capacity, we get an average 

transmission rate of 5 puzzles per second. Continued over a 

period of one week, this is 5*60*60*24*7 or 3,024,000. For 

further computations, we shall approximate this by 3*106 • 

-I we~~t):1ob~~~~~~~ ~.~.:€fts. "' 
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Given that there are 3*106 puzzles, and that B is willing 

to devote 1% of his time to the task of breaking a single puzzle, 

then E must devote 3*106*.01 weeks of computer time to break 

all N puzzles, or, on an average, 1.5*104 weeks of computer timeo 

If we assume that computer time is worth 10 dollars per hour, 

then E must spend 1.5*104*24*7*10 or 25,200,000 dollars of computer 

time to break the link. The estimate of 10 dollars per hour 

is deliberately conservative, for there is no reason for E 

to use the same computer that we use. E might be able to get 

a bargain, or he might be willing to wait a few years, when the 

cost of computer time will be less. Also note that we are 

computing the mean cost to E to break the link. As pointed 

out earlier, the actual cost might differ significantly from 

the mean cost. If we assume, however, that E wishes to maximize 

his expected gains, then E will feel no temptation to break the 

link until he expects to learn information worth about 25 million 

dollars. Having broken the link, E will be in possession of 

one weeks worth of transmissions. I find it hard to imagine 

that E would seriously consider spending 25 million dollars on 

such a venture. E would be better advised to spend his money 

on bribes, blackmail, physical burglary of the nodes, and the 

like. 

At this point, the reader might object that each node 

must communicate with several other nodes. We can avoid this 

problem if we assume that the cryptographically secure communications 

are routed through a sub~etwork which~s in a star configuration. 

Each node establishes a secure link with the center of the star. 

The node which has been designated as the center of the star 



can then distribute keys to the other nodes in the network, 

as they find that they wish to communicate with each other. 

Physical security at the center of the star will have to be, 

of course, excellent. 

The effort to implement this on the ARPAnet would involve 

a modest coding effort, no additional hardware, and a 1% transmission 

and computation overhead. Please note that this 1% overhead could 

be distributed over a week in the most convenient manner, i.e., 

during time when the nodes would otherwise be idle. Once 

established, it would require little further attention from 

personnel. If the reader prefers a link-by-link encryption 

scheme over a star configuration, then each node will be co~ected 

to a few other nodes, and must distribute its 1% of effort over 

all of them. If we assume that each node is directly connected 

to between 3 and 4 other nodes, then, under the same assumptions 

as before, we can establish links that will require about 5 

million dollars to break. 

The method would also appear to have applications in a 

ing •. , . .In·-·· ticul~, I invite the reader to consider 
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The method would also appear to have applications in a 

military setting. In the ARPA net example, it was shown that 

devoting 1% of the networks resources to establishing keys 

would result in links that would require some 25 million dollars 

worth of computer time to break. The method is O(N2), so 

increasing the amount of effort to 10%, i.e., an increase by 

a factor of 10 in the work put in by A and B, would increase 

the work put in by E by a factor of 100. In that example, the 

figure computed was 25 million dollars. Multiplying this by 

100 gives 2.5 billion dollars. This figure is large enough that 

it is interesting even in military situations, where a great 

deal can rest on the secrecy of communications. The reader is 

advised to view the figure of 2.5 billion dollars with the 
was 

following two considerations in mind. First, as/mentioned 

earlier, the mean cost would be 2.5 billion dollars. The actual 

cost, in a particular situation might be quite different from 

this figure. If assurance is sought that this figure Will be 

close to the actual amount of effort put in by E, then several 

puzzles must be broken by B, increasing the amount of work 

he puts in. Also, it is possible to do a lot of hardware 

development for 2.5 billion dollars. E might choose to build 

the algorithm into hardware, and thus significantly increase 

both his speed and his cost effectiveness. The counter measure 

for this is to have A and B produce hardware realizations of 

the algorithm themselves. This, however, will increase its cost. 

One of the significant advantages of the current method in 

a military setting would be the possibility of ~a~il~ keys 
Ch ~"J /-:1 



with less fuss, and less delay. The primitive methods that one 

is forced to use to change keys 1dIadrxaaerxaXw~sxkeqrlrx:iaa:x1tmrx«btaxpc 

EmiXHHm«KXMmzXxkK using current methods is perhaps best illustrated 

with a quote from The Code-Breakers: "A new edition ••• wllXmkxJra[s 

was to be placred in service April 1 _"~ But administrative confusion 

in the Navy libraries, which had custody of the codebooks, 

plus difficulties in physically distributing the books by 

destroyer and airplane to moving ships and widely dispersed 

installations, forced a postponement to May 1." A few pages 

later, we learn that ,,~-•• the effective date of the new edition 

of the fleet cryptographic system,-which had been postponed 

once from April 1 to May 1, had to be again set back another 

month, to June 1. Perhaps the very extent of the Japanese 

conquest defeated their distribution efforts." "Had Japan 

changed her main Naval code on May 1 as scheduled, she would 

have blacked out Allied cryptanalysts for at least several 

weeks--weeks that, as it turned out, were to be crucial to 
masking 

history _ " "Her failure to do so meant she was/ImBr,uaE'jcmg her 

Midway preparation messages behind a cryptographic smoke screen 

that American cryptanalyst s had almost entirely blown away." 

The American victory at Midway was due, in large part, to 

American cryptanalytic success in breaking Japanese codes. 

This in turn relied on the fact that the Japanese failed to 

change their code on schedule, which was in turn caused, to a 

large extent, by physical difficulties in distribution. 

These difficulties were forced by the need to maintain absolute 

secrecy_ If the need to maintain secrecy is relaxed, the 

problem of changing keys is significantly simplified. 



~( 

The paper has so far dealt with the strengths and limitations 

of a particular method, which is O(N2). Most of the problems 
would 

dealt with/become insignificant if a method that was O(2N) 

were possible. If an exponential method were possible, it would 

offer such significant advantages over current techniques that 

it would almost surely supplant them in short order. One of 

the most interesting features of the current work is that it: 

suggests that such exponential methods are not impossible. 

The author has been able to find no mention in the literature 
sKrlants 

of any, .. ' ··attempts to solve this problem, and has found only 

one instance in which the problem was even defined with any 

clarity. This was in a science fiction story. The problem 

appears to offer enough leverage that it can be attacked, 

as witness the current solution, and an exponential solution 

would appear to offer significant practical advantages over 

current techniques. It would appear to merit serious consideration. 

The author will,'in fact, make the following conjecture: 

An exponential method is possible. 

The reader is invited to consider the problem. 




