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Abstract. This work addresses the inherent issues of high latency in blockchains and low
scalability in traditional consensus protocols. We present pod, a novel notion of consensus
whose first priority is to achieve the physically optimal latency of one round trip time,
i.e. requiring only one round for writing a new transaction and one round for reading it.
To accomplish this, we first eliminate inter-replica communication. Instead, clients send
transactions directly to all replicas, which independently process transactions and append
them to local logs. Replicas assigns a timestamp and a sequence number to each trans-
action in their logs, allowing clients to extract valuable metadata about the transactions
and the system state. Later on, clients retrieve these logs and extract transactions (and
associated metadata) from them.
Necessarily, this construction achieves weaker properties than a total-order broadcast
protocol, due to existing lower bounds. Our work models the primitive of pod and defines
its security properties. We then show pod-core, a protocol that satisfies properties such
as transaction confirmation within 2δ, censorship resistance against Byzantine replicas,
and accountability for safety violations. We show that single-shot auctions can be realized
using the pod notion and observe that it is also sufficient for other popular applications.

1 Introduction

Despite the widespread adoption of blockchains, a significant challenge remains unresolved:
they are inherently slow. The latency from the moment a client submits a transaction to when
it is confirmed in another client’s view of the blockchain can be prohibitively long for certain
applications. Notice that we define latency in terms of the blockchain liveness property, referring
to finalized, non-reversible outputs: once a transaction is received by a reader, it remains in
the protocol’s output permanently. Moreover, we do not assume “optimistic” or “happy path”
scenarios, where transactions might finalize faster under favorable conditions (such as having
honest leaders or optimal network conditions).

Indeed, Nakamoto-style blockchain protocols require a large number of rounds in order to
achieve consensus on a new block, even when considering the best known bounds [14]. On the
other hand, it is known that permissioned protocols for n parties (out of which t are corrupted)
realizing traditional notions of broadcast and Byzantine agreement require at least t+1 rounds
in the synchronous case [1] and at least 2n/(n − t) rounds in the asynchronous case [13], even
when allowing for digital signatures and probabilistic termination.

In a model where replicas maintain the network, writers submit transactions, and readers
read the network, the minimum latency is one network round trip, or 2δ, letting δ denote the
actual network delay, as the information must travel from the writers to the replicas and then to
the readers. More importantly, we want that any transaction from an honest writer appears in
the output of honest readers within 2δ time, regardless of the current value of δ and corrupted
parties’ actions. In this context, this work is motivated by the following question.

Can we realize tasks that blockchains are commonly used for with optimal latency?

We give a positive answer to this question with a protocol realizing pod, a new notion of
consensus that trades off traditional agreement properties for optimal latency, while retaining
sufficient security guarantees to realize important tasks (e.g., decentralized auctions).
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1.1 Our Contributions

In order to motivate the notion of pod, we first introduce the architecture of our Protocol pod-
core, which realizes this notion. To achieve the single-roundtrip latency, our first key design
decision is to eliminate inter-replica communication entirely. Instead, writers send their trans-
actions directly to all replicas. Each replica maintains its own replica log, processes incoming
transactions independently, and transmits its log to readers on request. Readers then process
these replica logs to extract transactions and relevant associated information. See Figure 1 for
a summary of the pod-core architecture.
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Fig. 1: pod-core’s simple architecture. A writing client (top) sends a transaction to all replicas
(middle). Each replica appends it to its own log and transmits it to the reading client (bottom).

This design raises two important questions. First, what meaningful information can readers
derive from replica logs when replicas operate in isolation? Second, given that in two rounds
even randomized authenticated broadcast is proven impossible [13], what capabilities can this
necessarily weaker primitive offer? We demonstrate that, by incorporating simple mechanisms,
such as assigning timestamps and sequence numbers to transactions, replicas can enable readers
to extract valuable information beyond mere low-latency guarantees. Furthermore, we show how
the properties of pod can enable various applications, including auctions (as shown in Section 6).

Specifically, a secure pod delivers the following guarantees (formally defined in Section 3):

– Transaction confirmation within 2δ latency, with each confirmed transaction assigned a con-
firmation timestamp; we say that the transaction becomes confirmed at the time indicated
by the confirmation timestamp.

– Censorship resistance when facing up to β Byzantine or γ omission-faulty replicas, ensuring
all confirmed transactions appear in every honest reader’s output.

– A past-perfect round can be computed by readers, such that the reader is guaranteed to have
received all transactions that are or will be confirmed prior to this round, even though not
all transactions are strictly ordered.

– Accountability for any safety violations, i.e., identifying replicas that cause such violations.

In particular, our Protocol pod-core presented in Section 4 realizes the notion of pod with
the properties above under two adversarial models:

– (Security against Byzantine faults) β Byzantine replicas (and no omission-faulty replicas)
out of a total of n ≥ 5β + 1 replicas.

– (Security against omission faults) γ Byzantine replicas (and no Byzantine replicas) out of a
total of n ≥ 3β + 1 replicas.

Our Protocol pod-core requires no expensive cryptographic primitives or setup beyond dig-
ital signatures and a PKI registering replicas’ public keys. We showcase Protocol pod-core’s
efficiency by means of experiments with a prototype implementation presented in Section 5.
Our experiments show that even with 1000 replicas distributed around the world, the latency
achieved by our protocol is just under double (resp. about 5 times) the round-trip time between
writer and reader clients with security against omission-faulty (resp. Byzantine) replicas.
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1.2 Technical Overview

We consider that time proceeds in rounds, and that parties (replicas and clients) know the current
round, so we can express timestamps in terms of rounds. The output of pod associates each
transaction tx with timestamp values rmin ≥ 0 (minimum round), rmax ≤ ∞ (maximum round)
and rconf (confirmed round). It may be that initially rconf =⊥ but later becomes rmin ≤ rconf ≤
rmax, when a transaction is confirmed. While each party reads different values rmin, rmax, rconf for
the same tx, pod guarantees that values read by different parties stay within these limits.

When clients read the pod, they obtain a pod data structure D = (T, rperf, Cpp), where T
is set of transactions with their associated timestamps, rperf is a past-perfect round and Cpp is
auxiliary data. The past-perfection safety property guarantees that T contains all transactions
that every other honest party will ever read with a confirmed round smaller than rperf. A pod
also guarantees past-perfection within w, meaning that rperf is at most w rounds in the past.

For each transaction tx in T, the reader obtains associated timestamps rmin, rmax, rconf and
auxiliary data Ctx, which may evolve. The protocol guarantees confirmation within u rounds,
meaning that, at most u rounds after tx was written, every party who reads the pod will see tx
as confirmed with some rconf ̸=⊥. Moreover, pod guarantees confirmation bounds, ensuring that
the values rmin and rmax for tx, read by an honest party, determine the range of the rconf value
for tx that can ever be read by another honest party, i.e., rmin ≤ rconf ≤ rmax.

In summary, pod provides past-perfection and confirmation bounds as safety properties, en-
suring parties cannot be blindsided by transactions suddenly appearing as confirmed too far
in the past, and that the different (and continuously changing) transaction timestamps stay
in a certain range. The liveness properties of confirmation within u and past-perfection within
w ensure that new transactions get confirmed within a bounded delay, and that each party’s
past-perfect round must be constantly progressing.

Besides introducing the notion of pod, we present Protocol pod-core. which realizes this
notion while requiring minimal interaction among parties and achieving optimal latency, i.e.,
optimal parameters u = 2δ and w = δ, where δ is the current network delay (not a delay upper
bound, which we assume to be unknown). Our construction relies on a set of n replicas to
maintain a pod data structure, which can be read by an unknown number of clients. The only
communication is between each client and the replicas, not among clients nor among replicas.

Writing a transaction tx to pod via Protocol pod-core only requires clients to send tx to the
replicas, who each assign a timestamp ts (their current time) and a sequence number to tx and
return a signature on (tx, ts, sn). When reading the pod, the client simply requests each replica’s
log of transactions, validates the responses, and determines rmin and rmax from the received
timestamps. If the client receives responses from enough replicas, rconf is determined by taking
the median of the timestamps received from these replicas.

We define Protocol pod-core such that clients may specify their own trust assumptions,
expecting up to β Byzantine and at the same time up to γ additional omission-faulty replicas.
However, although we prove our results for executions with only Byzantine and only omission
faults, we conjecture that Protocol pod-core realizes the pod notion for a continuum between
these two cases. We leave the security analysis of our protocol under a continuum of mixed
Byzantine and omission faults to the full version of this work.

Applications. The efficiency of pod has the potential to allow for a plethora of distributed
applications to be implemented with low latency. In Section 6 we show how auctions can be run
on top of pod, achieved through bidset, a new primitive for collecting a set of bids in a censorship
resistant manner. It is straightforward to realize single-shot open bid auctions using our bidset
primitive based on pod. We also conjecture that protocols for distributed sealed bid auctions
based on public bulletin board can also be recast over this primitive. Moreover, we conjecture
that consensusless payment systems such as Fastpay [4] may also be easily realized over pod.

1.3 Related work

Reducing latency. Many previous works have lowered the latency of ordering transactions. Hot-
Stuff [25] uses three rounds of all-to-leader and leader-to-all communication pattern, which
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results in a latency (measuring from the moment a client submits a transaction until in appears
in the output of honest replicas) of 8δ in the happy path. Jolteon [15], Ditto [15], and HotStuff-
2 [18] are two-round versions of HotStuff with end-to-end latency of 5δ. MoonShot [10] allows
leaders to send a new proposal every δ time, before receiving enough votes for the previous
one, but still achieves an end-to-end latency of 5δ. In the “DAG-based” line of word, Tusk [8]
achieves and end-to-end latency of 7δ, the partially-synchronous version of BullShark [22] an
end-to-end latency of 5δ, and Mysticeti [2] an end-to-end latency of 4δ. All these protocols aim
at total-order properties and have their lower latency is inherently restricted by lower bounds,
whereas pod starts from the single-round-trip latency requirement and explores the properties
that can be achieved.

Auctions. The pod notion offers the past-perfection property: a read() operation outputs a
timestamp rperf, and it is guaranteed that the output of read() contains all transactions that
can ever be confirmed with a timestamp smaller than rperf in the view of any reading client,
regardless of the network conditions. This implies that reading clients (such as an auctioneer)
cannot claim not having received a transaction when reading the pod, as this is detectable by any
other client who reads the pod. To the best of our knowledge, previous work in the consensusless
literature has not considered or achieved this property, hence it cannot readily support auctions.

Consensusless payments. The redundancy of consensus for implementing payment systems has
been recognized by previous works [4,7,17,21]. The insight is that total transaction order is not
required in the case that each account is controlled by one client. Instead, a partial order is suf-
ficient, ensuring that, if transactions tx1 and tx2 are created by the same client, then every party
outputs them in the same order. This requirement was first formalized by Guerraoui et al. [17]
as the source-order property. The constructions of Guerraoui et al. [17] and FastPay [4] require
clients to maintain sequence numbers. ABC [21] requires clients to reference all previous transac-
tion in a DAG (including its own last transaction). Cheating clients might lose liveness [4,17,21],
but equivocating is not possible.

2 Preliminaries

Notation. We denote by N the set of natural numbers including 0. Let L be a sequence, we
denote by L[i] the ith element (starting from 0), and by |L| its length. Negative indices address
elements from the end, so L[−i] is the ith element from the end, and L[−1] in particular is
the last. The notation L[i:] means the subarray of L from i onwards, while L[:j] means the
subsequence of L up to (but not including) j. We denote an empty sequence by [ ]. We denote
the concatenation of sequences L1 and L2 by L1 ∥L2.

2.1 Execution Model

Parties. We consider n replicas R = {R1, . . . , Rn} and an unknown number of clients. Parties
are stateful, i.e., store state between executions of different algorithms. We assume that replicas
are known to all parties and register their public keys (for which they have corresponding secret
keys) in a Public Key Infrastructure (PKI). Clients do not register keys in the PKI.

Adversarial Model. We call a party (replica or client) honest, if it follows the protocol,
and malicious otherwise. We assume static corruptions, i.e., the set of malicious replicas is
decided before the execution starts and remains constant. In this work uses a combination of
two adversarial models, the Byzantine and the omission models. In this case, the adversary has
access to the internal state and secret keys of all corrupted parties. In the Byzantine model,
corrupted replicas are malicious and may deviate arbitrarily from the protocol. We denote by
β ∈ [0, n] the number of Byzantine replicas in an execution. In the omission model, corrupted
replicas may only deviate from the protocol by dropping messages that they were supposed to
send, but follow the protocol otherwise. Observe that this includes crash faults, where replicas
crash (i.e. stop execution) and remain crashed until the end of the execution of an algorithm.
The Byzantine adversary is modelled as a probabilistic polynomial time overarching entity that
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is invoked in the stead of every corrupted party. That is, whenever the turn of a corrupted party
comes to be invoked by the environment, the adversary is invoked instead.

Modeling time. Time proceeds in discrete rounds (akin to timestamps). The environment is
constrained to work in a prespecified, polynomial number of rounds. The environment begins by
spawning all honest parties as well as the adversary, and initializing the current round to 0. Upon
spawning the honest parties, the environment must call the init() function of each party in a
round robin fashion. It then sets the network inbox of each honest party to the empty sequence.
It then proceeds to iterate over all rounds, one by one, incrementing the round variable by one
during each iteration, starting with round 1 in the first iteration. For each round it iterates
over, it invokes all honest parties one by one in a round robin fashion. In each such honest
party invocation, the environment looks at the honest party’s network inbox and delivers any
messages that are present by invoking the respective upon functionalities specified by the honest
protocol, parametrized by the message and the sender, once per message in the inbox. During the
invocation of such upon functionalities, the honest party may send a message to another party
by invoking the send() function (with the message and the recipient as arguments), which places
the message on the network outbox of the sending honest party. During the upon invocation, the
honest party may also invoke the round() function, which returns the current round number. The
round() function works by asking the environment for the current round, and the environment
is compelled to answer truthfully. This means that the clocks of honest parties are synchronized.
At the end of the round, after all honest parties have been invoked, the environment cleans
the network inboxes of all honest parties in preparation for the next round. Subsequently, the
adversary is invoked (i.e., she is a rushing adversary), by handing her all the network outboxes
of all honest parties. The adversary decides the network inboxes of all honest parties for the
next round. The adversary can include, in these network inboxes newly prepared for the next
round, messages that were present in network outboxes of honest parties in previous rounds.
The adversary can also reorder messages (potentially providing a different reordering for each
receipient), add new messages of her own (potentially different for each receipient), as well as
choose not to include messages in the network inboxes, subject to the constrains in the next
paragraph.

Modeling network. We denote by δ ∈ N the actual delay (measured in number of rounds) it
takes to deliver a message between two honest parties, a number which is finite but unknown to
all parties. We denote by ∆ ∈ N an upper bound on this delay, i.e., δ ≤ ∆, which is also finite.
The environment is constrained to deliver all honest network messages within δ. Namely, for
each message m sent by an honest party at round r, the environment observes and remembers
the inboxes (decided by the adversary) of all honest parties during rounds r+1, . . . , r+δ. If none
of these inboxes contains m, the environment appends m to the network inbox of the recieving
party prior to invoking it at round r + δ, thereby forcing the inclusion of this message. In the
synchronous model, ∆ is known to all parties (namely, the honest code is parametrized by ∆). In
the partially synchronous model, ∆ is unknown but still finite, i.e., all messages are eventually
delivered. We new define responsive protocols, which is the case of our main protocol pod-core.

Definition 1 (Responsive Protocol (Informal)). A protocol is responsive if it does not rely
on knowledge of ∆ and its liveness guarantees depend only on the actual network delay δ.

Digital Signatures. We assume that replicas (and auctioneers in bidset-core) authenticate their
messages with digital signatures. A digital signature scheme is a triple of algorithms satisfying
the EUF-CMA security [16] as defined below:

– KeyGen(1κ): The key generation algorithm takes as input a security parameter κ and outputs
a secret key sk and a public key pk.

– Sign(sk, m) → σ: The signing algorithm takes as input a private key sk and a message
m ∈ {0, 1}∗ and returns a signature σ.

– Verify(pk, m, σ) → b ∈ {0, 1}: The verification algorithm takes as input a public key pk, a
message m, and a signature σ, and outputs a bit b ∈ {0, 1}.

We say σ is a valid signature on m with respect to pk if Verify(pk, m, σ) = 1.
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2.2 Accountable safety

Taking a similar approach as Neu, Tas, and Tse [20, Def. 4], we define accountable safety through
an identification function.

Definition 2 (Transcript and partial transcript). We define as transcript the set of all
network messages sent by all parties in an execution of a protocol. A partial transcript is a
subset of a transcript.

Definition 3 (β-Accountable safety). A protocol satisfies accountable safety with resilience
β if its interface contains a function identify(T ) → R̃, which takes as input a partial transcript T
and outputs a set of replicas R̃ ⊂ R, such that the following conditions hold except with negligible
probability.

Correctness: If safety is violated, then there exists a partial transcript T , such that identify(T ) →
R̃ and |R̃| > β.

No-framing: For any partial transcript T produced during an execution of the protocol, the
output of identify(T ) does not contain honest replicas.

Remark 1. For the sake of simplicity, we have defined the transcript based on messages sent by
all replicas. We can also define a local transcript as the set of messages observed by a single
party. As will become evident from the implementation of identify(), in practice, adversarial
behavior can be identified from the local transcripts of a single party or of a pair of parties.

3 Modeling pod

In this section, we introduce the notion of a pod, a distributed protocol where replicas maintain
transactions with an evolving partial order, which can be read and written by clients. We first
define basic data structures and the interface of a pod. We then introduce the basic definition of
a secure pod and its security properties, as well as some additional properties that it may satisfy,
which we will later use for our applications. In particular, we define the notions of timeliness
and monotonicity for a secure pod.

Definition 4 (Transaction and associated values). A transaction tx ∈ {0, 1}∗ is associated
with values rmin, rmax, rconf, and Ctx, which change during the execution of a pod protocol.. We
call rmin ∈ N the minimum round, rmax ∈ N ∪ {∞} the maximum round, rconf ∈ N ∪ {⊥} the
confirmed round, and Ctx ∈ {0, 1}∗ contains some auxiliary data. We denote by rmax = ∞ an
unbounded maximum round and by rconf = ⊥ an undefined confirmed round. For transaction tx,
denote its associated values by tx.rmin, tx.rmax, tx.rconf, and tx.Ctx.

In pod-core, Ctx will contain digital signatures used to achieve accountability.

Definition 5 (Confirmed transaction). A transaction with confirmed round rconf is called
confirmed if rconf ̸= ⊥, and unconfirmed otherwise.

Definition 6 (Transaction set). A transaction set T is a set of tuples (tx, rmin, rmax, rconf, Ctx).
We say that a transaction tx appears in T when ∃(tx′, rmin, rmax, rconf, Ctx) ∈ T such that tx′ = tx.
Conversely, we say that a transaction tx does not appear in T when this condition is not satisfied.

Definition 7 (Pod data structure). A pod data structure D is a triple (T, rperf, Cpp), where
T is a transaction set, rperf is a round number, called the past-perfect round, and Cpp ∈ {0, 1}∗
contains auxiliary data.

In pod-core, Cpp will also contain signatures used to achieve accountability. Our construction
will allow for deriving Cpp from all certificates Ctx in T, but we define Cpp explicitly for clarity
and generality. Moreover, rperf will imply a completeness property on T, defined by the past-
perfection safety property of pod. We remark that transactions in T may be confirmed on
unconfirmed.
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Definition 8 (Interface of a pod). A pod protocol has the following interface.

– write(tx): It writes a transaction tx to the pod.
– read() → D: It outputs a pod data structure D = (T, rperf, Cpp).

We say that a client reads the pod when it calls read(). If tx appears in T, we say that the client
observes tx and, if tx.rconf ̸= ⊥, we say that the client observes tx as confirmed.

Definition 9 (View of the pod). We call view of the pod the output of read(), where read()
is invoked by client c and the output is produced at round r, and denote it as Dc

r . We remark
that r denotes the round when read() outputs, as the client may have invoked it at an earlier
round. We denote the components of a view as Dc

r = (Dc
r .T, Dc

r .rperf, Dc
r .Cpp). We write tx ∈ Dc

r
if tx appears in Dc

r .T.

Definition 10 (Secure pod). A protocol is a secure pod if it implements the pod interface of
Definition 8 and satisfies the following properties.

(Liveness) Confirmation within u: Transactions become confirmed after at most u rounds.
That is, if an honest client c writes a transaction tx at round r, then for any honest client c′

(including c = c′) it holds that tx ∈ Dc′
r+u and tx.rconf ̸= ⊥.

(Liveness) Past-perfection within w: Rounds become past-perfect after at most w rounds.
That is, for any honest client c and round r ≥ w, it holds that Dc

r .rperf ≥ r − w.
(Safety) Past-perfection: Let c be an honest client with view Dc

r at round r. Then, for any
transaction tx ∈ {0, 1}∗ that becomes confirmed (in some view Dc′

r′ of an honest client c′ at
round r′ ≥ 0 ) with confirmed round rconf, it holds that, if rconf < Dc

r .rperf, then tx ∈ Dc
r .

(Safety) Confirmation bounds: For any honest clients c1, c2, if c1 observes tx with rmin and
rmax and c2 observes tx as confirmed with confirmation round r′conf, then rmin ≤ r′conf ≤ rmax.

The confirmation bounds property gives rmin ≤ r′conf ≤ rmax, for r′conf computed by honest
client c2 and rmin, rmax computed by honest client c1, but it does not guarantee anything about
the values of rmin and rmax (for example, it could trivially be rmin = 0 and rmax = ∞). To this
purpose we define an additional property of pod, called timeliness. Previous work has observed
a similar property as orthogonal to safety and liveness [24].

Definition 11 (pod θ-timeliness for honest transactions). A pod protocol is θ-timely if
it is a secure pod, as per Definition 10, and for any honest clients c1, c2, if c1 writes transaction
tx in round r, then c2 computes rmin, rmax, rconf for tx such that:

1. rmax ∈ (r, r + θ]
2. rmax − rmin < θ, implying that rmin ̸= 0 and rmax ̸= ∞.

Moreover, a pod protocol allows the values rmin, rmax, rconf to change during an execution
– for example, clients in construction pod-core will update them when they receive votes from
replicas. The properties we have defined so far do not impose any restriction on how they evolve.
For this reason, in Appendix A we define the additional property of pod Monotonicity.

We conclude this section with some visual examples in Figures 3 and 3.

4 Protocol pod-core

Before we present protocol pod-core, we define basic concepts and structures.

Definition 12 (Vote). A vote is a tuple (tx, ts, sn, σ, R), where tx is a transaction, ts is a
timestamp, sn is a sequence number, σ is a signature, and R is a replica. A vote is valid if σ is
a valid signature on message m = (tx, ts, sn) with respect to the public key pkR of replica R.

Remark 2 (Processing votes in order). We require that clients process votes from each replica in
the same order, namely in order of increasing timestamps. For this we employ sequence numbers.
Each replica maintains a sequence number, which it increments and includes every time it assigns
a timestamp to a transaction.
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*c3

* *
c1 c2

rmin rmaxrconf

time

Fig. 2: The same transaction in the view of
three different pod clients. Each client assigns
it a minimum round rmin and a maximum
round rmax. If it gets confirmed, the confir-
mation round rconf will be between these two
values. The rconf that each client locally com-
putes respects the bounds of each other client.

*tx1 time
tx2

*tx3
* rperf

*

tx4 tx5

Fig. 3: A possible view of a single pod client.
Transactions tx1, tx2, tx3 are confirmed, tx4 is
not yet confirmed. A client also derives a past-
perfect round rperf. No transaction other than
tx1, tx2, tx3, tx4 may obtain rconf ≤ rperf. There
may exist tx5 for which the client has not re-
ceived votes, but tx5 cannot obtain rconf ≤ rperf.

Remark 3 (Implicit session identifiers). We assume that all messages between clients and repli-
cas are concatenated with a session identifier (sid), which is unique for each concurrent execution
of the protocol. Moreover, the sid is implicitly included in all messages signed by the replicas.

Remark 4 (Streaming construction). The client protocol we show in Protocol 1 is streaming,
that is, clients maintain a connection to the replicas, and stateful, that is, they persist their
state (received transactions, votes, and associated values) across all invocations of write() and
read().

Pseudocode notation. For a timestamp ts, notation ts.getVoteMsg() denotes the vote message
from some replica through which a client obtained timestamp ts. We abstract away the logic of
how getVoteMsg() is implemented. Notation x : a ∈ A → b ∈ B denotes that variable x is a
map from elements of type A to elements of type B. When obvious from the context, we do not
explicitly write the types A or B. For a map x, the operations x.keys() and x.values() return all
keys and all values in x, respectively. With ∅ we denote an empty map.

Protocol 1 (pod-core). Protocol pod-core is executed by n replicas that follow the steps of
Algorithm 1 and an unknown number of clients that follow the steps of Algorithms 2, 3 and 4
with parameters β, γ and α, where β denotes the number of Byzantine replicas and γ the number
of omission-faulty replicas (in addition to the Byzantine) and α = n− β − γ.

Remark 5. Looking forward, we only analyze the cases where either β or γ are non-zero, i.e.
we consider only the cases where all corrupted replicas are assumed to be either Byzantine
or omission-faulty but not the cases where there are mixed Byzantine and omission-fault cor-
ruptions. However, we conjecture that Protocol pod-core is also a secure pod under a mixed
adversarial model with a continuum of both Byzantine and omission-fault corruptions. A secu-
rity analysis of Protocol pod-core in this mixed adversarial model will appear in the full version.

Replica code. The state of a replica (lines 1–4 of Algorithm 1) contains, among others, the
transaction log replicaLog, which is implemented as a sequence of votes (tx, ts, sn, σ, Ri) created
by the replica, where ts is the timestamp assigned by the replica to tx, sn is a sequence number,
and σ is its signature. A functionality round() allows the replica to determine the current round
number. When the replica receives a ⟨CONNECT ⟩ message from a client c, it appends c to its
set of connected clients and sends to c all entries in replicaLog (lines 8–13).

When it receives ⟨WRITE tx⟩, a replica first checks whether it has already seen tx, in which
case the message is ignored. Otherwise, it assigns tx a timestamp ts equal its local round number
and the next available sequence number sn, and signs the message (tx, ts, sn) (line 19). Honest
replicas use incremental sequence numbers for each transaction, implying that a vote with a
larger sequence number than a second vote will have a larger or equal timestamp than the sec-
ond. The replica appends (tx, ts, sn, σ) to replicaLog, and sends it via a ⟨VOTE (tx, ts, sn, σ, Ri)⟩
message to all connected clients (line 22).
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Algorithm 1 Protocol pod-core: Code for a replica Ri, where sk denotes its secret signing key.
1: C ▷ The set of all connected clients
2: nextsn ▷ The next sequence number to assign to votes
3: replicaLog ▷ The transaction log or the replica
4: round() ▷ A function that returns the wall time of the replica

5: upon event init() do
6: nextsn← 0; C ← ∅; replicaLog← [ ]
7: end upon

8: upon receive ⟨CONNECT ⟩ from client c do
9: C ← C ∪ {c}

10: for (tx, ts, sn, σ) ∈ replicaLog do
11: Send ⟨VOTE (tx, ts, sn, σ, Ri)⟩ to c
12: end for
13: end upon

14: upon receive ⟨WRITE tx⟩ from a client do
15: if replicaLog[tx] ̸= ⊥ then return ▷ Ignore duplicate transactions
16: doVote(tx)
17: end upon

18: function doVote(tx)
19: ts← round(); sn← nextsn; σ ← Sign(sk, (tx, ts, sn))
20: replicaLog← replicaLog ∥ (tx, ts, sn, σ)
21: for c ∈ C do
22: Send ⟨VOTE (tx, ts, sn, σ, Ri)⟩ to c
23: end forz
24: nextsn← nextsn + 1
25: end function

26: upon end round do ▷ Executed at the end of each round
27: doVote(heartBeat)
28: end upon

Client initialization. The state of a client is shown in Algorithm 2 in lines 2–6. The state contains
mrt, nextsn, tsps, and D. Variable tsps is a map from transactions tx to a map from replicas R
to timestamps ts. The state gets initialized in lines 7–14. At initialization the client also sends a
⟨CONNECT ⟩ message to each replica, which initiates a streaming connection from the replica
to the client.

Receiving votes. A client maintains a connection to each replica and receives votes through
⟨VOTE (tx, ts, sn, σ, Rj)⟩ messages (lines 15–24). When a vote is received from replica Rj , the
client first verifies the signature σ under Rj ’s public key (line 16). If invalid, the vote is ignored.
Then the client verifies that the vote contains the next sequence number it expects to receive
from replica Rj (line 17). If this is not the case, the vote is backlogged and given again to the
client at a later point (the backlogging functionality is not shown in the pseudocode).

The client checks the vote against previous votes received from Rj . First, ts must be greater
or equal to mrtj , the most recent timestamp returned by replica Rj (line 19). Second, the
replica must have not previously sent a different timestamp for tx (line 22), except if tx is a
heartBeat (as checked on line 21). If both checks pass, the client updates mrt[j] (line 20) and
tsps[tx][Rj ] (line 23) with ts. If any of these checks fail, the client ignores the vote, since both
of these cases constitute accountable faults: In the first case, the client can use the message
⟨VOTE (tx, ts, sn, σ, Rj)⟩ and the vote it received when it updated mrt[Rj ] to prove that Rj

has misbehaved. In the second case, it can use ⟨VOTE (tx, ts, sn, σ, Rj)⟩ and the previous vote
it has received for tx. The identify() function we show in Algorithm 8 can detect such misbe-
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Algorithm 2 Protocol pod-core: Code for a client, part 1
1: State:
2: R = {R1, . . . , Rn}; {pk1, . . . , pkn} ▷ All replicas and their public keys
3: mrt : R→ ts ▷ The most recent timestamp returned by each replica
4: nextsn : R→ sn ▷ The next sequence number expected by each replica
5: tsps : tx→ (R→ ts) ▷ Timestamp received for each tx from each replica
6: D = (T, rperf, Cpp) ▷ The pod observed by the client so far

7: upon event init(R1, . . . , Rn, k1, . . . , kn) do
8: R← {R1, . . . , Rn}; (pk1, . . . , pkn)← (k1, . . . , kn)
9: tsps← ∅; D = (∅, 0, [ ])

10: for Rj ∈ R do
11: mrt[Rj ]← 0; nextsn[Rj ] = −1
12: Send ⟨CONNECT ⟩ to Rj

13: end for
14: end upon

15: upon receive ⟨VOTE (tx, ts, sn, σ, Rj)⟩ do ▷ Received a vote from replica Rj

16: if not Verify(pkj , (tx, ts, sn), σ) then return ▷ Invalid vote
17: if sn ̸= nextsn[Rj ] then return ▷ Vote cannot be processed yet
18: nextsn[Rj ]← nextsn[Rj ] + 1
19: if ts < mrt[R[j]] then return ▷ Rj sent old timestamp
20: mrt[R[j]]← ts
21: if tx = heartBeat then return ▷ Do not update tsps for heartBeat
22: if tsps[tx][Rj ] ̸= ⊥ and tsps[tx][Rj ] ̸= ts then return ▷ Duplicate timestamp
23: tsps[tx][Rj ]← ts
24: end upon

havior. However, in this paper we formalize accountability conditioned on safety being violated
(Definition 3), hence we do not further explore this.

Writing to and reading from pod. Protocol pod-core implements functions write(tx) and read()
(Definition 8) functions as shown in Algorithm 3. In order to write a transaction tx, a client
sends ⟨WRITE tx⟩ to each replica (lines 1–5). Since the construction is stateful and streaming,
the client state contains at all times the latest view the client has of the pod, read() operates
on the local state (lines 6–28). It returns a pod D (line 27) with a transaction set T, containing
the transactions the client has received so far (line 8) and their associated values, a past-perfect
round rperf, and auxiliary data Cpp. Note that tsps.keys() on line 8 returns all entries in tsps.

The client uses the minPossibleTs() and maxPossibleTs() functions to compute rmin (line 9)
and rmax (line 10). They respectively return the minimum and maximum round number that
any client can ever confirm tx with. For rperf (line 22) the client uses minPossibleTsForNewTx(),
which returns the earliest round that any client can ever assign to a transaction not yet seen by
the client. Cpp contains the vote on the most recent timestamp mrt[Rj ] received from each Rj .

A transaction becomes confirmed (i.e., is assigned a confirmation round rconf ̸= ⊥) when the
client receives α votes for tx from different replicas (line 12). Before it becomes confirmed, tx has
rconf = ⊥ and Ctx = [ ] (line 11). When confirmed, rconf is the median of all received timestamps
(line 18), and the auxiliary data Ctx contains all the received votes on tx (line 16).

Computing the associated values and the past-perfect round. Function minPossibleTs() in Algo-
rithm 4 fills a missing vote from replica Rj with mrt[Rj ] (line 7), the minimum timestamp that
can ever be accepted from Rj (smaller values will not pass the check in line 19 of Algorithm 3).
Moreover, it prepends β times the 0 value (line 11), pessimistically assuming that up to β replicas
will try to bias tx by sending a timestamp 0 to other clients, which only happens if replicas may
be Byzantine, i.e., if β > 0. Similarly, function maxPossibleTs() in Algorithm 4 fills a missing
vote with ∞ (line 20) and appends β times the ∞ value (line 24), the worst-case timestamp
that Byzantine replicas may send to other clients. Finally, minPossibleTsForNewTx() is similar
to minPossibleTs() but considers timestamps mrt the minimum possible for future transactions.
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Algorithm 3 Protocol pod-core: Code for a client, part 2
1: function write(tx)
2: for Rj ∈ R do
3: Send ⟨WRITE tx⟩ to Rj

4: end for
5: end function

6: function read()
7: T← ∅; Cpp ← [ ]
8: for tx ∈ tsps.keys() do ▷ Loop over all received transactions
9: rmin ← minPossibleTs(tx)

10: rmax ← maxPossibleTs(tx)
11: rconf ← ⊥; Ctx ← [ ]; timestamps = [ ]
12: if |tsps[tx].keys()| ≥ α then
13: for Rj ∈ tsps[tx].keys() do
14: ts← tsps[tx][Rj ]
15: timestamps← timestamps ∥ ts
16: Ctx ← Ctx ∥ ts.getVoteMsg()
17: end for
18: rconf ← median(timestamps)
19: end if
20: T← T ∪ {(tx, rmin, rmax, rconf, Ctx)}
21: end for
22: rperf ← minPossibleTsForNewTx()
23: for Rj ∈ R do
24: Cpp ← Cpp ∥mrt[Rj ].getVoteMsg()
25: end for
26: D ← (T, rperf, Cpp)
27: return D
28: end function

Heartbeat messages. Clients update their most-recent timestamp mrt[Rj ] every time they receive
a vote from replica Rj (line 20 in Algorithm 2). However, in case Rj has not written any
transaction in round r (simply because no client called write() in round r), Rj will advance
its round number, but clients will not advance mrt[Rj ]. We solve this by having replicas send
a vote on a dummy heartBeat transaction the end of each round (lines 26–28). An obvious
practical implementation is to send heartBeat only for rounds when no other transactions
were sent. When received by a client, a heartBeat is handled as a vote (i.e., it triggers line 15
in Algorithm 2), except that we do not check for duplicate heartBeat votes and do not update
any associated values for the heartbeat transaction (see line 21 in Algorithm 2).

Theorem 1 (pod-core security under Byzantine faults). Assuming that the network is
asynchronous with actual network delay δ (and unknown delay upper bound), β is the number
of Byzantine replicas, γ = 0 is the number of omission-faulty replicas and n ≥ 5β + 1 is the
total number of replicas. Protocol pod-core (Protocol 1) instantiated with a EUF-CMA secure
signature scheme is a responsive secure pod (Definition 10) with Confirmation within u = 2δ,
Past-perfection within w = δ and β-accountable safety (Definition 3) with the identify() function
described in Algorithm 8, except with negligible probability.

Proof. Shown in Appendix B.

Theorem 2 (pod-core security under Omission faults). Assuming that the network is
asynchronous with actual network delay δ (and unknown delay upper bound), β = 0 is the
number of Byzantine replicas, γ is the number of omission-faulty replicas and n ≥ 3γ + 1 is the
total number of replicas. Protocol pod-core (Protocol 1) instantiated with a EUF-CMA secure
signature scheme is a responsive secure pod (Definition 10) with Confirmation within u = 2δ
and Past-perfection within w = δ, except with negligible probability.

Proof. Shown in Appendix C.
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Algorithm 4 Protocol pod-core: Client code, part 3 (computing associated values and past-
perfect round). The code is parametrized with β, the number of Byzantine replicas expected by
the client, and γ, the number of omission-faulty replicas, and α = n− β − γ for n replicas.
1: function minPossibleTs(tx)
2: timestamps← [ ]
3: for Rj ∈ R do
4: if tsps[tx][Rj ] ̸= ⊥ then
5: timestamps← timestamps ∥ [tsps[tx][Rj ]]
6: else
7: timestamps← timestamps ∥ [mrt[Rj ]]
8: end if
9: end for

10: sort timestamps in increasing order
11: timestamps← [0, β times. . . , 0] ∥ timestamps ▷ omitted altogether if β = 0
12: return median(timestamps[: α])
13: end function

14: function maxPossibleTs(tx)
15: timestamps← [ ]
16: for Rj ∈ R do
17: if tsps[tx][Rj ] ̸= ⊥ then
18: timestamps← timestamps ∥ [tsps[tx][Rj ]]
19: else
20: timestamps← timestamps ∥ [∞]
21: end if
22: end for
23: sort timestamps in increasing order
24: timestamps← timestamps ∥ [∞, β times. . . ,∞] ▷ omitted altogether if β = 0
25: return median(timestamps[−α :])
26: end function

27: function minPossibleTsForNewTx()
28: timestamps← mrt
29: sort timestamps in increasing order
30: timestamps← [0, β times. . . , 0] ∥ timestamps ▷ omitted altogether if β = 0
31: return median(timestamps[: α])
32: end function

33: function median(Y)
34: return Y [⌊ |Y |/2 ⌋]
35: end function

Remark 6. Notice that Theorem 2 does not capture β-accountable safety (Definition 3) because
there are no safety violations when all corrupted replicas are only omission-faulty.

5 Evaluation

To validate our theoretical results regarding optimal latency in Protocol pod-core, we implement5
prototype replicas and clients in Rust 1.85. We benchmark this prototype by measuring the end-
to-end confirmation latency of a transaction from the moment it is written by client until it is
confirmed by another client in a different continent, both interacting with replicas distributed
around the world. We present the results in Figure 4.

The experiment involves two types of clients. The writing client establishes connections to
all replicas, records the timestamp (in its local view) right before sending the transaction and
sends transaction payloads to each connected replica. The reading client maintains connections
to all replicas, validates incoming signed transactions, and records the timestamp (in its local
view) upon receiving a quorum of valid signatures for a particular transaction.
5 Our prototype implementation is available at https://github.com/commonprefix/pod-experiments
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Fig. 4: End-to-end confirmation latency from a writing client to a reading client as a transaction
traverses across n = 15, . . . , 1000 replicas, for two reading clients: (1) a client that expects up
to γ = ⌈ 1

3n⌉ omission faults (blue line, below), and (2) a client that expects up to β = ⌈ 1
5n⌉

Byzantine faults (orange line, above). We also plot the physical network round-trip time (RTT)
between the reading client and the writing client, which is 76ms (dashed red line). A 95%
confidence interval is shown for each experiment (shaded area).

The implementation follows a client-server architecture where each replica maintains two
TCP listening sockets: one for the reading client connection and one for the writing client
connection. Upon receiving a transaction payload from a writer, the replica creates a tuple
containing the payload, a sequence number, and the current local timestamp. The replica then
signs this tuple using a Schnorr signature6 on secp256k1 curve, appends it to its local log, and
forwards the signed tuple to the reading client.

We conduct experiments with two different values for the quorum size α = 1 − β − γ: (1)
β = 0 and γ = ⌊ 1

3n⌋, for a client that only expects omission faults, and (2) β = ⌊ 1
5n⌋ and γ = 0,

for a client that expects Byzantine faults. We repeat the experiments for different numbers of
replicas (n = 15, . . . , 1000). The latency is computed as the difference between the timestamp
recorded by the reading client upon receiving sufficiently many votes from different replicas to
confirm the transaction and the initial timestamp recorded by the writing client. We repeat each
experiment five times and report the mean latency and a 95% confidence interval.

The deployment process begins by launching replicas using a round-robin strategy across
seven AWS regions: eu-central-1 (Frankfurt), eu-west-2 (London), us-east-1 (N. Virginia), us-
west-1 (N. California), ca-central-1 (Canada), ap-south-1 (Mumbai), and ap-northeast-2 (Seoul).
Each replica is deployed on a t2.medium EC2 instance (2 vCPUs, 4GB RAM) and is initialized
with user data that contains the replica’s unique secret signing key. After collecting all replica IP
addresses and public keys, we deploy the reading client in eu-west-2 (London) and the writing
client in us-east-1 (N. Virginia), both initialized with the complete list of replica information
(IP addresses and public keys).

As shown in Figure 4, our experimental results demonstrate that the latency remains largely
independent of the number of replicas. The reading client reports a transaction as confirmed
as soon as the fastest α replicas have responded, which gives rise to the happy artifact that
6 https://crates.io/crates/secp256k1
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the 1 - α slowest replicas do not slow down confirmation. Even with 1000 replicas the mean
confirmation latency is 138ms for the omission fault experiment and 375ms for the Byzantine
experiment. Which approximates the physical network RTT between the reading client and the
writing client that stands at 76ms.

6 Auctions on pod through the bidset protocol

In this section, we show how single-shot distributed auctions can be implemented on top of
pod. This is achieved through bidset, a primitive for collecting a set of bids, which guarantees
accountable censorship resistance and consistency among honest parties. We first define bidset
and then construct it using an underlying pod.

Definition 13 (bidset protocol). A bidset protocol has a starting time parameter t0 and
exposes the following interfaces to bidder and consumer parties:

– function submitBid(b): It is called by a bidder at round t0 to submit a bid b.
– event result(B, Cbid): It is an event generated by a consumer. It contains a bid-set B, which

is a set of bids, and auxiliary information Cbid.

A bidset protocol satisfies the following liveness and safety properties:

(Liveness) Termination within W : An honest consumer generates an event result(B, Cbid)
by round t0 +W .
(Safety) Censorship resistance: If an honest bidder calls submitBid(b) and an honest con-
sumer generates an event result(B, ·), then b ∈ B.
(Safety) Weak consistency: If two honest consumers generate result(B1, ·) and result(B2, ·)
events, such that B1 ̸= ∅ and B2 ̸= ∅, then B1 = B2.

Protocol 2 (bidset-core). Protocol bidset-core is parameterized by an integer ∆ (looking ahead,
we will prove security in synchrony, i.e., assuming the network delay δ is smaller than ∆) and
assumes digital signatures and a pod with δ-timeliness, w = δ and u = 2δ. At time t0, all parties
start executing Algorithms 5–7. A pre-appointed sequencer is responsible to reading the pod and
writing back to it when a specific condition is met. For example, when instantiating bidset-core
on top of pod-core, a replica can act as sequencer.

Algorithm 5 bidset-core: Code for a bidder. It uses a pod instance pod .
1: function submitBid(b)
2: pod .write(b)
3: end function

Algorithm 6 bidset-core: Code for the sequencer. It uses a pod instance pod , and ska denotes
the secret key of the sequencer.
1: function readBids()
2: (T, rperf, Cpp)← pod.read()
3: while rperf ≤ t0 +∆ do
4: (T, rperf, Cpp)← pod.read()
5: end while
6: B ← {tx | (tx, ·, ·, ·, ·) ∈ T}; Cbid ← Cpp

7: σ ← Sign(ska, (B,Cbid))
8: tx← ⟨BIDS (B,Cbid, σ)⟩
9: pod .write(tx)

10: end function

A bidder submits a bid by writing it on the pod (Algorithm 5) at round t0. The sequencer
(Algorithm 6) waits until the pod returns a past-perfect round larger than t0 +∆ (line 3). The
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Algorithm 7 bidset-core: Code for a consumer. It uses a pod instance pod .
1: function readResult()
2: loop
3: (T, rperf, Cpp)← pod.read()
4: if ∃(tx, ·, ·, rconf, ·) ∈ T : tx = ⟨BIDS (B,Cbid, σ)⟩ and rconf ≤ t0 + 3∆ then
5: output event result(B, Cbid)
6: else if rperf > t0 + 3∆ then
7: output event result(∅, Cpp)
8: end if
9: end loop

10: end function

δ-timeliness property of the pod, given that δ ≤ ∆, ensures that the bids of honest parties will
have a confirmation round at most t0+∆, and the accountable past-perfection safety guarantees
that a malicious sequencer cannot exclude them from the bid-set B in line 6. The sequencer con-
cludes by signing B and Cbid (which can be used as evidence, in case of a safety violation) and
writing ⟨BIDS (B,Cbid, σ)⟩ on pod . As an intuition on how bidset-core achieves its properties,
observe that line 3 of Algorithm 6 becomes true in the view of sequencer by round t0 +∆ + δ
(from the past-perfection within w = δ property of pod-core), hence Algorithm 6 for an honest
sequencer terminates by that round. Observe also that the transaction ⟨BIDS (B,Cbid, σ)⟩ be-
comes confirmed in the view of all honest clients by round t0 +∆ + 3δ (from the confirmation
within u = 2δ property), and it will have a confirmed round rconf ≤ t0 + ∆ + 2δ (from the
δ-timeliness property).

The code for a consumer is shown in Algorithm 7. The consumer waits until one of the
following two conditions is met. First, a confirmed transaction ⟨BIDS (B,Cbid, σ)⟩ appears in
T, for which rconf ≤ t0 + 3∆ (line 4), in which case it outputs the bid-set B it the result()
event. Second, a round higher than t0 + 3∆ becomes past-perfect in pod (line 6), in which case
it outputs B = ∅.

Observe that, from the past-perfection within w = δ property of pod, the condition in line 6
will become true at latest at round t0 + 3∆ + δ, hence bidset-core achieves termination within
W = 3∆ + δ. If the network is synchronous and the sequencer honest, the condition in line 4
becomes true at round at most t0 +∆+ 3δ for an honest consumer, hence it outputs B as the
bid-set, hence bidset-core satisfies the consistency property.

Remark 7 (Implicit sub-session identifiers). We assume that each instance of the bidset-core pro-
tocol is identified by a unique sub-session identifier (ssid). All messages written to the underlying
pod are concatenated with the ssid.

Theorem 3 (Bidset security). Assuming a synchronous network where δ ≤ ∆, protocol
bidset-core (Construction 2) instantiated with a digital signature and a secure pod protocol that
satisfies the past-perfection within w = δ, confirmation within u = 2δ and δ-timeliness proper-
ties, is a secure bidset protocol satisfying termination within W = 3∆+δ. It satisfies accountable
safety with an identifySequencer() function that identifies a malicious sequencer.

Proof. The proof and identifySequencer() are shown in Appendix D.

Remark 8. Observe that bidset-core terminates within W = 3∆ + δ in the worst case, but, if
the sequencer is honest, then it terminates within W = ∆ + 3δ. Moreover, bidset-core is not
responsive because Algorithm 6 waits for a fixed ∆ interval. This step can be optimized if the
set of bidders is known (i.e., by requiring them to pre-register), which allows for the protocol to
be made optimistically responsive (i.e., W = 4δ) when all bidders and the sequencer are honest.

Auctions using bidset. Building on a bidset protocol, it is trivial to construct single-shot
first price and second price open auctions as follows: 1. Bidders place their open bids b by
calling submitBid(b); 2. Consumers determine the winner by calling readResult() to obtain B
and outputting either the first or second highest bid. We conjecture that single-shot sealed bid
auction protocols such as those of [3, 6, 9, 11, 12, 23] can also be instantiated on top of a bidset
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protocol. Intuitively, this holds because such protocols first agree on a set of sealed bids and then
execute extra steps to determine the winner. However, a formal analysis of sealed-bid auction
protocols based on bidset is left as future work.

7 Discussion

In this work we present pod, a novel consensus layer that finalizes transactions with the optimal
one-round-trip latency. Pod eliminates communication among replicas. Instead, clients read the
system state by performing lightweight computation on logs retrieved from the replicas. As no
validator has a particular role in pod (as compared to leaders, block proposers, miners, etc. in
similar protocols), pod achieves censorship resistance by default, without any extra mechanisms
or additional cost. Furthermore, validator misbehavior, such as voting in incompatible ways or
censoring confirmed transactions, is accountable.

As an application, we present an efficient and censorship-resistant auction mechanism, which
leverages pod as a bulletin board. We saw how the accountability, offered by pod, is also inherited
by applications built on it – the auctioneer cannot censor confirmed bids without being detected.

We remark that pod differs from standard notions of consensus because it does not offer
an agreement property, neither to validators nor to clients. A client reading the pod obtains a
past-perfect round rperf, and it is guaranteed to have received all transactions that obtained a
confirmed round rconf such that rconf ≤ rperf. It is also guaranteed to have received all transactions
that can potentially obtain an rconf ≤ rperf in the future, even though the transaction presently
appears to the client as unconfirmed. However, the client cannot tell which unconfirmed transac-
tions will become confirmed. Moreover, a transaction might appear confirmed to one client and
unconfirmed to another (in this case, this will be transaction written by a malicious client).
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A Definition of pod monotonicity

The property of pod monotonicity requires that, as time advances, rmin does not decrease, rmax
does not increase and confirmed transactions remain confirmed.

Definition 14 (pod monotonicity). A pod protocol satisfies pod monotonicity, and called a
monotone pod, if it is a secure pod, as per Definition 10, and the following properties hold for
any rounds r1, r2 > r1 and for any honest client c:

Past-perfection monotonicity: It holds that Dc
r2 .rperf ≥ Dc

r1 .rperf.
Transaction monotonicity: If transaction tx appears in Dc

r1 .T, then tx appears in Dc
r2 .T.

Confirmation-bounds monotonicity: For every tx that appears in Dc
r1 .T with rmin, rmax, rconf

and appears in Dc
r2 .T with r′min, r

′
max, r′conf, it holds that r′min ≥ rmin, r′max ≤ rmax.

We now observe that a monotone pod protocol can be obtained from any secure pod protocol
with stateful clients, and that monotonicity implies certain specific properties that may be useful
for applications. In particular, our pod-core protocol naturally satisfies this property.

Remark 9. Every secure pod can be transformed into a monotone pod if parties are stateful. Let
r1 be the last round when an honest client c read the pod obtaining view Dc

r1 , which is stored
as state until c reads the pod again. At any round r2 > r1, if c reads the pod and obtains Dc

r2 , c
can define a view Dc

r2 satisfying the properties of pod monotonicity:

1. If tx appears in Dc
r1 with tx.rmin, tx.rmax, tx.rconf, tx.Ctx, then tx appears in Dc

r2 with tx.rmin =

rmin, tx.rmax = rmax, tx.rconf = rconf, tx.Ctx = Ctx.
2. If tx appears in Dc

r2 with tx.r′min, tx.r
′
max, tx.r′conf, tx.C

′
tx and does not appear in Dc

r1 , then tx
appears in Dc

r2 with tx.rmin = r′min, tx.rmax = r′max, tx.rconf = r′conf, tx.Ctx = C ′
tx.

3. For every tx that appears in Dc
r1 .T and in Dc

r2 .T such that r′min ≥ rmin, r′max ≤ rmax, r′conf ≥
rconf, update tx.rmin = r′min, tx.rmax = r′max, tx.rconf = r′conf, tx.Ctx = C ′

tx.
4. If Dc

r2 .rperf > Dc
r1 .rperf, then Dc

r2 .rperf = Dc
r2 .rperf. Otherwise, Dc

r2 .rperf = Dc
r1 .rperf.

In the remarks below, we observe that pod monotonicity implies a number of useful prop-
erties about the monotonicity of past perfection and the values rmin, rmax, rconf associated to a
transaction in the pod.

Remark 10 (Confirmation monotonicity). Properties 2 and 3 of pod monotonicity imply that
for any honest client c and rounds r1, r2 > r1, if tx ∈ Dc

r1 and tx.rconf ̸= ⊥, then tx ∈ Dc
r2 and

tx.rconf ̸= ⊥.

Remark 11 (Strong confirmation-bounds monotonicity). Properties 2 and 3 of pod monotonicity
imply that if an honest client computes rmin and rmax for tx in round r1, then the same client
will later obtain r′min and r′max for tx in round r2 > r1 such that r′min ≥ rmin and r′max ≤ rmax.

Remark 12. Observe that the confirmation monotonicity property in Remark 10 is a specific
version of a more general common subset property, which would demand the condition for any
two honest clients c1, c2.

B Security of Protocol pod-core under Byznatine faults

In order to prove Theorem 1 and establish the security of Protocol pod-core shown Construc-
tion 1, we first prove some useful intermediate results. We remind that n = α + β + γ, where
n denotes the total number of replicas, β denotes the number of Byzantine replicas, γ denotes
the number of omission-faulty replicas in an execution, and α denotes the number of replicas
required to confirm a transaction.
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Lemma 1. Regarding Algorithm 4, we have the following. Assume we keep all received times-
tamps for a transaction tx (n values in total) in a structure timestamps, filling in a special value
(0 or ∞) for missing votes, sorted in increasing order. Assume mrt is also sorted in increasing
order of timestamps.

1. minPossibleTs() returns the timestamp at index ⌊α/2⌋ − β of timestamps.
2. maxPossibleTs() returns the timestamp at index n− α+ ⌊α/2⌋+ β of timestamps.
3. minPossibleTsForNewTx() returns the timestamp at index ⌊α/2⌋ − β of mrt.

Proof. Functions minPossibleTs() and minPossibleTsForNewTx() prepend β times the 0 value
in the beginning of the list and return the median of the first α values, hence they return the
timestamp at index ⌊α/2⌋ − β. Function maxPossibleTs() appends β times the ∞ value at the
end of the list and returns the median of the last α values of that list, that is, it ignores the first
n− α+ β values and returns the timestamp at index n− α+ β + ⌊α/2⌋.

Lemma 2. Assuming n ≥ 5β + 1 and γ = 0, if a client outputs rperf as the past-perfect round,
then there exists some honest replica Rj, such that the most-recent timestamp (mrt) from Rj

received by the client satisfies mrt[Rj ] ≤ rperf.

Proof. From Lemma 1 we have that rperf is the timestamp at index (⌊α/2⌋ − β) of sorted mrt.
The condition α ≥ 4β+1 implies that β < ⌊α/2⌋−β, i.e., there are less than ⌊α/2⌋−β malicious
parties, hence one of the indexes between 0 and ⌊α/2⌋−β (inclusive) will contain the timestamp
sent to the client by an honest replica.

We now recall Theorem 1, which we prove through a series of lemmas.

Theorem 1 (pod-core security under Byzantine faults). Assuming that the network is asyn-
chronous with actual network delay δ (and unknown delay upper bound), β is the number of
Byzantine replicas, γ = 0 is the number of omission-faulty replicas and n ≥ 5β + 1 is the
total number of replicas. Protocol pod-core (Protocol 1) instantiated with a EUF-CMA secure
signature scheme is a responsive secure pod (Definition 10) with Confirmation within u = 2δ,
Past-perfection within w = δ and β-accountable safety (Definition 3) with the identify() function
described in Algorithm 8, except with negligible probability.

Proof. The proof follows from Lemmas 3–7, presented and proven in the remainder of this
section.

Lemma 3 (Confirmation within u). Protocol 1, assuming n ≥ 5β + 1 and γ = 0, satisfies
the confirmation within u property for u = 2δ.

Proof. Assume an honest client c calls write(tx) at round r. It sends a message ⟨WRITE tx⟩
to all replicas at round r (line 3). An honest replica receives this by round r + δ and sends a
⟨VOTE ⟩ message back to all connected clients (line 22). An honest client c′ receives the vote
by round r + 2δ. As are at least α honest replicas, c′ receives at least α such votes, hence the
condition in line 12 is satisfied and c′ observes tx as confirmed.

Lemma 4 (Past-perfection within w). Protocol 1, assuming n ≥ 5β+1 and γ = 0, satisfies
the past-perfection within w property for w = δ.

Proof. Assume an honest client c at round r has view Dc
r . From Lemma 2, there exists some

honest replica Rj , such that the most-recent timestamp mrt[Rj ] that Rj has sent to c satisfies
Dc

r .rperf ≥ mrt[Rj ]. The honest replica Rj sends at least one heartbeat or vote message per round
(line 27), which arrives within δ rounds, and an honest client updates mrt[Rj ] when it receives the
heartbeat or vote message. Hence, c will have mrt[Rj ] ≥ r− δ. All together, Dc

r .rperf ≥ r− δ.

Lemma 5 (Past-perfection safety). Protocol 1, assuming n ≥ 5β + 1 and γ = 0, satisfies
the past-perfection safety property.
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Proof. Assume an honest client c at round r > 0 reads the pod and obtains (T, rperf, Cpp). Let
R1 be the set of replicas Ri for which c stores at round r an mrti ≥ rperf. From Lemma 1 (rperf is
computed as the timestamp at index ⌊α/2⌋− β of sorted mrt) there exist at least n−⌊a/2⌋+ β
such replicas, hence |R1| ≥ n−⌊a/2⌋+ β. For each Ri ∈ R1, client c has received the whole log
of Ri with timestamps up to mrti (line 17 of Algorithm 2 does not allow gaps in the sequence
number of the received votes). That is, for each Ri ∈ R1 client c has received votes

(txi,1, tsi,1, 1, σi,1, Ri), (txi,2, tsi,2, 2, σi,2, Ri), . . . , (txi,mi
, tsi,mi

,mi, σi,mi
, Ri), (1)

where mi is the smallest sequence number for which tsi,mi ≥ rperf.
Assume another client c′ at some round r′ > 0 outputs a pod (T′, ·, ·), such that (tx, ·, ·, rconf, Ctx) ∈

T′ and rconf < rperf (where rperf is the past-perfect round observed by c). For c′ to output a con-
firmation round rconf < rperf, it must have received timestamps tsi on tx, such that tsi < rperf,
from at least ⌊α/2⌋+1 (because rconf is computed as the median of at least α votes). Let R2 be
the set of these replicas, with |R2| ≥ ⌊α/2⌋+ 1. For each Ri ∈ R2, client c′ has received a vote

(tx, tsi, sni, σi, Ri), (2)

such that ts′i < rperf.
Observe from the cardinality of R1 and R2 that at least β + 1 replicas must be in both

sets, hence at least one honest replica must be in both sets (except if the adversary forges a
signature under the public key of an honest replica, which happens with negligible probability).
For that replica, the vote in eq. (2) must be one of the votes in eq. (1) since tsi < rperf and
tsj,mi

≥ rperf. Hence, client c has received at least one vote on tx, so tx ∈ T, as demanded by
the past-perfection property.

Lemma 6 (Confirmation bounds). Protocol 1, assuming n ≥ 5β + 1 and γ = 0, satisfies
the confirmation bounds safety property.

Proof. Assume client c1 computes rmin and client c2 computes rconf < rmin for tx. From Lemma 1,
the number of replicas that have sent to c1 a timestamp for tx smaller than rmin can be at
most ⌊α/2⌋ − β. Allowing up to β replicas to equivocate, there can be at most ⌊α/2⌋ replicas
that send c2 a timestamp smaller than rmin. However, in order to assign rconf < rmin to tx,
client c2 must have received timestamps smaller than rmin from at least ⌊α/2⌋ + 1 replicas, a
contradiction. For rmax, assume c1 computes rmax and c2 computes rconf > rmax. Using Lemma 1,
the number of replicas that have sent to c1 a timestamp larger than rmax can be at most
α− ⌊α/2⌋ − β − 1, hence the number of honest replicas that will send a timestamp larger than
rmax to c2 is at most α−⌊α/2⌋−1 (since β are malicious). If α is odd, this upper bound becomes
α−⌊α/2⌋− 1 = ⌊α/2⌋, while c2 would need at least ⌊α/2⌋+1 votes larger that rmax, and if α is
even, then α−⌊α/2⌋− 1 = ⌊α/2⌋− 1, while c2 would need at least ⌊α/2⌋ votes larger that rmax
in order to compute a median larger than rmax (we remind that algorithm 4 returns as median
the value at position ⌊α/2⌋).

Lemma 7 (β-Accountable safety). Protocol 1, assuming n ≥ 5β + 1 and γ = 0, satisfies
accountable safety with resilience β.

Proof. We show that identify() (Algorithm 8) satisfies the correctness and no-framing properties
required by Definition 3, in three steps.

1. If the past-perfection safety property is violated, there exists a partial transcript T , such that
identify() on input T returns at least β adversarial replicas.
Proof: Assume an honest client c at round r > 0 reads the pod and obtains (T, rperf, Cpp), such
that tx ̸∈ T, for some tx ∈ {0, 1}∗, and another client c′ outputs a pod (T′, ·, ·), such that
(tx, ·, ·, rconf, Ctx) ∈ T′ and rconf < rperf, thereby violating the past-perfection property for tx.
We resume the proof of Lemma 5. There, we constructed the sets R1,R2, such that R1 ∩ R2

contains at least β + 1. For each Ri ∈ R1 ∩ R2, client c has received the replica log shown in
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Algorithm 8 The identify() function for Protocol pod-core (Protocol 1).
1: function identify(T )
2: R̃← ∅
3: for ⟨VOTE (tx1, ts1, sn1, σ1, R1)⟩ ∈ T do
4: if not Verify(pk1, (tx1, ts1, sn1), σ1) then
5: continue
6: end if
7: for ⟨VOTE (tx2, ts2, sn2, σ2, R2)⟩ ∈ T do
8: if not Verify(pk2, (tx2, ts2, sn2), σ2) then
9: continue

10: end if
11: if R1 = R2 and sn1 = sn2 and (tx1 ̸= tx2 or ts1 ̸= ts2) then
12: R̃← R̃ ∪ {R1}
13: end if
14: end for
15: end for
16: end function

(1), containing all votes with timestamp up to tsi,mi ≥ rperf. Client c′ has received from Ri the
following m′

i votes (possibly more, but we care for the votes up to transaction tx)

(tx′i,1, ts
′
i,1, 1, σ

′
i,1, Ri), (tx′i,2, ts

′
i,2, 2, σ

′
i,2, Ri), . . . , (tx′i,m′

i
, ts′i,m′

i
,m′

i, σ
′
i,m′

i
, Ri), (3)

with tx′i,m′
i
= tx and ts′i,m′

i
< rperf. Obviously, for an honest Ri, the replica logs of (1) and

(3) must be identical, i.e., txi,j = tx′i,j and tsi,j = ts′i,j , for j ∈ [1,min(mi,m
′
i)]. We will show

that they differ in at least one sequence number. If mi > m′
i, then the replica logs differ at

sequence number m′
i, because the transaction txi,m′

i
in (1) cannot be tx, as c has not received

a vote on tx, and tx′i,m′
i
= tx. If mi ≤ m′

i, the log of (1) should be identical with the first mi

positions of the log of (3), which would imply that tsi,mi
= ts′i,mi

and, since c′ only accepts
non-decreasing timestamps, ts′i,mi

≤ ts′i,m′
i
, and all together tsi,mi

≤ ts′i,m′
i
. This is impossible,

because tsi,mi
> rperf and ts′i,m′

i
≤ rperf. Hence, the two logs will contain a different timestamp

for some sequence number in [1,m′
i].

Summarizing, we have shown for at least β + 1 replicas Ri ∈ R1 ∩ R2, clients c and c′

hold votes (tx1, ts1, sn1, σ1, Ri) and (tx2, ts2, sn2, σ2, Ri), such that sn1 = sn2 but tx1 ̸= tx2 or
ts1 ̸= ts2. On input a set T that contains these votes, function identify(T ) returns R1 ∩R2.

2. If the confirmation-bounds property is violated, there exists a partial transcript T , such that
Algorithm 8 on input T returns at least β adversarial replicas.
Proof: Assume a client c1 outputs some rmin and client c2 outputs rconf < rmin for tx. Let’s look at
the timestamps in timestamps when c1 computes rmin (function minPossibleTs() in Algorithm 4.)
From Lemma 1, timestamps contains at least n− ⌊α/2⌋+ β timestamps ts, such that ts ≥ rmin.
Hence, there is a set R1 with at least n − ⌊α/2⌋ + β replicas Ri, from each of which c1 has
received votes

(txi,1, tsi,1, 1, σi,1, Ri), (txi,2, tsi,2, 2, σi,2, Ri), . . . , (txi,mi
, tsi,mi

,mi, σi,mi
, Ri), (4)

up to some sequence number mi, such that tsi,mi
≥ rmin and either txi,mi

= tx (i.e., Ri has sent
to c1 a vote on tx, and we only consider the votes up to this one), or txi,j ̸= tx,∀j ≤ mi (i.e., Ri

has not sent to c1 a vote on tx, in which case timestamps contains the timestamp Ri has sent on
txi,mi).

Now, for c2 to output rconf < rmin, it must have received timestamps smaller than rmin from
at least ⌊α/2⌋+ 1 replicas. Call this set R2. From each of these replicas, c2 has received votes

(tx′i,1, ts
′
i,1, 1, σ

′
i,1, Ri), (tx′i,2, ts

′
i,2, 2, σ

′
i,2, Ri), . . . , (tx, ts′i,m′

i
,m′

i, σ
′
i,m′

i
, Ri), (5)

showing only votes up to tx, for which ts′i,m′
i
< rmin.
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By counting arguments there are at least β + 1 replicas in R1 ∩R2. For each one, we make
the following argument. Since tsi,mi ≥ rmin and ts′i,m′

i
< rmin, we get ts′i,m′

i
< tsi,mi , and it must

be the case that m′
i < mi (otherwise, the two logs will differ at a smaller sequence number,

similar to the previous case). But in this case the two logs differ at sequence number m′
i, i.e.,

txi,m′
i
̸= tx′i,m′

i
= tx. This is because the log of (4) either does not contain tx, or contains it at

sequence number mi > m′
i, in which case it must contain a different transaction at sequence

number m′
i. On input a set T that contains all votes for replicas in R1 and R2 votes, function

identify(T ) returns R1 ∩R2.
For the case client c1 outputs some rmax and client c2 outputs rconf ≥ rmax for tx, similar

arguments apply. As explained in the proof of Lemma 6, c2 has received at least ⌊α/2⌋ or ⌊α/2⌋+1
votes on tx with timestamp larger than rmax, and (from Lemma 1) at least n − α + ⌊α/2⌋ + β
replicas have sent to c1 a vote on tx with a timestamp smaller or equal than rmax. As before,
the replicas in the intersection of these two sets have sent conflicting votes for some sequence
numbers.

3. The identify() function never outputs honest replicas.
Proof: The function only adds a replica to R̃ if given as input two valid vote messages from
that replica, in which it assigns the same sequence number to two different votes (line 11 on
Algorithm 8). An honest replica always increments nextsn after each vote it inserts to its log
(line 24 on Algorithm 1), hence, except with negligible probability, no such valid messages can
be constructed for an honest replica.

Theorem 4 (θ-timeliness for honest transactions). Protocol 1, assuming n ≥ 5β +1 and
γ = 0, satisfies θ-timeliness for honest transactions, as per Definition 11, for θ = δ.

Proof. Assume an honest client c calls write(tx) at round r. It sends a message ⟨WRITE tx⟩ to
all replicas at round r (line 3). An honest replica receives this by round r + δ and assigns its
current round r′ ∈ (r, r + δ] as the timestamp (line 19).

1. Regarding rconf, when a client calls read(), and since by assumption tx is confirmed, it will
have received votes on tx from at least α replicas. All honest replicas have sent timestamps
for tx in the interval (r, r + δ]. Since rconf is computed as the median of α timestamps and
α ≥ 4β + 1,7 it will be a timestamp returned by an honest replica, or it will lie between
timestamps returned by honest replicas. Hence, rconf ∈ (r, r + δ].

2. Regarding rmax, from Lemma 1, at least ⌈α/2⌉ − 2β replicas have sent to c a timestamp
greater or equal than rmax and, since α ≥ 4β + 1, at least one of those is a timestamp
returned by an honest replica, hence rmax ∈ (r, r + δ].

3. Similarly, from Lemma 1 we get that rmin is a timestamp returned by an honest replica,
hence rmin ∈ (r, r + δ] and rmax − rmin < θ.

C Security of Protocol pod-core under omission faults

Let us assume now an execution where γ = 0, i.e., no Byzantine replicas exist, and γ > 0,
i.e., there are omission-faulty replicas. In this section we present lemmas and proofs that are
analogous to those in Appendix B, accounting for this change.

Lemma 8. Regarding Algorithm 4, we have the following, assuming β = 0. Assume we keep all
received timestamps for a transaction tx (n values in total) in a structure timestamps, filling in
a special value (0 or ∞) for missing votes, sorted in increasing order. Assume mrt is also sorted
in increasing order of timestamps.

1. minPossibleTs() returns the timestamp at index ⌊α/2⌋ of timestamps.
2. maxPossibleTs() returns the timestamp at index n− α+ ⌊α/2⌋ of timestamps.
7 For this argument, α ≥ 2β + 1 would also be enough. The condition α ≥ 4β + 1 is necessary in order

for rmin and rmax of a confirmed transaction to be timestamps returned by honest replicas.
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3. minPossibleTsForNewTx() returns the timestamp at index ⌊α/2⌋ of mrt.

Proof. Follows by observation of Algorithm 4.

Lemma 9. Assuming β = 0 and α ≥ 2γ + 1, if a client outputs rperf as the past-perfect round,
then there exists some honest (not crashed and not omitting messages) replica Rj, such that the
most-recent timestamp (mrt) from Rj received by the client satisfies mrt[Rj ] ≤ rperf.

Proof. From Lemma 8 we have that rperf is the timestamp at index ⌊α/2⌋ of sorted mrt. The
condition α ≥ 2γ + 1 implies that γ ≤ ⌊α/2⌋, hence one of the indexes between 0 and ⌊α/2⌋
(inclusive) will contain the timestamp sent to the client by an honest replica.

We now recall Theorem 2, which we prove through a series of lemmas.

Theorem 2 (pod-core security under omission faults). Assuming that the network is asyn-
chronous with actual network delay δ (and unknown delay upper bound), β = 0 is the number
of Byzantine replicas, γ is the number of omission-faulty replicas and n ≥ 3γ + 1 is the total
number of replicas. Protocol pod-core (Protocol 1) instantiated with an EUF-CMA secure sig-
nature scheme is a responsive secure pod (Definition 10) with Confirmation within u = 2δ and
Past-perfection within w = δ, except with negligible probability.

Proof. The proof follows from Lemmas 10–13, presented and proven in the remainder of this
section.

Lemma 10 (Confirmation within u). Protocol 1, assuming β = 0 and n ≥ 3γ +1, satisfies
the confirmation within u property for u = 2δ.

Proof. Assume an honest client c calls write(tx) at round r. It sends a message ⟨WRITE tx⟩
to all replicas at round r (line 3). An honest replica receives this by round r + δ and sends a
⟨VOTE ⟩ message back to all connected clients (line 22). An honest client c′ receives the vote
by round r + 2δ. As are at least α honest replicas, c′ receives at least α such votes, hence the
condition in line 12 is satisfied and c′ observes tx as confirmed.

Lemma 11 (Past-perfection within w). Protocol 1, assuming β = 0 and n ≥ 3γ + 1,
satisfies the past-perfection within w property for w = δ.

Proof. The proof is the same as the proof of Lemma 4, except that is uses Lemma 9 instead
of Lemma 2 for the argument that there exists some honest replica Rj for which c outputs
Dc

r .rperf ≥ mrt[Rj ].

Lemma 12 (Past-perfection safety). Protocol 1, assuming β = 0 and n ≥ 3γ + 1, satisfies
the past-perfection safety property.

Proof. As in the proof of Lemma 5, we construct set R1. Now we have that |R1| ≥ n − ⌊a/2⌋,
because from Lemma 8 rperf is computed as the timestamp at index ⌊α/2⌋ of sorted mrt. We
construct R2 in the same way, for which we get |R2| ≥ ⌊α/2⌋ + 1. From the cardinality of R1

and R2, at least one replica must be in both sets, except with negligible probability. The result
follows from the same argument: for that replica, the vote in eq. (2) must be one of the votes in
eq. (1).

Lemma 13 (Confirmation bounds). Protocol 1, assuming β = 0 and n ≥ 3γ + 1, satisfies
the confirmation bounds safety property.

Proof. Assume client c1 computes rmin and client c2 computes rconf < rmin for tx. From Lemma 8,
the number of replicas that have sent to c1 a timestamp for tx smaller than rmin can be at most
⌊α/2⌋, hence there can be at most ⌊α/2⌋ replicas that send c2 a timestamp smaller than rmin
(no replicas are Byzantine). However, in order to assign rconf < rmin to tx, client c2 must have
received timestamps smaller than rmin from at least ⌊α/2⌋+1 replicas, a contradiction. Similarly
for rmax, assume c1 computes rmax and c2 computes rconf > rmax. Using Lemma 8, the number of
replicas that have sent to c1 a timestamp larger than rmax can be at most α− ⌊α/2⌋ − 1, hence
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at most that many replicas will send a timestamp larger than rmax to c2. If α is odd, this upper
bound becomes α−⌊α/2⌋− 1 = ⌊α/2⌋, while c2 would need at least ⌊α/2⌋+1 votes larger that
rmax, and if α is even, then α−⌊α/2⌋− 1 = ⌊α/2⌋− 1, while c2 would need at least ⌊α/2⌋ votes
larger that rmax in order to compute a median larger than rmax (we remind that algorithm 4
returns as median the value at position ⌊α/2⌋).

Theorem 5 (θ-timeliness for honest transactions). Protocol 1, assuming β = 0 and
n ≥ 3γ + 1, satisfies θ-timeliness for honest transactions, as per Definition 11, for θ = δ.

Proof. Assume an honest client c calls write(tx) at round r. It sends a message ⟨WRITE tx⟩
to all replicas at round r (line 3). An honest replica receives this by round r + δ and assigns
its current round r′ ∈ (r, r + δ] as the timestamp (line 19). Since only γ replicas may omit
sending votes for tx, at least α replicas will send this timestamp to all clients. It follows that
rconf ∈ (r, r + δ], rmin ∈ (r, r + δ], rmax ∈ (r, r + δ].

D Security of bidset-core

In this section, we recall and prove Theorem 3.

Theorem 3 (Bidset security). Assuming a synchronous network where δ ≤ ∆, protocol bidset-
core (Construction 2) instantiated with a digital signature and a secure pod protocol that satisfies
the past-perfection within w = δ, confirmation within u = 2δ and δ-timeliness properties, is a
secure bidset protocol satisfying termination within W = 3∆+ δ. It satisfies accountable safety
with an identifySequencer() function that identifies a malicious sequencer.

Proof. In Lemmas 14–17. The function for identifying a malicious sequencer is shown in Algo-
rithm 9.

Lemma 14 (Termination within W ). Under the assumptions of Theorem 3, Protocol 2
satisfies termination within W = t0 + 3∆+ δ.

Proof. The result() event is generated by an honest consumer when its exits the loop of lines 2–9
in Algorithm 7. At the latest, this happens when round t0 + 3∆ becomes past-perfect (line 6
in Algorithm 7), which, from the past-perfection within δ property of pod, happens at round
at most t0 + 3∆ + δ, hence W = t0 + 3∆ + δ. We remark that a sequencer (Algorithm 6) also
terminates, because from the past-perfection within δ property of pod, the condition of line 3
becomes true by round t0 +∆+ δ.

Lemma 15 (Censorship resistance). Under the assumptions of Theorem 3, Protocol 2 sat-
isfies the censorship resistance property.

Proof. Assume the sequencer is honest, and an honest bidder calls submitBid(b) at time t0.
We will show that b ∈ B. First, the pod view Da

r of the sequencer a on the round r when it
constructs B satisfies Da

r .rperf > t2. Second, from the confirmation within u property of pod, the
transaction containing b becomes confirmed, and from the θ-timeliness property of pod, it gets
a confirmation round rconf ≤ t0 + θ. For θ = δ, and since δ ≤ ∆, we get that rconf ≤ t2. Hence,
from the past-perfection safety property of pod we get that b ∈ Da

r , and, since the sequencer is
honest, b ∈ B.

Lemma 16 (Consistency). Under the assumptions of Theorem 3, Protocol 2 satisfies the
consistency property.

Proof. Assume the sequencer is honest, and two honest consumers generate events result(B1, ·)
and result(B2, ·). The condition in line 3 of Algorithm 6 becomes true in the view of sequencer
by round t0 + ∆ + δ (from the past-perfection within w = δ property of pod-core), hence the
sequencer writes transaction ⟨BIDS (B,Cbid, σ)⟩ to the pod by round t0+∆+δ. This transaction
gets assigned a confirmed round rconf ≤ t0+∆+2δ (from the δ-timeliness property of pod) and,
by assumption of a synchronous network, rconf ≤ t0+3∆. The condition in line 4 of Algorithm 7
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requires that a round r′ > t0 + 3∆ becomes past perfect. As r′ > rconf, and by past-perfection
safety of pod, the consumer observes the transaction as confirmed before r′ becomes past-perfect,
hence the condition in line 4 becomes true before the condition in line 6 and an honest consumer
outputs result(B, Cbid).

Lemma 17 (Accountable safety). Under the assumptions of Theorem 3, and assuming that
pod is an instance of pod-core, Protocol 2 achieves accountable safety, using the identifySequencer()
function (Algorithm 9) to identify a malicious sequencer.

Proof. Following Section 2.2, we show an identifySequencer(T ) function (Algorithm 9), that, on
input a partial transcript T outputs true when safety is violated due to misbehavior of the
sequencer (i.e., it identifies the sequencer as malicious), and false if the sequencer is honest. We
prove the theorem in three parts.

1. For violations of censorship-resistance:
Assume an honest bidder calls submitBid(b) at time t0 and the network is synchronous. The
transaction tx containing b becomes confirmed, and any honest party can observe (tx, rconf, ·, ·, Ctx)
in their view of the pod, where Ctx is the auxiliary data associated by tx, as returned by pod-core.
Assume b is censored, i.e., an event result(B, Cbid) is output by an honest consumer, such that
b ̸∈ B. Let σ be the signature of the sequencer in the corresponding ⟨BIDS (B,Cbid, σ)⟩ message
written on pod . We will show how the sequencer can be made accountable, using (Ctx, B,Cbid, σ)
as evidence T . In order for (Ctx, B, Cbid, σ) to be valid evidence, the following must hold:

Requirement 1 : The signature σ must be a valid signature, produced by the sequencer on
message (B,Cbid), as per line 7 of the sequencer code (line 3).

Requirement 2 : Ctx must contain at least α votes (line 18), on the same transaction tx∗

(line 23), signed by a pod replica (line 24).
If any of these requirements are not met, T does not constitute valid evidence and the

function exits. Otherwise, let r∗conf be the median of all votes in Ctx. The function makes the
following checks, and if any of them fails, then the sequencer is accountable.

Check 1 : Verify whether the votes that the sequencer has included in Cbid are valid, obtained
from the replicas that run pod (lines 5-11). If this is not the case, the sequencer has misbehaved.

Check 2 : Compute the rperf from the timestamps found in the votes in Cbid (lines 12-17).
This rperf must be larger than t0 +∆, as per line 3 of Algorithm 6.

Check 3 : If r∗conf ≤ t0 +∆ but tx∗ is not in the bag, the sequencer has misbehaved.

2. For violations of consistency:
The consistency property can be violated if the sequencer writes two transactions ⟨BIDS (B1, ·, ·)⟩
and ⟨BIDS (B2, ·, ·)⟩ to pod , such that B1 ̸= B2, in which case B1 and B2 identify the sequencer.
As this is a simpler case, we do not show it in Algorithm 9.

3. A honest sequencer cannot be framed:
Finally, we show that an honest sequencer cannot be framed. If the sequencer has followed
Algorithm 6, then Cbid will contain valid votes, hence Check 1 will pass. Moreover, an honest
sequencer waits until the past-perfect round returned by the pod is larger than t0 + ∆, hence
Check 2 will pass. Regarding Check 3, observe that for identifySequencer() to compute r∗conf ≤
t0 + ∆, Ctx must contain at least ⌊α/2⌋ + 1 votes on tx∗ with a timestamp smaller or equal
than t0 +∆, and at least ⌊α/2⌋+ 1− β of them must be from honest replicas. Call this set R′.
The honest sequencer, in order to output a past-perfect round greater than t0 +∆, must have
received timestamps greater than t0+∆ from at least n−⌊a/2⌋+β replicas (from Lemma 1). By
counting arguments, at least one of these timestamps must be from one of the honest replicas
in R′, and, since honest replicas do not omit transactions, that replica will have sent a vote on
tx∗ to the sequencer. Hence, the honest sequencer will include tx∗ in B.
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Algorithm 9 The identifySequencer() function for Protocol 2, instantiated with an instance
of pod-core (Protocol 1) as pod , run by a set of replicas R = {R1, · · · , Rn} with public keys
{pk1, · · · , pkn}, and using the median() operation defined by Protocol 1. It identifies a malicious
sequencer, whose public key is pka, by returning true.
1: function identify(T )
2: (Ctx, B,Cbid, σ)← T
3: require Verify(pka, (B,Cbid), σ)
4: timestamps← [ ]
5: for vote ∈ Cbid do
6: (tx, ts, sn, σ, Rj)← vote
7: if Verify(pkj , (tx, ts, sn), σ = 0) then
8: return true
9: end if

10: timestamps← timestamps ∥ ts
11: end for
12: sort timestamps in increasing order
13: timestamps← [0, β times. . . , 0] ∥ timestamps
14: rperf ← median(timestamps[: α])
15: if rperf ≤ t0 +∆ then
16: return true
17: end if

18: require |Ctx| ≥ α
19: tx∗ ← Ctx[0].tx
20: timestamps← [ ]
21: for vote ∈ Ctx do
22: (tx, ts, sn, σ, Rj)← vote
23: require tx = tx∗

24: require Verify(pkj , (tx, ts, sn), σ)
25: timestamps← timestamps ∥ ts
26: end for
27: r∗conf ← median(timestamps)
28: if r∗conf ≤ t0 +∆ and tx∗ ̸∈ B then
29: return true
30: end if
31: end function
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