
Multiparty Computation from Somewhat Homomorphic
Encryption

Ivan Damg̊ard1, Valerio Pastro1, Nigel Smart2, and Sarah Zakarias1

1 Department of Computer Science, Aarhus University
2 Department of Computer Science, Bristol University

Abstract. We propose a general multiparty computation protocol secure against an active adversary
corrupting up to n−1 of the n players. The protocol may be used to compute securely arithmetic circuits
over any finite field Fpk . Our protocol consists of a preprocessing phase that is both independent of the
function to be computed and of the inputs, and a much more efficient online phase where the actual
computation takes place. The online phase is unconditionally secure and has total computational (and
communication) complexity linear in n, the number of players, where earlier work was quadratic in n.
Moreover, the work done by each player is only a small constant factor larger than what one would
need to compute the circuit in the clear. We show this is optimal for computation in large fields. In
practice, for 3 players, a secure 64-bit multiplication can be done in 0.05 ms. Our preprocessing is based
on a somewhat homomorphic cryptosystem. We extend a scheme by Brakerski et al., so that we can
perform distributed decryption and handle many values in parallel in one ciphertext. The computational
complexity of our preprocessing phase is dominated by the public-key operations, we need O(n2/s)
operations per secure multiplication where s is a parameter that increases with the security parameter
of the cryptosystem. Earlier work in this model needed Ω(n2) operations. In practice, the preprocessing
prepares a secure 64-bit multiplication for 3 players in about 13 ms.

1 Introduction

A central problem in theoretical cryptography is that of secure multiparty computation (MPC).
In this problem n parties, holding private inputs x1, . . . , xn, wish to compute a given function
f(x1, . . . , xn). A protocol for doing this securely should be such that honest players get the correct
result and this result is the only new information released, even if some subset of the players is
controlled by an adversary.

In the case of dishonest majority, where more than half the players are corrupt, unconditionally
secure protocols cannot exist. Under computational assumptions, it was shown in [8] how to con-
struct UC-secure MPC protocols that handle the case where all but one of the parties are actively
corrupted. The public-key machinery one needs for this is typically expensive so efficient solutions
are hard to design for dishonest majority. Recently, however, a new approach has been proposed
making such protocols more practical. This approach works as follows: one first designs a general
MPC protocol in the preprocessing model, where access to a “trusted dealer” is assumed. The dealer
does not need to know the function to be computed, nor the inputs, he just supplies raw material
for the computation before it starts. This allows the “online” protocol to use only cheap information
theoretic primitives and hence be efficient. Finally, one implements the trusted dealer by a secure
protocol using public-key techniques, this protocol can then be run in a preprocessing phase. The
current state of the art in this respect are the protocols in Bendlin et al., Damg̊ard/Orlandi and
Nielsen et al. [5, 13, 25]. The “MPC-in-the-head” technique of Ishai et al. [18, 17] has similar overall
asymptotic complexity, but larger constants and a less efficient online phase.

Recently, another approach has become possible with the advent of Fully Homomorphic En-
cryption (FHE) by Gentry [15]. In this approach all parties first encrypt their input under the



FHE scheme; then they evaluate the desired function on the ciphertexts using the homomorphic
properties, and finally they perform a distributed decryption on the final ciphertexts to get the
results. The advantage of the FHE-based approach is that interaction is only needed to supply
inputs and get output. However, the low bandwidth consumption comes at a price; current FHE
schemes are very slow and can only evaluate small circuits, i.e., they actually only provide what
is known as somewhat homomorphic encryption (SHE). This can be circumvented in two ways;
either by assuming circular security and implementing an expensive bootstrapping operation, or
by extending the parameter sizes to enable a “levelled FHE” scheme which can evaluate circuits of
large degree (exponential in the number of levels) [6]. The main cost, much like other approaches, is
in terms of the number of multiplications in the arithmetic circuit. So whilst theoretically appealing
the approach via FHE is not competitive in practice with the traditional MPC approach.

1.1 Contributions of this paper.

Optimal Online Phase. We propose an MPC protocol in the preprocessing model that computes
securely an arithmetic circuit C over any finite field Fpk . The protocol is statistically UC-secure
against active and adaptive corruption of up to n− 1 of the n players, and we assume synchronous
communication and secure point-to-point channels. Measured in elementary operations in Fpk the
total amount of work done is O(n · |C|+n3) where |C| is the size of C. All earlier work in this model
had complexity Ω(n2 · |C|). A similar improvement applies to the communication complexity and
the amount of data one needs to store from the preprocessing. Hence, the work done by each player
in the online phase is essentially independent of n. Moreover, it is only a small constant factor
larger than what one would need to compute the circuit in the clear. This is the first protocol in
the preprocessing model with these properties3.

Finally, we show a lower bound implying that w.r.t the amount of data required from the
preprocessing, our protocol is optimal up to a constant factor. We also obtain a similar lower
bound on the number of bit operations required, and hence the computational work done in our
protocol is optimal up to poly-logarithmic factors.

All results mentioned here hold for the case of large fields, i.e., where the desired error probability
is (1/pk)c, for a small constant c. Note that many applications of MPC need integer arithmetic,
modular reductions, conversion to binary, etc., which we can emulate by computing in Fp with p
large enough to avoid overflow. This naturally leads to computing with large fields. As mentioned,
our protocol works for all fields, but like earlier work in this model it is less efficient for small fields
by a factor of essentially d sec

log pk
e for error probability 2−Θ(sec), see Appendix A.4 for details.

Obtaining our result requires new ideas compared to [5], which was previously state of the art
and was based on additive secret sharing where each share in a secret is authenticated using an
information theoretic Message Authentication Code (MAC). Since each player needs to have his
own key, each of the n shares need to be authenticated with n MACs, so this approach is inherently
quadratic in n. Our idea is to authenticate the secret value itself instead of the shares, using a
single global key. This seems to lead to a “chicken and egg” problem since one cannot check a
MAC without knowing the key, but if the key is known, MACs can be forged. Our solution to this

3 With dishonest majority, successful termination cannot be guaranteed, so our protocols simply abort if cheating is
detected. We do not, however, identify who cheated, indeed the standard definition of secure function evaluation
does not require this. Identification of cheaters is possible but we do not know how to do this while maintaining
complexity linear in n.

2



involves secret sharing the key as well, carefully timing when values are revealed, and various tricks
to reduce the amortized cost of checking a set of MACs.

Efficient use of FHE for MPC. As a conceptual contribution we propose what we believe is “the
right” way to use FHE/SHE for computationally efficient MPC, namely to use it for implementing
a preprocessing phase. The observation is that since such preprocessing is typically based on the
classic circuit randomization technique of Beaver [3], it can be done by evaluating in parallel many
small circuits of small multiplicative depth (in fact depth 1 in our case). Thus SHE suffices, we do
not need bootstrapping, and we can use the SHE SIMD approach of [27] to handle many values in
parallel in a single ciphertext.

To capitalize on this idea, we apply the SIMD approach to the cryptosystem from [7] (see also
[16] where this technique is also used). To get the best performance, we need to do a non-trivial
analysis of the parameter values we can use, and we prove some results on norms of embeddings
of a cyclotomic field for this purpose. We also design a distributed decryption procedure for our
cryptosystem. This protocol is only robust against passive attacks. Nevertheless, this is sufficient for
the overall protocol to be actively secure. Intuitively, this is because the only damage the adversary
can do is to add a known error term to the decryption result obtained. The effect of this for the
online protocol is that certain shares of secret values may be incorrect, but this will caught by
the check involving the MACs. Finally we adapt a zero-knowledge proof of plaintext knowledge
from [5] for our purpose and in particular we improve the analysis of the soundness guarantees it
offers. This influences the choice of parameters for the cryptosystem and therefore improves overall
performance.

An Efficient Preprocessing Protocol. As a result of the above, we obtain a constant-round prepro-
cessing protocol that is UC-secure against active and static corruption of n − 1 players assuming
the underlying cryptosystem is semantically secure, which follows from the polynomial (PLWE)
assumption. UC-security for dishonest majority cannot be obtained without a set-up assumption.
In this paper we assume that a key pair for our cryptosystem has been generated and the secret
key has been shared among the players.

Whereas previous work in the preprocessing/online model [5, 13] use Ω(n2) public-key opera-
tions per secure multiplication, we only need O(n2/s) operations, where s is a number that grows
with the security parameter of the SHE scheme (we have s ≈ 12000 in our concrete instantiation
for computing in Fp where p ≈ 264). We stress that our adapted scheme is exactly as efficient as the
basic version of [7] that does not allow this optimization, so the improvement is indeed “genuine”.

In comparison to the approach mentioned above where one uses FHE throughout the protocol,
our combined preprocessing and online phase achieves a result that is incomparable from a theo-
retical point of view, but much more practical: we need more communication and rounds, but the
computational overhead is much smaller – we need O(n2/s · |C|) public key operations compared
to O(n · |C|) for the FHE approach, where for realistic values of n and s, we have n2/s � n.
Furthermore, we only need a low depth SHE which is much more efficient in the first place. And
finally, we can push all the work using SHE into a, function independent, preprocessing phase.

Performance in practice. Both the preprocessing and online phase have been implemented and
tested for 3 players on up-to-date machines connected on a LAN. The preprocessing takes about
13 ms amortized time to prepare one multiplication in Fp for a 64-bit p, with security level corre-
sponding roughly to 1024 bit RSA and an error probability of 2−40 for the zero-knowledge proofs

3



(the error probability can be lowered to 2−80 by repeating the ZK proofs which will at most double
the time). This is 2-3 orders of magnitude faster than preliminary estimates for the most efficient
instantiation of [5]. The online phase executes a secure 64-bit multiplication in 0.05 ms amortized
time. These rough orders of magnitude, and the ability to deal with a non-trivial number of players,
are born out by a recent implementation of the protocols described in this paper [11].

Concurrent Related Work. In recent independent work [24, 2, 16], Meyers at al., Asharov et al.
and Gentry et al. also use an FHE scheme for multiparty computation. They follow the pure FHE
approach mentioned above, using a threshold decryption protocol tailored to the specific FHE
scheme. They focus primarily on round complexity, while we want to minimize the computational
overhead. We note that in [16], Gentry et al. obtain small overhead by showing a way to use the
FHE SIMD approach for computing any circuit homomorphically. However, this requires full FHE
with bootstrapping (to work on arbitrary circuits) and does not (currently) lead to a practical
protocol.

In [25], Nielsen et al. consider secure computing for Boolean Circuits. Their online phase is
similar to that of [5], while the preprocessing is a clever and very efficient construction based on
Oblivious Transfer. This result is complementary to ours in the sense that we target computations
over large fields which is good for some applications whereas for other cases, Boolean Circuits are the
most compact way to express the desired computation. Of course, one could use the preprocessing
from [25] to set up data for our online phase, but current benchmarks indicate that our approach
is faster for large fields, say of size 64 bits or more.

We end the introduction by covering some basic notation which will be used throughout this
paper. For a vector x = (x1, . . . , xn) ∈ Rn we denote by ‖x‖∞ := max1≤i≤n |xi|, ‖x‖1 :=

∑
1≤i≤n |xi|

and ‖x‖2 :=
√∑

|xi|2. We let ε(κ) denote an unspecified negligible function of κ. If S is a set we
let x← S denote assignment to the variable x with respect to a uniform distribution on S; we use
x ← s for a value s as shorthand for x ← {s}. If A is an algorithm x ← A means assign to x the
output of A, where the probability distribution is over the random coins of A. Finally x := y means
“x is defined to be y”.

2 Online Protocol

Our aim is to construct a protocol for arithmetic multiparty computation over Fpk for some prime
p. More precisely, we wish to implement the ideal functionality FAMPC, presented in Figure 15 in
Appendix Ethe full version. Our MPC protocol is structured in a preprocessing (or offline) phase
and an online phase. We start out in this section by presenting the online phase which assumes
access to an ideal functionality FPREP (Figure 16 of Appendix E). In Section 5 we show how to
implement this functionality in an independent preprocessing phase.

In our specification of the online protocol, we assume for simplicity that a broadcast channel
is available at unit cost, that each party has only one input, and only one public output value
is to be computed. In Appendix A.3 we explain how to implement the broadcasts we need from
point-to-point channels and lift the restriction on the number of inputs and outputs without this
affecting the overall complexity.

Before presenting the concrete online protocol we give the intuition and motivation behind
the construction. We will use unconditionally secure MACs to protect secret values from being
manipulated by an active adversary. However, rather than authenticating shares of secret values as

4



in [5], we authenticate the shared value itself. More concretely, we will use a global key α chosen
randomly in Fpk , and for each secret value a, we will share a additively among the players, and we
also secret-share a MAC αa. This way to represent secret values is linear, just like the representation
in [5], and we can therefore do secure multiplication based on multiplication triples à la Beaver [3]
that we produce in the preprocessing.

An immediate problem is that opening a value reliably seems to require that we check the MAC,
and this requires players know α. However, as soon as α is known, MACs on other values can be
forged. We solve this problem by postponing the check on the MACs (of opened values) to the
output phase (of course, this may mean that some of the opened values are incorrect). During the
output phase players generate a random linear combination of both the opened values and their
shares of the corresponding MACs; they commit to the results and only then open α (see Figure
1). The intuition is that, because of the commitments, when α is revealed it is too late for corrupt
players to exploit knowledge of the key. Therefore, if the MAC checks out, all opened values were
correct with high probability, so we can trust that the output values we computed are correct and
can safely open them.

Protocol ΠOnline

Initialize: The parties first invoke the preprocessing to get the shared secret key [[α]], a sufficient number of
multiplication triples (〈a〉, 〈b〉, 〈c〉), and pairs of random values 〈r〉, [[r]], as well as single random values [[t]], [[e]].
Then the steps below are performed in sequence according to the structure of the circuit to compute.

Input: To share Pi’s input xi, Pi takes an available pair 〈r〉, [[r]]. Then, do the following:
1. [[r]] is opened to Pi (if it is known in advance that Pi will provide input, this step can be done already

in the preprocessing stage).
2. Pi broadcasts ε← xi − r.
3. The parties compute 〈xi〉 ← 〈r〉+ ε.

Add: To add two representations 〈x〉, 〈y〉,the parties locally compute 〈x〉+ 〈y〉.
Multiply: To multiply 〈x〉, 〈y〉 the parties do the following:

1. They take two triples (〈a〉, 〈b〉, 〈c〉), (〈f〉, 〈g〉, 〈h〉) from the set of the available ones and check that indeed
a · b = c.
– Open a representation of a random value [[t]].
– partially open t · 〈a〉 − 〈f〉 to get ρ and 〈b〉 − 〈g〉 to get σ
– evaluate t · 〈c〉 − 〈h〉 − σ · 〈f〉 − ρ · 〈g〉 − σ · ρ, and partially open the result.
– If the result is not zero the players abort, otherwise go on with 〈a〉, 〈b〉, 〈c〉.

Note that this check could in fact be done as part of the preprocessing. Moreover, it can be done for all
triples in parallel, and so we actually need only one random value t.

2. The parties partially open 〈x〉−〈a〉 to get ε and 〈y〉−〈b〉 to get δ and compute 〈z〉 ← 〈c〉+ε〈b〉+δ〈a〉+εδ
Output: We enter this stage when the players have 〈y〉 for the output value y, but this value has been not been

opened (the output value is only correct if players have behaved honestly). We then do the following:
1. Let a1, . . . , aT be all values publicly opened so far, where 〈aj〉 = (δj , (aj,1, . . . , aj,n), (γ(aj)1, . . . , γ(aj)n)).

Now, a random value [[e]] is opened, and players set ei = ei for i = 1, . . . , T . All players compute
a←

∑
j ejaj .

2. Each Pi calls FCom to commit to γi ←
∑
j ejγ(aj)i. For the output value 〈y〉, Pi also commits to his

share yi, and his share γ(y)i in the corresponding MAC.
3. [[α]] is opened.
4. Each Pi asks FCom to open γi, and all players check that α(a+

∑
j ejδj) =

∑
i γi. If this is not OK, the

protocol aborts. Otherwise the players conclude that the output value is correctly computed.
5. To get the output value y, the commitments to yi, γ(y)i are opened. Now, y is defined as y :=

∑
i yi and

each player checks that α(y + δ) =
∑
i γ(y)i, if so, y is the output.

Fig. 1. The online phase.

5



Representation of values and MACs. In the online phase each shared value a ∈ Fpk is represented
as follows

〈a〉 := (δ, (a1, . . . , an), (γ(a)1, . . . , γ(a)n))

where a = a1 + · · ·+an and γ(a)1 + · · ·+γ(a)n = α(a+ δ). Player Pi holds ai, γ(a)i and δ is public.
The interpretation is that γ(a)← γ(a)1 + · · ·+γ(a)n is the MAC authenticating a under the global
key α.

Computations. Using the natural component-wise addition of representations, and suppressing
the underlying choices of ai, γ(a)i for readability, we clearly have for secret values a, b and public
constant e that

〈a〉+ 〈b〉 = 〈a+ b〉 e · 〈a〉 = 〈ea〉, and e+ 〈a〉 = 〈e+ a〉,

where e+〈a〉 := (δ−e, (a1+e, a2, . . . , an), (γ(a)1, . . . , γ(a)n)). This possibility to easily add a public
value is the reason for the “public modifier” δ in the definition of 〈·〉. It is now clear that we can
do secure linear computations directly on values represented this way.

What remains is multiplications: here we use the preprocessing. We would like the preprocessing
to output random triples 〈a〉, 〈b〉, 〈c〉, where c = ab. However, our preprocessing produces triples
which satisfy c = ab+∆, where ∆ is an error that can be introduced by the adversary. We therefore
need to check the triple before we use it. The check can be done by “sacrificing” another triple
〈f〉, 〈g〉, 〈h〉, where the same multiplicative equality should hold (see the protocol for details). Given
such a valid triple, we can do multiplications in the following standard way: To compute 〈xy〉 we
first open 〈x〉 − 〈a〉 to get ε, and 〈y〉 − 〈b〉 to get δ. Then xy = (a + ε)(b + δ) = c + εb + δa + εδ.
Thus, the new representation can be computed as

〈x〉 · 〈y〉 = 〈c〉+ ε〈b〉+ δ〈a〉+ εδ.

An important note is that during our protocol we are actually not guaranteed that we are
working with the correct results, since we do not immediately check the MACs of the opened
values. During the first part of the protocol, parties will only do what we define as a partial
opening, meaning that for a value 〈a〉, each party Pi sends ai to P1, who computes a = a1 + · · ·+an
and broadcasts a to all players. We assume here for simplicity that we always go via P1, whereas
in practice, one would balance the workload over the players.

As sketched earlier we postpone the checking to the end of the protocol in the output phase.
To check the MACs we need the global key α. We get α from the preprocessing but in a slightly
different representation:

[[α]] := ((α1, . . . , αn), (βi, γ(α)i1, . . . , γ(α)in)i=1,...,n)),

where α =
∑

i αi and
∑

j γ(α)ji = αβi. Player Pi holds αi, βi, γ(α)i1, . . . , γ(α)in. The idea is that

γ(α)i ←
∑

j γ(α)ji is the MAC authenticating α under Pi’s private key βi. To open [[α]] each Pj

sends to each Pi his share αj of α and his share γ(α)ji of the MAC on α made with Pi’s private

key and then Pi checks that
∑

j γ(α)ji = αβi. (To open the value to only one party Pi, the other
parties will simply send their shares only to Pi, who will do the checking. Only shares of α and αβi
are needed.)

Finally, the preprocessing will also output n pairs of a random value r in both of the presented
representations 〈r〉, [[r]]. These pairs are used in the Input phase of the protocol.

6



The full protocol for the online phase is shown in Figure 1. It assumes access to a commitment
functionality FCom that simply receives values to commit to from players, stores them and reveals
a value to all players on request from the committer. Such a functionality could be implemented
efficiently based, e.g., on Paillier encryption or the DDH assumption [12, 19]. However, we show
in Appendix A.3 that we can do ideal commitments based only on FPREP and with cost O(n2)
computation and communication.

Complexity. The (amortized) cost of a secure multiplication is easily seen to be O(n) local elemen-
tary operations in Fpk , and communication of O(n) field elements. Linear operations have the same
computational cost but require no communication. The input stage requires O(n) communication
and computation to open [[r]] to Pi and one broadcast. Doing the output stage requires opening
O(n) commitments. In fact, the total number of commitments used is also O(n), so this adds an
O(n3) term to the complexity. In total, we therefore get the complexity claimed in the introduction:
O(n · |C|+ n3) elementary field operations and storage/communication complexity O(n · |C|+ n3)
field elements.

We can now state the theorem on security of the online phase, and its proof is in Appendix A.3.

Theorem 1. In the FPREP,FCom-hybrid model, the protocol ΠOnline implements FAMPC with sta-
tistical security against any static4 active adversary corrupting up to n− 1 parties.

Based on a result from [28], we can also show a lower bound on the amount of preprocessing
data and work required for a protocol. The proof is in Appendix B.

Theorem 2. Assume a protocol π is the preprocessing model can compute any circuit over Fpk of
size at most S, with security against active corruption of at most n − 1 players. We assume that
the players supply roughly the same number of inputs (O(S/n) each), and that any any player may
receive output. Then the preprocessing must output Ω(S log pk) bits to each player, and for any
player Pi, there exists a circuit C satisfying the conditions above, where secure computation of C
requires Pi to execute an expected number of bit operations that is Ω(S log pk).

It is easy to see that our protocol satisfies the conditions in the the theorem and that it meets the
first bound up to a constant factor and the second up to a poly-logarithmic factor (as a function
of the security parameter).

3 The Abstract Somewhat Homomorphic Encryption Scheme

In this section we specify the abstract properties we need for our cryptosystem. A concrete instan-
tiation is found in Section 6.

We first define the plaintext space M . This will be given by a direct product of finite fields
(Fpk)s of characteristic p. Componentwise addition and multiplication of elements in M will be
denoted by + and ·. We assume there is an injective encoding function encode which takes elements
in (Fpk)s to elements in a ring R which is equal ZN (as a Z-module) for some integer N . We also

assume a decode function which takes arbitrary elements in ZN and returns an element in (Fpk)s.
We require that for all m ∈ M that decode(encode(m)) = m and that the decode operation is
compatible with the characteristic of the field, i.e. for any x ∈ ZN we have decode(x) = decode(x

4 The protocol is in fact adaptively secure, here we only show static security since our preprocessing is anyway only
statically secure.

7



(mod p)). And finally that the encoding function produces “short” vectors. More precisely, that for
all m ∈ (Fpk)s ‖encode(m)‖∞ ≤ τ where τ = p/2.

The two operations in R will be denoted by + and ·. The addition operation in R is assumed
to be componentwise addition, whereas we make no assumption on multiplication. All we require
is that the following properties hold, for all elements m1,m2 ∈M ;

decode(encode(m1) + encode(m2)) = m1 + m2,

decode(encode(m1) · encode(m2)) = m1 ·m2.

From now on, when we discuss the plaintext space M we assume it comes implicitly with the encode
and decode functions for some integer N . If an element in M has the same component in each of
the s-slots, then we call it a “diagonal” element. We let Diag(x) for x ∈ Fpk denote the element
(x, x, . . . , x) ∈ (Fpk)s.

Our cryptosystem consists of a tuple (ParamGen,KeyGen,KeyGen∗,Enc,Dec) of algorithms de-
fined below, and parametrized by a security parameter κ.
ParamGen(1κ,M): This parameter generation algorithm outputs an integer N (as above), definitions

of the encode and decode functions, and a description of a randomized algorithm Ddρ, which outputs

vectors in Zd. We assume that Ddρ outputs r with ‖r‖∞ ≤ ρ, except with negligible probability.

The algorithm Ddρ is used by the encryption algorithm to select the random coins needed during
encryption. The algorithm ParamGen also outputs an additive abelian group G. The group G also
possesses a (not necessarily closed) multiplicative operator, which is commutative and distributes
over the additive group of G. The group G is the group in which the ciphertexts will be assumed to
lie. We write � and � for the operations on G, and extend these in the natural way to vectors and
matrices of elements of G. Finally ParamGen outputs a set C of allowable arithmetic SIMD circuits
over (Fpk)s, these are the set of functions which our scheme will be able to evaluate ciphertexts
over. We can think of C as a subset of Fpk [X1, X2, . . . , Xn], where we evaluate a function f ∈
Fpk [X1, X2, . . . , Xn] a total of s times in parallel on inputs from (Fpk)n. We assume that all other

algorithms take as implicit input the output P ← (1κ, N, encode, decode,Ddρ, G,C) of ParamGen.
KeyGen(): This algorithm outputs a public key pk and a secret key sk.

Encpk(x, r): On input of x ∈ ZN , r ∈ Zd, this deterministic algorithm outputs a ciphertext c ∈ G.
When applying this algorithm one would obtain x from the application of the encode function,
and r by calling Ddρ. This is what we mean when we write Encpk(m), where m ∈ M . However,
it is convenient for us to define Enc on the intermediate state, x = encode(m). To ease notation
we write Encpk(x) if the value of the randomness r is not important for our discussion. To make
our zero-knowledge proofs below work, we will require that addition of V “clean” ciphertexts (for
“small” values of V ), of plaintext xi in ZN , using randomness ri, results in a ciphertext which
could be obtained by adding the plaintexts and randomness, as integer vectors, and then applying
Encpk(x, r), i.e.

Encpk(x1 + · · ·+ xV , r1 + · · ·+ rV ) = Encpk(x1, r1) � · · ·� Encpk(xV , rV ).

Decsk(c): On input the secret key and a ciphertext c it returns either an element m ∈ M , or the
symbol ⊥.

We are now able to define various properties of the above abstract scheme that we will require. But
first a bit of notation: For a function f ∈ C we let n(f) denote the number of variables in f , and we

8



let f̂ denote the function on G induced by f . That is, given f , we replace every + operation with a
�, every · operation is replaced with a � and every constant c is replaced by Encpk(encode(c),0).
Also, given a set of n(f) vectors x1, . . . ,xn(f), we define f(x1, . . . ,xn(f)) in the natural way by
applying f in parallel on each coordinate.

Correctness: Intuitively correctness means that if one decrypts the result of a function f ∈ C
applied to n(f) encrypted vectors of variables, then this should return the same value as applying
the function to the n(f) plaintexts. However, to apply the scheme in our protocol, we need to
be a bit more liberal, namely the decryption result should be correct, even if the ciphertexts we
start from were not necessarily generated by the normal encryption algorithm. They only need to
“contain” encodings and randomness that are not too large, such that the encodings decode to legal
values. Formally, the scheme is said to be (Bplain, Brand, C)-correct if

Pr [P ← ParamGen(1κ,M), (pk, sk)← KeyGen(), for any f ∈ C,
any xi, ri, with ‖xi‖∞ ≤ Bplain, ‖ri‖∞ ≤ Brand, decode(xi) ∈ (Fpk)s,

i = 1, . . . , n(f), and ci ← Encpk(xi, ri), c← f̂(c1, . . . , cn(f)) :

Decsk(c) 6= f(decode(x1), . . . , decode(xn(f))) ] < ε(κ).

We will say that a ciphertext is (Bplain, Brand, C)-admissible if it can be obtained as the ciphertext
c in the above experiment, i.e., by applying a function from C to ciphertexts generated from (legal)
encodings and randomness that are bounded by Bplain and Brand.

KeyGen∗(): This is a randomized algorithm that outputs a meaningless public key p̃k. We require
that an encryption of any message Enc

p̃k
(x) is statistically indistinguishable from an encryption of 0.

Furthermore, if we set (pk, sk)← KeyGen() and p̃k← KeyGen∗(), then pk and p̃k are computationally
indistinguishable. This implies the scheme is IND-CPA secure in the usual sense.

Distributed Decryption: We assume, as a set up assumption, that a common public key has been
set up where the secret key has been secret-shared among the players in such a way that they can
collaborate to decrypt a ciphertext. We assume throughout that only (Bplain, Brand, C)-admissible
ciphertexts are to be decrypted, this constraint is guaranteed by our main protocol.

We note that some set-up assumption is always required to show UC security which is our goal
here. Concretely, we assume that a functionality FKeyGen is available, as specified in Figure 2. It
basically generates a key pair and secret-shares the secret key among the players using a secret-
sharing scheme that is assumed to be given as part of the specification of the cryptosystem. Since
we want to allow corruption of all but one player, the maximal unqualified sets must be all sets of
n− 1 players.

Functionality FKeyGen

1. When receiving “start” from all honest players, run P ← ParamGen(1κ,M), and then, using the parameters
generated, run (pk, sk)← KeyGen() (recall P , and hence 1κ, is an implicit input to all functions we specify).
Send pk to the adversary.

2. We assume a secret sharing scheme is given with which sk can be secret-shared. Receive from the adversary
a set of shares sj for each corrupted player Pj .

3. Construct a complete set of shares (s1, . . . , sn) consistent with the adversary’s choices and sk. Note that this
is always possible since the corrupted players form an unqualified set. Send pk to all players and si to each
honest Pi.

Fig. 2. The Ideal Functionality for Distributed Key Generation

9



We note that it is possible to make a weaker set-up assumption, such as a common reference
string (CRS), and using a general UC secure multiparty computation protocol for the CRS model
to implement FKeyGen. While this may not be very efficient, one only needs to run this protocol
once in the life-time of the system.

We also want our cryptosystem to implement the functionality FKeyGenDec in Figure 3, which
essentially specifies that players can cooperate to decrypt a (Bplain, Brand, C)-admissible ciphertext,
but the protocol is only secure against a passive attack: the adversary gets the correct decryption
result, but can decide which result the honest players should learn.

Functionality FKeyGenDec

1. When receiving “start” from all honest players, run ParamGen(1κ,M), and then, using the parameters
generated, run (pk, sk)← KeyGen(). Send pk to the adversary and to all players, and store sk.

2. Hereafter on receiving “decrypt c” for (Bplain, Brand, C)-admissible c from all honest players, send c and
m ← Decsk(c) to the adversary. On receiving m′ from the adversary, send “Result m′” to all players, Both
m and m′ may be a special symbol ⊥ indicating that decryption failed.

3. On receiving “decrypt c to Pj” for admissible c, if Pj is corrupt, send c,m ← Decsk(c) to the adversary. If
Pj is honest, send c to the adversary. On receiving δ from the adversary, if δ 6∈ M , send ⊥ to Pj , if δ ∈ M ,
send Decsk(c) + δ to Pj .

Fig. 3. The Ideal Functionality for Distributed Key Generation and Decryption

We are now finally ready to define the basic set of properties that the underlying cryptosystem
should satisfy, in order to be used in our protocol. Here we use an “information theoretic” security
parameter sec that controls the errors in our ZK proofs below.

Definition 1. (Admissible Cryptosystem.) Let C contain formulas of form (x1 + · · · + xn) ·
(y1 + · · · + yn) + z1 + · · · + zn, as well as all “smaller” formulas , i.e., with a smaller number of
additions and possibly no multiplication. A cryptosystem is admissible if it is defined by algorithms
(ParamGen,KeyGen,KeyGen∗,Enc, Dec) with properties as defined above, is (Bplain, Brand, C)-correct,
where

Bplain = N · τ · sec2 · 2(1/2+ν)sec, Brand = d · ρ · sec2 · 2(1/2+ν)sec;

and where ν > 0 can be an arbitrary constant. Finally there exist a secret sharing scheme as
required in FKeyGen and a protocol ΠKeyGenDec with the property that when composed with FKeyGen

it securely implements the functionality FKeyGenDec.

The set C is defined to contain all computations on ciphertext that we need in our main protocol.
Throughout the paper we will assume that Bplain, Brand are defined as here in terms of τ, ρ and sec.
This is because these are the bounds we can force corrupt players to respect via our zero-knowledge
protocol, as we shall see.

4 Zero-Knowledge Proof of Plaintext Knowledge

This section presents a zero-knowledge protocol that takes as input sec ciphertexts c1, . . . , csec
generated by one of the players in our protocol, who will act as the prover. If the prover is honest
then ci = Encpk(xi, ri), where xi has been obtained from the encode function, i.e. ‖xi‖∞ ≤ τ , and ri

10



has been generated from Ddρ (so we may assume that ‖ri‖∞ ≤ ρ). Our protocol is a zero-knowledge
proof of plaintext knowledge (ZKPoPK) for the following relation:

RPoPK = { (x,w)| x = (pk, c), w = ((x1, r1), . . . , (xsec, rsec)) :

c = (c1, . . . , csec), ci ← Encpk(xi, ri),

‖xi‖∞ ≤ Bplain, decode(xi) ∈ (Fpk)s, ‖ri‖∞ ≤ Brand } .

The zero-knowledge and completeness properties hold only if the ciphertexts ci satisfy ‖xi‖∞ ≤ τ
and ‖ri‖∞ ≤ ρ.

In our preprocessing protocol, players will be required to give such a ZKPoPK for all ciphertexts
they provide. By admissibility of the cryptosystem, this will imply that every ciphertext occurring
in the protocol will be (Bplain, Brand, C)-admissible and can therefore be decrypted correctly. The
ZKPoPK can also be called with a flag diag which will modify the proof so that it additionally
proves that decode(xi) is a diagonal element.

The protocol is not meant to implement an ideal functionality, but we can still use it and prove
UC security for the main protocol, since we will always generate the challenge e by calling the FRand

ideal functionality (see Appendix E). Hence the honest-verifier ZK property implies straight-line
simulation5. As for knowledge extraction, the UC simulator we construct in our security proof will
know the secret key for the cryptosystem and can therefore extract a dishonest prover’s witness
simply by decrypting. In the reduction to show that the simulator works, we do not know the secret
key, but here we are allowed to do extraction by rewinding.

The protocol and its proof of security are given in Appendix A.1, Figure 9 and its computational
complexity per ciphertext is essentially the cost of a constant number of encryptions. In Appendix
A.1, we also give a variant of the ZK proof that allows even smaller values for Bplain, Brand, namely
Bplain = N · τ · sec2 · 2sec/2+8, Brand = d · ρ · sec2 · 2sec/2+8, and hence improves performance further.
This variant is most efficient when executed using the Fiat-Shamir heuristic (although it can also
work without random oracles), and we believe this variant is the best for a practical implementation.

5 The Preprocessing Phase

In this section we construct the protocol ΠPREP which securely implements the functionality FPREP

(specified in Figure 16) in the presence of functionalities FKeyGenDec (Figure 3) and FRand (Figure
14). The preprocessing uses the above abstract cryptosystem with M = (Fpk)s, but the online
phase is designed for messages in Fpk . Therefore, we extend the notation 〈·〉 and [[·]] to messages in
M : since addition and multiplication on M are componentwise, for m = (m1, . . . ,ms), we define
〈m〉 = (〈m1〉, . . . , 〈ms〉) and similarly for [[m]]. Conversely, once a representation (or a pair, triple)
on vectors is produced in the preprocessing, it will be disassembled into its coordinates, so that it
can be used in the online phase. In Figures 4,5 and 6, we introduce subprotocols that are accessed
by the main preprocessing protocol in several steps. Note that the subprotocols are not meant to
implement ideal functionalities: their purpose is merely to summarize parts of the main protocol
that are repeated in various occasions. Theorem 3 below is proved in Appendix A.5.

5 FRand can be implemented by standard methods, and the complexity of this is not significant for the main protocol
since we may use the same challenge for many instances of the proof, and each proof handles sec ciphertexts.

11



Theorem 3. The protocol ΠPREP (Figure 7) implements FPREP with computational security against
any static, active adversary corrupting up to n−1 parties, in the FKeyGen,FRand-hybrid model when
the underlying cryptosystem is admissible6.

Protocol Reshare
Usage: Input is em, where em = Encpk(m) is a public ciphertext and a parameter enc, where enc =

NewCiphertext or enc = NoNewCiphertext. Output is a share mi of m to each player Pi; and if enc =
NewCiphertext, a ciphertext e′m. The idea is that em could be a product of two ciphertexts, which Reshare
converts to a “fresh” ciphertext e′m. Since Reshare uses distributed decryption (that may return an incorrect
result), it is not guaranteed that em and e′m contain the same value, but it is guaranteed that

∑
imi is the

value contained in e′m.
Reshare(em, enc) :

1. Each player Pi samples a uniform fi ∈ (Fpk )s. Define f :=
∑n
i=1 fi.

2. Each player Pi computes and broadcasts efi ← Encpk(fi).
3. Each player Pi runs ΠZKPoPK acting as a prover on efi . The protocol aborts if any proof fails.
4. The players compute ef ← ef1 � · · ·� efn , and em+f ← em � ef .
5. The players invoke FKeyGenDec to decrypt em+f and thereby obtain m + f .
6. P1 sets m1 ←m + f − f1, and each player Pi (i 6= 1) sets mi ← −fi.
7. If enc = NewCiphertext, all players set e′m ← Encpk(m + f) � ef1 � · · · � efn , where a default value for

the randomness is used when computing Encpk(m + f).

Fig. 4. The sub-protocol for additively secret sharing a plaintext m ∈ (Fpk )s on input a ciphertext em = Encpk(m).

Protocol PBracket
Usage: On input shares v1, . . . ,vn privately held by the players and public ciphertext ev, this protocol generates

[[v]]. It is assumed that
∑
i vi is the plaintext contained in ev.

PBracket(v1, . . . ,vn, ev) :
1. For i = 1, . . . , n

(a) All players set eγi ← eβi�ev (note that eβi is generated during the initialization process, and known
by every player)

(b) Players generate (γ1
i , . . . γ

n
i ) ← Reshare(eγi ,NoNewCiphertext), so each player Pj gets a share γji of

v · βi.
2. Output the representation [[v]] = (v1, . . . ,vn, (βi, γ

i
1, . . . , γ

i
n)i=1,...,n).

Fig. 5. The sub-protocol for generating [[v]].

Protocol PAngle
Usage: On input shares v1, . . . ,vn privately held by the players and public ciphertext ev, this protocol generates
〈v〉. It is assumed that

∑
i vi is the plaintext contained in ev.

PAngle(v1, . . . ,vn, ev) :
1. All players set ev·α ← ev � eα (note that eα is generated during the initialization process, and known

by every player)
2. Players generate (γ1, . . . , γn)← Reshare(ev·α,NoNewCiphertext), so each player Pi gets a share γi of α ·v.
3. Output representation 〈v〉 = (0,v1, . . . ,vn, γ1, . . . , γn).

Fig. 6. The sub-protocol for generating 〈v〉.

6 The definition of admissible cryptosystem demands a decryption protocol that implements FKeyGenDec based on
FKeyGen, hence the theorem only assumes FKeyGen.

12



Protocol ΠPREP

Usage: The Triple-step is always executed sec times in parallel. This ensures that when calling ΠZKPoPK, we can
always give it the sec ciphertexts it requires as input. In addition both ΠZKPoPK and ΠPREP can be executed
in a SIMD fashion, i.e. they are data-oblivious bar when they detect an error. Thus we can execute ΠZKPoPK

and ΠPREP on the packed plaintext space (Fpk )s. Thereby, we generate s · sec elements in one go and then
buffer the generated triples, outputting the next unused one on demand.

Initialize: This step generates the global key α and “personal keys” βi.
1. The players call “start” on FKeyGenDec to obtain the public key pk
2. Each player Pi generates a MAC-key βi ∈ Fpk
3. Each player Pi generates αi ∈ Fpk . Let α :=

∑n
i=1 αi

4. Each player Pi computes and broadcasts eαi ← Encpk(Diag(αi)), eβi ← Encpk(Diag(βi))
5. Each player Pi invokes ΠZKPoPK (with diag set to true) acting as prover on input (eαi , . . . , eαi) and on

input (eβi , . . . , eβi), where eαi , eβi are repeated sec times, which is the number of ciphertexts ΠZKPoPK

requires as input. (This is not very efficient, but only needs to be done once for each player.)
6. All players compute eα ← eα1�· · ·�eαn , and generate [[Diag(α)]]← PBracket(Diag(α1), . . . ,Diag(αn), eα)

Pair: This step generates a pair [[r]], 〈r〉, and can be used to generate a single value [[r]], by not performing the
call to Pangle
1. Each player Pi generates ri ∈ (Fpk )s. Let r :=

∑n
i=1 ri

2. Each player Pi computes and broadcasts eri ← Encpk(ri). Let er = er1 � · · ·� ern
3. Each player Pi invokes ΠZKPoPK acting as prover on the ciphertext he generated
4. Players generate [[r]]← PBracket(r1, . . . , rn, er), 〈r〉 ← PAngle(r1, . . . , rn, er)

Triple: This step generates a multiplicative triple 〈a〉, 〈b〉, 〈c〉
1. Each player Pi generates ai,bi ∈ (Fpk )s. Let a :=

∑n
i=1 ai, b :=

∑n
i=1 bi

2. Each player Pi computes and broadcasts eai ← Encpk(ai), ebi ← Encpk(bi)
3. Each player Pi invokes ΠZKPoPK acting as prover on the ciphertexts he generated.
4. The players set ea ← ea1 � · · ·� ean and eb ← eb1 � · · ·� ebn

5. Players generate 〈a〉 ← PAngle(a1, . . . ,an, ea), 〈b〉 ← PAngle(b1, . . . ,bn, eb).
6. All players compute ec ← ea � eb
7. Players set (c1, . . . , cn, e

′
c)← Reshare(ec,NewCiphertext).

8. Players generate 〈c〉 ← PAngle(c1, . . . , cn, e
′
c).

Fig. 7. The protocol for constructing the global key [[α]], pairs [[r]], 〈r〉 and multiplicative triples 〈a〉, 〈b〉, 〈c〉.

6 Concrete Instantiation of the Abstract Scheme based on LWE

We now describe the concrete scheme, which is based on the somewhat homomorphic encryption
scheme of Brakerski and Vaikuntanathan (BV) [7]. The main differences are that we are only
interested in evaluation of circuits of multiplicative depth one, we are interested in performing
operations in parallel on multiple data items, and we require a distributed decryption procedure.
In this section we detail the scheme and the distributed decryption procedure; in Appendix D we
discuss security of the scheme, and present some sample parameter sizes and performance figures.

ParamGen(1κ,M): Recall the message space is given by M = (Fpk)s for two integers k and s, and a
prime p, i.e. the message space is s copies of the finite field Fpk . To map this to our scheme below,
one first finds a cyclotomic polynomial F (X) := Φm(X) of degree N := φ(m), where N is lower
bounded by some function of the security parameter κ. The polynomial F (X) needs to be such
that modulo p the polynomial F (X) factors into l′ irreducible factors of degree k′ where l′ ≥ s and
k divides k′. We then define an algebra Ap as Ap := Fp[X]/F (X) and we have an embedding of M
into Ap, φ : M → Ap. By “lifting” modulo p we see that there is a natural inclusion ι : Ap → ZN ,
which maps the polynomial of degree less than N with coefficients in Fp into the integer vector
of length N with coefficients in the range (−p/2, . . . , p/2]. The encode function is then defined by

13



ι(φ(m)) for m ∈ (Fpk)s, with decode defined by φ−1(x (mod p)) for x ∈ ZN . It is clear, by choice
of the natural inclusion ι, that ‖encode(m)‖∞ ≤ p/2 = τ .

We pick a large integer q, whose size we will determine later, and definedAq := (Z/qZ)[X]/F (X),
i.e. the ring of integer polynomials modulo reduction by F (X) and q. In practice we consider the
image of encode to lie in Aq, and thus we abuse notation, by writing addition and multiplication
in Aq by + and ·. Note, that this means that applying decode to elements obtained from encode
followed by a series of arithmetic operations may not result in the value in M which one would
expect. This corresponds to where our scheme can only evaluate circuits from a given set C.

The ciphertext space G is defined to be A3
q , with addition � defined componentwise. The

multiplicative operator � is defined as follows

(a0,a1, 0) � (b0,b1, 0) := (a0 · b0,a1 · b0 + a0 · b1,−a1 · b1),

i.e. multiplication is only defined on elements whose third coefficient is zero.

We define Ddρ as follows: The discrete Gaussian DZN ,s, with Gaussian parameter s, is defined to

be the random variable on ZNq (centered around the origin) obtained from sampling x ∈ RN , with
probability proportional to exp(−π · ‖x‖2/s2), and then rounding the result to the nearest lattice
point and reducing it modulo q. Note, sampling from the distribution with probability density
function proportional to exp(−π · ‖x‖2/s2), means using a normal variate with mean zero, and
standard deviation r := s/

√
2 · π. In our concrete scheme we set d := 3 · N and define Ddρ to be

the distribution defined by (DZN ,s)
3. Note, that in the notation Ddρ the implicit dependence on q

has been suppressed to ease readability. The determining of q and r as functions of all the other
parameters, we leave until we discuss security of the scheme.

KeyGen(): We will use the public key version of the Brakerski–Vaikuntanathan scheme [7]. Given
the above set up, key generation proceeds as follows: First one samples elements a ← Aq and
s, e ← DZN ,s. Then treating s and e as elements of Aq one computes b ← (a · s) + (p · e). The
public and private key are then set to be pk← (a,b) and sk← s.

Encpk(x, r): Given a message x← encode(m) where m ∈M , and r ∈ Ddρ, we proceed as follows: The

element r is parsed as (u,v,w) ∈ (ZN )3. Then the encryptor computes c0 ← (b · v) + (p ·w) + x
and c1 ← (a · v) + (p · u). Finally returning the ciphertext (c0, c1, 0).

Decsk(c): Given a secret key sk = s and a ciphertext c = (c0, c1, c2) this algorithm computes
the element in Aq satisfying t = c0 − (s · c1) − (s · s · c2). On reduction by q the value of ‖t‖∞
will be bounded by a relatively small constant B; assuming of course that the “noise” within a
ciphertext has not grown too large. We shall refer to the value t mod q as the “noise”, despite it
also containing the message to be decrypted. At this point the decryptor simply reduces t modulo
p to obtain the desired plaintext in Aq, which can then be decoded via the decode algorithm.

KeyGen∗(): This simply samples â, b̂← Aq and returns p̂k := (â, b̂).

Following the discussion in [7] we see that with this fixed ciphertext space, our scheme is some-
what homomorphic. It can support a relatively large number of addition operations, and a single
multiplication.

Distributed Version We now extend the scheme above to enable distributed decryption. We first set
up the distributed keys as follows. After invoking the functionality for key generation, each player
obtains a share ski = (si,1, si,2), these are chosen uniformly such that the master secret is written

14



as

s = s1,1 + · · ·+ sn,1, s · s = s1,2 + · · ·+ sn,2.

As remarked earlier this one-time setup procedure can be accomplished by standard UC-secure
multiparty computation protocols such as that described in [5]. The following theorem is proved in
Appendix A.6. It depends on the constant B defined above. In Appendix D we compute the value
of B when the input ciphertext is (Bplain, Brand, C)-admissible, and show how to choose parameters
for the cryptosystem such that the required bound on B is satisfied.

Theorem 4. In the FKeyGen-hybrid model, the protocol ΠDDec (Figure 8) implements FKeyGenDec

with statistical security against any static active adversary corrupting up to n − 1 parties if B +
2sec ·B < q/2.

Protocol ΠDDec

Initialize: Each party Pi on being given the ciphertext c = (c0, c1, c2), and an upper bound B on the infinity
norm of t above, computes

vi ←
{
c0 − (si,1 · c1)− (si,2 · c2) if i = 1
−(si,1 · c1)− (si,2 · c2) if i 6= 1

and sets ti ← vi + p · ri where ri is a random element with infinity norm bounded by 2sec ·B/(n · p).
Public Decryption: All the players are supposed to learn the message.

– Each party Pi broadcasts ti
– All players compute t′ ← t1 + · · ·+ tn and obtain a message m′ ← decode(t′ mod p).

Private Decryption: Only player Pj is supposed to learn the message.
– Each party Pi sends ti to Pj
– Pj computes t′ ← t1 + · · ·+ tn and obtain a message m′ ← decode(t′ mod p).

Fig. 8. The distributed decryption protocol.

7 Acknowledgements

The first, second and fourth author acknowledge support from the Danish National Research Foun-
dation and The National Science Foundation of China (under the grant 61061130540) for the Sino-
Danish Center for the Theory of Interactive Computation, within which [part of] this work was
performed; and also from the CFEM research center (supported by the Danish Strategic Research
Council) within which part of this work was performed.

The third author was supported by the European Commission through the ICT Programme
under Contract ICT-2007-216676 ECRYPT II and via an ERC Advanced Grant ERC-2010-AdG-
267188-CRIPTO, by EPSRC via grant COED–EP/I03126X, the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory (AFRL) under agreement number
FA8750-11-2-0079, and by a Royal Society Wolfson Merit Award. The US Government is autho-
rized to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation hereon. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of DARPA, AFRL, the U.S. Government, the European Commission or EPSRC.

The authors would like to thank Robin Chapman, Henri Cohen and Rob Harley for various
discussions whilst this work was carried out.

15



References

1. S. Arora and R. Ge. New algorithms for learning in presence of errors. In L. Aceto, M. Henzinger, and J. Sgall,
editors, ICALP (1), volume 6755 of Lecture Notes in Computer Science, pages 403–415. Springer, 2011.

2. G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Multiparty computation with
low communication, computation and interaction via threshold fhe. In D. Pointcheval and T. Johansson, editors,
EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 483–501. Springer, 2012.

3. D. Beaver. Efficient multiparty protocols using circuit randomization. In J. Feigenbaum, editor, CRYPTO,
volume 576 of Lecture Notes in Computer Science, pages 420–432. Springer, 1991.

4. E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-linear unconditionally-secure multiparty computation with a
dishonest minority. IACR Cryptology ePrint Archive, 2011:629, 2011.

5. R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and multiparty computation.
In EUROCRYPT, pages 169–188, 2011.

6. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryption without bootstrapping. Elec-
tronic Colloquium on Computational Complexity (ECCC), 18:111, 2011.

7. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-lwe and security for key dependent
messages. In P. Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 505–524.
Springer, 2011.

8. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party secure
computation. In STOC, pages 494–503, 2002.

9. Y. Chen and P. Q. Nguyen. Bkz 2.0: Better lattice security estimates. In D. H. Lee and X. Wang, editors,
ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages 1–20. Springer, 2011.

10. R. Cramer, I. Damg̊ard, and V. Pastro. On the amortized complexity of zero knowledge protocols for multiplica-
tive relations. In ICITS, 2012. To appear.

11. I. Damg̊ard, M. Keller, E. Larraia, C. Miles, and N. P. Smart. Implementing aes via an actively/covertly secure
dishonest-majority mpc protocol. IACR Cryptology ePrint Archive, 2012:262, 2012.

12. I. Damg̊ard and J. B. Nielsen. Perfect hiding and perfect binding universally composable commitment schemes
with constant expansion factor. In M. Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer
Science, pages 581–596. Springer, 2002.

13. I. Damg̊ard and C. Orlandi. Multiparty computation for dishonest majority: From passive to active security at
low cost. In CRYPTO, pages 558–576, 2010.

14. N. Gama and P. Q. Nguyen. Predicting lattice reduction. In N. P. Smart, editor, EUROCRYPT, volume 4965
of Lecture Notes in Computer Science, pages 31–51. Springer, 2008.

15. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher, editor, STOC, pages 169–178.
ACM, 2009.

16. C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog overhead. In D. Pointcheval
and T. Johansson, editors, EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 465–482.
Springer, 2012.

17. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure multiparty computation. In
D. S. Johnson and U. Feige, editors, STOC, pages 21–30. ACM, 2007.

18. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer - efficiently. In D. Wagner,
editor, CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages 572–591. Springer, 2008.

19. Y. Lindell. Highly-efficient universally-composable commitments based on the ddh assumption. In EUROCRYPT,
pages 446–466, 2011.

20. R. Lindner and C. Peikert. Better key sizes (and attacks) for lwe-based encryption. In A. Kiayias, editor,
CT-RSA, volume 6558 of Lecture Notes in Computer Science, pages 319–339. Springer, 2011.

21. V. Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and factoring-based signatures. In M. Matsui,
editor, ASIACRYPT, volume 5912 of Lecture Notes in Computer Science, pages 598–616. Springer, 2009.

22. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings. 2011.
Manuscript.

23. D. Micciancio and O. Regev. Lattice-based cryptography, 2008.
24. S. Myers, M. Sergi, and abhi shelat. Threshold fully homomorphic encryption and secure computation. IACR

Cryptology ePrint Archive, 2011:454, 2011.
25. J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to practical active-secure two-party

computation. IACR Cryptology ePrint Archive, 2011:91, 2011.
26. M. Püschel and J. M. F. Moura. Algebraic signal processing theory: Cooley-tukey type algorithms for dcts and

dsts. IEEE Transactions on Signal Processing, 56(4):1502–1521, 2008.

16



27. N. P. Smart and F. Vercauteren. Fully homomorphic simd operations. IACR Cryptology ePrint Archive, 2011:133,
2011.

28. S. Winkler and J. Wullschleger. On the efficiency of classical and quantum oblivious transfer reductions. In
CRYPTO, pages 707–723, 2010.

A Proofs

A.1 Zero-Knowledge Proof

Construction of the Protocol. We will give two versions of the protocol. The first is a standard
3-move protocol, the second uses an “abort” technique to optimize the parameter values, this one
is best suited for use with the Fiat-Shamir heuristic, and may be the best option for a practical
implementation.

For the protocol, we will need that τ = p/2, so that ‖encode(m)‖∞ ≤ τ = p/2. This means that
each entry in encode(m) corresponds to a uniquely determined residue mod p (or equivalently an
element in Zp) and conversely each such residue is uniquely determined by m. We did not ask for
this in the abstract description, but the concrete instantiation satisfies this. Note that one problem
we need to address in the protocol is that not all vectors in the input domain of decode will give
us results in Fpk . However, if an input is equivalent mod p to encode(m) for some m then this is
indeed the case, since then decode will return m. Therefore the verifier explicitly checks whether
the encodings the prover sends him decode to legal values, this will imply that the ciphertexts in
question also decode to legal values.

We let R denote the matrix in Zsec×d whose ith row is ri. It makes use of a matrix Me defined
as follows. Let V := 2 · sec − 1. For e ∈ {0, 1}sec we define Me ∈ ZV×sec to be the matrix whose
(i, k)-th entry is given by ei−k+1, for 1 ≤ i− k + 1 ≤ sec and 0 otherwise.

Protocol ΠZKPoPK

– For i = 1, . . . , V , the prover sets yi ← ZN and si ← Zd, such that ‖yi‖∞ ≤ N · τ · sec2 · 2νsec−1 and
‖si‖∞ ≤ d · ρ · sec2 · 2νsec−1. For yi, this is done as follows: choose a random message mi ∈ (Fpk )s and set
yi = encode(mi) + ui, where each entry in ui is a multiple of p, chosen uniformly at random, subject to
‖yi‖∞ ≤ N · τ · sec2 · 2νsec−1. If diag is set to true, then the mi are chosen to be diagonal elements.

– The prover computes ai ← Encpk(yi, si), for i = 1, . . . , V , and defines S ∈ ZV×d to be the matrix whose ith
row is si and sets y← (y1, . . . ,yV ), a← (a1, . . . , aV ).

– The prover sends a to the verifier.
– The verifier selects e ∈ {0, 1}sec and sends it to the prover.
– The prover sets z← (z1, . . . , zV ), such that zT = yT +Me ·xT, and T = S+Me ·R. The prover sends (z, T )

to the verifier.
– The verifier computes di ← Encpk(zi, ti), for i = 1, . . . , V , where ti is the ith row of T and sets d ←

(d1, . . . , dV ).
– The verifier checks that decode(zi) ∈ Fspk and whether the following three conditions hold; he rejects if not

dT = aT �
(
Me � cT

)
, ‖zi‖∞ ≤ N · τ · sec2 · 2νsec−1, ‖ti‖∞ ≤ d · ρ · sec2 · 2νsec−1.

– If diag is set to true the verifier also checks whether decode(zi) is a diagonal element, and rejects if it is not.

Fig. 9. The ZKPoPK Protocol, interactive version.

Theorem 5. The protocol ΠZKPoPK (Appendix A.1, Figure 9) is an honest-verifier zero-knowledge
proof of knowledge for the relation RPoPK .

17



Proof (Theorem 5).

Completeness: Assume the prover is honest. For i = 1, . . . , V the verifier checks if Encpk(zi, ti)
equals ai �Me,i · cT, since Me,i is a scalar matrix we write multiplication with · as opposed to �.
The check passes because of the following relation:

ai �
(
Me,i · cT

)
= Encpk(yi, si) �

sec
k=1 (Me,i,k · ck)

= Encpk(yi, si) �
sec
k=1 (Me,i,k · Encpk(xk, rk))

= Encpk

(
yi +

sec∑
k=1

Me,i,k · xk, si +
sec∑
k=1

Me,i,k · rk

)
= Encpk

(
yi +Me,i · xT, si +Me,i · rT

)
= Encpk(zi, ti).

Moreover, given that zi = yi +Me,i · xT and that all ciphertexts in c are (τ, ρ)-ciphertexts, we get
that each single coordinate in Me,i · xT is numerically at most sec · τ . Each coordinate of yi was
chosen from an interval that is a factor N · sec · 2νsec−1 larger. By a union bound bound over the
N · sec coordinates involved, each coordinate in zi fails to be in the required range with probability
exponentially small in sec. A similar argument shows that the check ‖ti‖∞ also fails with negligible
probability. Finally, each yi was constructed to be congruent mod p to the encoding of a value in
Fs
pk

. Since this is also the case for the xi’s if the prover is honest, the same is true for the zi’s, and
they therefore decode to a value in Fs

pk
. If diag was set to true, all xi,yi contain diagonal plaintexts,

and then the same is true for the zi.

Soundness: We consider a prover making a verifier accept both (x,a, e, (z, T )) and (x,a, e′, (z′, T ′))
with e 6= e′. Since both checks dT = aT � (Me · cT) and d′T = aT � (Me′ · cT) passed, one can
subtract the two equalities and obtain

(Me −Me′) � cT =
(
d � d′

)T
(1)

In order to find x and R such that ck = Encpk(xk, rk) for k = 1, . . . , sec, we first solve (1) as a linear
system in c. Let j be the highest index such that ej 6= e′j . The sec × sec submatrix of Me −Me′ ,
consisting of the rows of Me −Me′ between j and j + sec − 1 both included, is upper triangular
with entries in {−1, 0, 1} and its diagonal consists of the non-zero value ej − e′j (so it is possible
to find a solution for c). Since the verifier has values zi, ti, z

′
i, t
′
i such that di = Encpk(zi, ti) and

d′i = Encpk(z
′
i, t
′
i), and given that ci = Encpk(xi, ri), it is possible to directly solve the linear system

in x and R (since the cryptosystem is additively homomorphic), from the bottom equation to the
one “in the middle” with index sec/2. Since ‖zi‖∞, ‖z′i‖∞ ≤ N · τ · sec2 ·2νsec−1 and ‖ti‖∞, ‖t′i‖∞ ≤
d · ρ · sec2 · 2νsec−1, we conclude that csec−i is a (s · τ · sec2 · 2νsec+i, d · ρ · sec2 · 2νsec+i)-ciphertext
(by induction on i). To solve for c1, . . . csec/2, we consider the lowest index j such that ej 6= e′j ,
construct an lower triangular matrix in a similar way as above, and solve from the first equation
downwards. We conclude that c contains (N · τ · sec2 · 2(1/2+ν)sec, d · ρ · sec2 · 2(1/2+ν)sec)-ciphertexts.

We note that since the verifier accepted, each zi has small norm and decodes to a value in
(Fpk)s. Since we can write xi as a linear combination of the zi, it follows from correctness of the
cryptosystem that the xi also decode to values in (Fpk)s. Finally, if diag was set to true, the verifier
only accepts if all zi decode to diagonal values. Again, since we can write xi as a linear combination
of the zi, the xi also decode to diagonal values.

18



Zero-Knowledge: We give an honest-verifier simulator for the protocol that outputs accepting con-
versations. In order to simulate one repetition, the simulator samples e ∈ {0, 1}sec uniformly and
z, T uniformly with the constrain that d contains random ciphertexts satisfying the verifiers check,
i.e., zi, ti are uniform, subject to ‖zi‖∞ ≤ N ·τ ·sec2 ·2νsec−1, ‖ti‖∞ ≤ d·ρ·sec2 ·2νsec−1, where more-
over zi is generated as encode(mi)+ui where mi is a random plaintext (diagonal if diag is set to true)
and ui contains multiples of p that are uniformly random, subject to ‖zi‖∞ ≤ N · τ · sec2 · 2νsec−1.
Finally, a is computed as aT ← dT � (Me · cT). In the real conversation, the provers choice of
values in zi and ti are statistically close to the distribution used by the simulator. This is because
the prover uses the same method to generate these values, except that he adds in some vectors
of exponentially smaller norm which leads to a statistically close distribution. Since e has the
correct distribution and a follows deterministically from the last two messages, the simulation is
statistically indistinguishable.

ut

We now give a protocol that leads to smaller values of the parameters and hence also allows
better parameters for the underlying cryptoystem. This version, however, is better suited for use
with the Fiat-Shamir heuristic. The idea is to let the prover choose his randomness in a smaller
interval, and abort if the last message would reveal too much information. This is an idea from
[21]. When using the Fiat-Shamir heuristic, this is not a problem as he prover only needs to show a
successful attempt to he verifier. We let h be a suitable hash function that outputs sec-bit strings.

Protocol ΠZKPoPK

– For i = 1, . . . , V , the prover generates yi ← ZN and si ← Zd, such that ‖yi‖∞ ≤ 128 · N · τ · sec2 and
‖si‖∞ ≤ 128 · d · ρ · sec2. For yi, this is done as follows: choose a random message mi ∈ (Fpk )s and set
yi = encode(mi) + ui, where each entry in ui is a multiple of p, chosen uniformly at random, subject to
‖yi‖∞ ≤ 128 ·N · τ · sec2. If diag is set to true then the mi are additionally chosen to be diagonal elements.

– The prover computes ai ← Encpk(yi, si), for i = 1, . . . , V , and defines S ∈ ZV×d to be the matrix whose ith
row is si and sets y← (y1, . . . ,yV ), a← (a1, . . . , aV ).

– The prover sends a to the verifier.
– The prover computes e = h(a, c).
– The prover sets z← (z1, . . . , zV ), such that zT = yT +Me · xT, and T = S +Me · R. Let ti be the ith row

of T . If for any i, it is the case that ‖zi‖∞ > 128 ·N · τ · sec2 − τ · sec or ‖ti‖∞ > 128 · d · ρ · sec2 − ρ · sec,
the prover aborts and the protocol is restarted. Otherwise the prover sends (a, z, T ) to the verifier.

– The verifier computes e = h(a, c), di ← Encpk(zi, ti), for i = 1, . . . , V , where ti is the ith row of T and sets
d← (d1, . . . , dV ).

– The verifier checks decode(zi) ∈ Fspk and whether the following three conditions hold

dT = aT �
(
Me � cT

)
, ‖zi‖∞ ≤ 128 ·N · τ · sec2, ‖ti‖∞ ≤ 128 · d · ρ · sec2.

If diag is set to true the verifier also checks whether decode(zi) is a diagonal element, and rejects if it is not.

Fig. 10. The ZKPoPK Protocol, version for Fiat-Shamir heuristic.

We claim that the Fiat-Shamir based protocol is a proof of knowledge for the relation in question
in the random oracle model. In this case, however, we can guarantee that the adversarially generated
ciphertexts are (N · τ · sec2 · 2sec/2+8, d · ρ · sec2 · 2sec/2+8)- ciphertexts.

Completeness: Assume the prover is honest. Note first that each yi was constructed to be congruent
mod p to the encoding of a value in (Fpk)s. Since this is also the case for the xi’s if the prover is

19



honest, the same is true for the zi’s, and they therefore always decode to a value in (Fpk)s. If diag
was set to true, all xi,yi contain diagonal plaintexts, and then the same is true for the zi.

Next, for i = 1, . . . , V the verifier checks if Encpk(zi, ti) equals ai�Me,i ·cT, since Me,i is a scalar
matrix we write multiplication with · as opposed to �. The check passes because of the following
relation:

ai �
(
Me,i · cT

)
= Encpk(yi, si) �

sec
k=1 (Me,i,k · ck)

= Encpk(yi, si) �
sec
k=1 (Me,i,k · Encpk(xk, rk))

= Encpk

(
yi +

sec∑
k=1

Me,i,k · xk, si +

sec∑
k=1

Me,i,k · rk

)
= Encpk

(
yi +Me,i · xT, si +Me,i · rT

)
= Encpk(zi, ti).

Moreover, given that zi = yi +Me,i · xT and that all ciphertexts in c are (τ, ρ)-ciphertexts, we get
that each single coordinate in Me,i · xT is numerically at most sec · τ . Each coordinate of yi was
chosen from an interval that is a factor 128 · N · sec larger. Therefore each coordinate in zi fails
to be in the required range with probability 1/(128 · N · sec). Note that this probability does not
depend on the concrete values of the coordinates in Me,i · xT, only on the bound on the numeric
value.

By a union bound over the N coordinates of zi we get that ‖zi‖∞ ≤ 128 ·N ·τ · sec2−τ · sec fails
with probability at most 1/(128 ·sec), and by a final union bound over the 2 sec−1 ciphtertexts that
all checks on the zi’s are ok except with probability at most 1/64. A similar argument shows that
the check ‖ti‖∞ ≤ 128 · d · ρ · sec2 − ρ · sec fails also with probability at most 1/64. The conclusion
is that the prover will abort with probability at most 1/32, so we expect to only have to repeat the
protocol once to have success.

Soundness: By a standard argument, a prover who can efficiently produce a valid proof is able to
produce (x,a, e, (z, T )) and (x,a, e′, (z′, T ′)) with e 6= e′ that the verifier would accept. Since both
checks dT = aT � (Me · cT) and d′T = aT � (Me′ · cT) passed, one can subtract the two equalities
and obtain

(Me −Me′) � cT =
(
d � d′

)T
(2)

In order to find x and R such that ck = Encpk(xk, rk) for k = 1, . . . , sec, we first solve (2) as a linear
system in c. Let j be the highest index such that ej 6= e′j . The sec × sec submatrix of Me −Me′ ,
consisting of the rows of Me −Me′ between j and j + sec − 1 both included, is upper triangular
with entries in {−1, 0, 1} and its diagonal consists of the non-zero value ej − e′j (so it is possible
to find a solution for c). Since the verifier has values zi, ti, z

′
i, t
′
i such that di = Encpk(zi, ti) and

d′i = Encpk(z
′
i, t
′
i), and given that ci = Encpk(xi, ri), it is possible to directly solve the linear system

in x and R (since the cryptosystem is additively homomorphic), from the bottom equation to the
one “in the middle” with index sec/2.
Since ‖zi‖∞, ‖z′i‖∞ ≤ 128 ·N · τ · sec2 and ‖ti‖∞, ‖t′i‖∞ ≤ 128 · d · ρ · sec2, we conclude that csec−i
must be a (256 · N · τ · 2i · sec2, 256 · d · ρ · 2i · sec2)-ciphertext (by induction on i). To solve for
c1, . . . csec/2, we consider the lowest index j such that ej 6= e′j , construct an lower triangular matrix
in a similar way as above, and solve from the first equation downwards. We conclude that c contains
(N · τ · sec2 · 2sec/2+8, d · ρ · sec2 · 2sec/2+8)-ciphertexts.

20



We note that since the verifier accepted, each zi has small norm and decodes to a value in
(Fpk)s. Since we can write xi as a linear combination of the zi, it follows from correctness of the
cryptosystem that the xi also decode to values (Fpk)s. Finally, if diag was set to true, the verifier
only accepts if all zi decode to diagonal values. Again, since we can write xi as a linear combination
of the zi, the xi also decode to diagonal values.

Zero-Knowledge: We give an honest-verifier simulator for the protocol that outputs an accepting
conversation (that does not abort).

In order to simulate one repetition, the simulator samples e ∈ {0, 1}sec uniformly and z, T
uniformly with the constrain that d contains random (8 ·N · τ · sec2− τ · sec, 8 · d · ρ · sec2− ρ · sec)-
ciphertexts. where moreover zi is generated as encode(mi) + ui where mi is a random plaintext
(a diagonal one if diag is set to true) and ui contains multiples of p that are uniformly random,
subject to ‖zi‖∞ ≤ 8N · τ · sec2− τ · sec. Finally, a is computed as aT ← dT � (Me · cT). Define the
random oracle to output e on input a, c, output (a, e, (z, T )) and stop.

We argue that this simulation is perfect: The distribution of a simulated e is the same as a real
one. Also, it is straightforward to see that in a real conversation, given that the prover does not
abort, the vectors zi, ti will be uniformly random, subject to ‖zi‖∞ ≤ 8 · s · τ · sec2 − τ · sec and
‖ti‖∞ ≤ 8 · d · ρ · sec2 − ρ · sec. So the simulator chooses zi, ti with exactly the right distribution.
Since the value of a follows deterministically from the e, zi, ti, we have what we wanted.

Doing without random oracles. The above protocol can also be executed without using the Fiat-
Shamir heuristic. In this case, the prover will start sec/5 instances of the protocol, computing
a1, . . . ,asec/5. We choose this number of instance because it will ensure that the prover fails on all

of them with probability only (1/32)sec/5 = 2−sec. The prover commits to all these values, which
can be done, for instance, with a Merkle hash tree, in which case the commitment will be very
short, and any of a’s can be opened by sending a piece of information that is only logarithmic in
sec.

The verifier selects e, the prover finds an instance where he would not abort the protocol with
this e, opens the corresponding a and completes that instance.

This is complete and zero-knowledge by the same argument as above plus the hiding property
of the commitment scheme used. Soundness follows from the fact that if the prover succeeds with
probability significantly greater that 2−sec · sec/5 he must be able to answer different challenges
correctly for some fixed instance out of the sec/5 we have. Such answers can be extracted by
rewinding, and then the rest of the argument is the same as above.

A.2 The UC Model

In the following sections, we show that the online and preprocessing phases of our protocol are
secure in the UC model. We briefly recall how this model works: we will use the variant where there
is only one adversarial entity, the environment Z. The environment chooses inputs for the honest
players and gets their outputs when the protocol is done. It also does an attack on the protocol
which is our case means that it corrupts up to n − 1 of the players and takes control over their
actions. When Z stops, it outputs a bit. This process where Z interacts with the real players and
protocol is called the real process.

To define what it means that the protocol implements functionality F securely we assume there
exists a simulator S that interacts with both F and Z. Towards F , it chooses inputs for the corrupt

21



players and will get their outputs. Towards Z, it must simulate a view of the protocol that looks
like what Z would see in a real attack. This process is called the ideal process, and here F supplies
Z with the i/o interface of honest players. We say that the protocol implements F securely if Z
outputs 1 with essentially the same probability in the real as in the ideal process. We speak of
computational security if Z is assumed to be poly-time bounded and of statistical security if Z is
unbounded.

A.3 Online Phase

On generating the ei’s Before proving the online protocol UC secure, we compute the probability
of getting away with cheating in step 4 of ‘Output’ and how this depends on the way we generate
the ei’s.

For this purpose we design the following security game:

1. The challenger generates the secret key α and MACs γi ← αmi and sends messages m1, . . . ,mT

to the adversary.
2. The adversary sends back messages m′1, . . . ,m

′
T .

3. The challenger generates random values e1, . . . , eT ← Fpk and sends them to the adversary.
4. The adversary provides an error ∆.
5. Set m←

∑T
i=0 eim

′
i, γ ←

∑T
i=0 eiγi. Now, the challenger checks that αm = γ +∆

The adversary wins the game if there is an i for which m′i 6= mi and the final check goes through.
It is not difficult to see that this game indeed models ‘Output’(up to step 4): The second step

in the game where the adversary sends the m′i’s models the fact that corrupted players can choose
to lie about their shares of values opened during the protocol execution. ∆ models the fact that
the adversary is allowed to introduce errors on the macs when data are sent to FPREP in the initial
part of the protocol and may also modify the shares of macs held by corrupt players. Finally, since
α, γ are secret shared in the protocol, the adversary has no information on α, γ ahead of time in
the protocol, just as in the security game.

Now, let us look at the probability of winning the game if the ei’s are randomly chosen. If
the check goes through, we have that the following equality holds: α

∑T
i=0 ei(m

′
i −mi) = ∆. First

we consider the case where
∑T

i=0 ei(m
′
i − mi) 6= 0, so α = ∆/

∑T
i=0 ei(m

′
i − mi). This implies

that being able to pass the check is equivalent to guessing α. However, since the adversary has no
information about α, this happens with probability only 1/|Fpk |. So what is left is to argue that∑T

i=0 ei(m
′
i − mi) = 0 also happens with very low probability. This can be seen as follows. We

define µi := (m′i − mi) and µ := (µ1, . . . , µT ), e := (e1, . . . , eT ). Now fµ(e) := e · µ =
∑T

i=0 eiµi
defines a linear mapping, which is not the 0-mapping since at least one µi 6= 0. From linear algebra
we then have the rank-nullity theorem telling us that dim(ker(fµ)) = T − 1. Also since e is random
and the adversary does not know e when choosing the m′i’s, the probability of e ∈ ker(fµ) is
|FT−1
pk
|/|FT

pk
| = 1/|Fpk |. Summing up, the total probability of winning the game is at most 2/|Fpk |.

Since choosing the ei’s uniformly would require an expensive coin-flip protocol, we use a different
way to generate them in the protocol: namely e1 is chosen at random and for i > 1, ei ← ei1.
This has the advantage of adding only a constant number of multiplications in Fpk for a secure

multiplication. On the security side, we still want that
∑T

i=0 eiµi = 0 should happen with small
probability. Viewing fµ as a polynomial of degree T , we know it has at most T roots, so we have
to make sure we have an upper bound on T such that e1 is chosen from a field big enough for T/pk

to be negligible.

22



An alternative approach would be to use a pseudorandom generator G. We would then have
shared some random seed 〈s〉. By opening 〈s〉 and feeding it to G we can generate T pseudorandom
elements. In the protocol, the parties would commit to their share of the MAC on s, and when α
becomes public, the MAC would be checked. If it is OK, the protocol would go on with the rest
of the checks. With respect to cheating the argument is basically the same; If an adversary A has
a significant probability of choosing m′i’s such that

∑T
i=0 ei(m

′
i − mi) = 0, then the G is a bad

pseudorandom generator, or in other words, we can use A to break G. With this way of generating
the ei’s, we increase the complexity for one secure multiplication by whatever G needs to generate
one pseudorandom element.

Proof (Theorem 1). We construct a simulator SAMPC such that a poly-time environment Z cannot
distinguish between the real protocol system and the ideal. We assume here static, active corrup-
tion. The simulator runs a copy of the protocol ΠOnline and simulates the ideal functionalities for
preprocessing and commitment. It relays messages between parties/FPREP and Z, such that Z will
see the same interface as when interacting with a real protocol. The specification of the simulator
SAMPC is presented in Figure 11.

Simulator SAMPC

Initialize: The simulator creates the desired number of triples by doing the steps in FPREP. Note that here the
simulator will read all data of the corrupted parties specified to the copy of FPREP.

Rand: The simulator runs the copy protocol honestly and calls rand on the ideal functionality FAMPC.
Input: If Pi is not corrupted the copy is run honestly with dummy input, for example 0.

If Pi is corrupted the input step is done honestly and then the simulator waits for Pi to broadcast δ. Given
this, the simulator can compute x′i ← (r+ δ) since it knows (all the shares of) r. This is the supposed input
of Pi, which the simulator now gives to the ideal functionality FAMPC.

Add: The simulator runs the protocol honestly and calls add on the ideal functionality FAMPC.
Multiply: The simulator runs the protocol honestly and calls multiply on the ideal functionality FAMPC.
Output: The output step is run and the protocol is aborted if one of the checks in step 4 does not go through.

Otherwise the simulator calls output on FAMPC and gets the result y back. Now it has to simulate shares
yj of honest parties such that they are consistent with y. Note that the simulator already has shares of
an output value y′ that was computed using the dummy inputs, as well as shares of the MAC for y′. The
simulator now selects an honest party, say Pk and adds y− y′ to his share of y and α(y− y′) to his share of
the MAC. Note that the simulator can compute α(y − y′) since it knows from the beginning (all the shares
of) α. Now it simulates the openings of shares of y towards the environment according to the protocol. If
this terminates correctly, send OK to FAMPC (causing it to output y to the honest players).

Fig. 11. The simulator for FAMPC.

To see that the simulated and real processes cannot be distinguished, we will show that the
view of the environment in the ideal process is statistically indistinguishable from the view in the
real process. This view consists of the corrupt players’ view of the protocol execution as well as the
inputs and outputs of honest players.

We first argue that the view up to the point where the output value is opened (step 5 of the
‘output’ stage of the protocol) has exactly the same distribution in the real and in the simulated
case: First, the value broadcast by honest players in the input stage are always uniformly random.
Second, when a value is partially opened in a secure multiplication, fresh shares of a random value
are subtracted, so the honest players will always send a set of uniformly random and independent
values. Third, the honest players hold shares in MACs on the opened values, these are random
sharings of a correct MAC with an error added that is determined by the errors specified by the

23



environment in the initial phase. Therefore, also the MAC and shares revealed in step 4 of ‘output’
have the same distribution in the simulated as in the the real process. Finally note that if the
simulated protocol aborts, the simulator makes the ideal functionality fail, so the environment will
see that honest players generate no output, just as when the real process aborts.

Now, if the real or simulated protocol proceeds to the last step, the only new data that the
environment sees is an output value y, plus some shares of honest players. These are random shares
that are consistent with y and its MAC in both the simulated and real case. In other words, the
environments’ view of the last step has the same distribution in real and simulated case as long as
y is the same.

In the simulation, y is of course the correct evaluation on the inputs matching the shares that
were read from the corrupted parties in the beginning. To finish the proof, it is therefore sufficient
to show that the same happens in the real process with overwhelming probability. In other words,
the event that the real protocol terminates but the output is not correct occurs with negligible
probability.

Incorrect outputs can result either from corrupted parties who during the protocol successfully
cheat with their shares or from having computed with triples where the multiplicative relation does
not hold (even if the revealed shares were correct). For the latter case we argue that with correct
shares the multiplicative relation holds with overwhelming probability, and this follows from the
check on the triples in step 1 of ’Multiply’: It is easy to see that if the triples are correct, the
check will be true. On the other hand, if some triple is not correct, (in spite of correct shares), the
probability of satisfying the check is 1/|Fpk |, since there is only one random challenge t, for which
t · (c − a · b) = (h − g · f). For the former case regarding the checking of shares, we have checks
related to the openings of [[·]]-values (during ’Input and a single one in ’Output’). The rest of the
checking is done in steps 4 and 5 of ’Output’. Being able to cheat during an opening of a [[ cdot]]-
value corresponds to guessing at least one private key βi. Assuming βi is chosen randomly in Fpk ,
the probability is at most 1/|Fpk |. Furthermore, as we discussed in the beginning of this section,
the probability of a party being able to cheat in step 4 is (T + 1)/|Fpk | where T is the number of
values opened during secure multiplications. In step 5, only one MAC is checked for each output,
so here the probability of cheating is 1/|Fpk | per check as argued earlier. Since the protocol aborts
as soon as a check fails, the probability that it terminates with an incorrect output is the maximum
probability with which any single check can be cheated, which in our case is (T + 1)/|Fpk |. This is

negligible, since we assume that T is polynomial while pk is exponential in sec. ut

Commitments based on FPREP In the above we assumed access to an ideal functionality for commit-
ments. We can, however, do the commitments needed in our protocol based only on the output of
FPREP as follows. First a random value [[r]] is opened to the committer Pi (This could even be done
in the preprocessing). To commit to a value x, Pi broadcasts c = r + x. To open the commitment,
[[r]] is opened to all the players who can now compute c − r = x. Correctness is still guaranteed
because of the MACs in [[r]]. Furthermore, since to begin with [[r]] is only opened to Pi, we have that
c is indistinguishable from a random value and can thus easily be simulated. To simulate during
’Output’ when Pi is honest and has to open his commitment, the simulator simply changes Pi’s
share of [[r]] and the shares of the MACs to make it fit with the broadcasted value and the value he
should have committed to. This is possible because the simulator knows all MAC keys. It is easy
to see that this has communication and computational complexity O(n2) per commitment.

24



Implementing Broadcast and Multiple Inputs/Outputs To implement broadcast based on point-to-
point channels, we first observe that since we do not guarantee termination anyway, the broadcast
does not have to terminate either. Therefore the following very simple protocol for broadcasting
x ∈ Fpk is sufficient:

1. The broadcaster sends x to all players.
2. Each player sends to all players what he received in the previous step.
3. Each player checks that he received the value x from all players. If, so output x, otherwise abort.

This protocol has communication complexity O(n2) field elements for one broadcast. However,
this can be optimized in case we need to broadcast many values. Below, we assume each player
sends one value, say Pi wants to send xi. We also assume that we have a random value [[s]] from the
preprocessing, and that we have an ε-almost universal class of hash functions {hs} for negligible ε,
indexed by values s, taking as input strings of n elements in Fpk and producing output in Fpk . A
simple example is where we view the input F as specifying coefficients of a polynomial of degree
n−1, and hs(F ) is the result of evaluating this polynomial in point s. If two inputs F, F ′ are distinct,
their difference has at most n− 1 roots, so the probability that hs(F ) = hs(F

′) is (n− 1)/pk. The
protocol goes as follows:

1. Pi sends xi to all players.
2. [[s]] is opened.
3. Each player sends to all players hs(F ) where F is the string of values he received in the first

step.
4. Each players checks that he received the same hash value from all players. If, so output x1, . . . , xn

as received in the first step, otherwise abort.

It is clear that if a player sent different data to different honest players, some honest player will
abort, except with probability (n− 1)/pk. This protocol has complexity O(n2), including also the
cost of opening [[s]]. But the cost per value we broadcast is only O(n). This protocol generalizes
easily to a case where one player has n values to broadcast.

In the online protocol we specified before, broadcast is used to give inputs in the first stage.
Here, all players broadcast a value, and this is readily implemented with the optimized broadcast
protocol above, so we get complexity O(n) per input gate. If players have several inputs, we just
execute several instances of this broadcast.

The only other point where broadcast is used is in partial openings where a designated player
P1 broadcasts the value that is be to opened. Here, we can simply buffer the values sent until we
have n of them and then do the check in step 3-4 above that P1 has sent the same values to all
players. Note that even if we allow P1 to send different data to different players for a while, this
does not allow information to leak: the fact observed in the simulation proof above, that in any
partial opening the honest players always send random independent values, still holds even if P1

has sent inconsistent data in previous rounds.

A.4 Running the online Phase with Small Fields

Suppose we want error probability 2−sec, and log pk is much smaller than sec.
When we consider how to solve this problem, we will at first ignore Step 1 in the Multiply

stage on the online protocol, where one triple is “sacrificed” to check another, as this step could be

25



done as part of the preprocessing. Nevertheless we do not want to ignore the fact that this step will
have a large error probability 1/pk. We could solve this by sacrificing D = d sec

log pk
e triples instead of

one, but we can do much better, and this is described below in Section “A smaller sacrifice” below.

Going back to the actual online phase, we can compensate for the fact that log pk is much
smaller than sec by setting up the preprocessing so it can work over an extension field K of Fpk of
degree D = d sec

log pk
e, i.e. an element in K is represented as d sec

log pk
e elements from Fpk . All MAC keys

and MACs will be generated in K whereas all values to be computed on will still be in Fpk . The
preprocessing can ensure this because the ZK proof can already force a prover to choose plaintexts
that decode to elements in a subfield of K.

Then error probabilities in the proof of the online phase that were 1/pk before will now be
1/|K| ≤ 2−sec. The computational complexity of the online phase will now be O(n|C|+n3) elemen-
tary operations in K. Asymptotically, this amounts to O((n|C|+ n3)D logD log logD) elementary
operations in Fpk , where the overhead for storage and communication is just D.

It is also possible to get error probability 2−sec while having the preprocessing work only over
Fpk . Here the overhead will be larger namely D2 logD log logD, but this may be the best option
when D is not very large. The idea is to authenticate by doing D MACs in parallel over Fpk for
every authenticated value, using D independent keys.

We will still do the linear combination a =
∑

j ejaj over K, where ej = ej . This can be done
by having the preprocessing generate D random values and thinking of these as an element e ∈ K.
Note, however, that we also have to compute a linear combination of the corresponding shares of
MACs, i.e., γi =

∑
j ejγ(aj)i, and we have D such MACs in parallel. This is why we get a overhead

factor D2 logD log logD for the computational work in this case.

A Smaller Sacrifice. In this section we describe a different method to check the multiplicative
relation on triples 〈a〉, 〈b〉, 〈c〉, where a, b, c ∈ Fpk . The aim is to decrease the (amortized) number
of triples to sacrifice per check. Our approach resembles a technique introduced by Ben-Sasson et
al in [4] and one by Cramer et al in [10].

The first step in our construction is to consider a batch of t + 1 triples 〈ai〉, 〈bi〉, 〈ci〉 for i =
1, . . . , t + 1 at once. There are two main ideas in the construction: the first one is to interpolate
the values and get polynomials A,B,C ∈ Fpk [X] such that A(i) = ai, B(i) = bi, C(i) = ci; if the
triples where correctly generated, one would expect A(x)B(x) = C(x) for all x. The second idea
is to think of A,B,C as polynomials over a field extension K of Fpk , so that one can check the
expected multiplicative relation evaluating A,B,C at a random element z ∈ K; the probability
that the check passes even if some of the triples did not satisfy the relation is inversely proportional
to the size of K. We now present the full construction.

– Let 〈ai〉, 〈bi〉, 〈ci〉, i = 1, . . . , t+ 1, be a batch of triples to check.

– One can think of the values a1, . . . , at+1 (resp. b1, . . . , bt+1) as t + 1 evaluations over Fpk of a
unique polynomial A ∈ Fpk [X] (resp. B ∈ Fpk [X]) of degree t. Concretely, one can define the
polynomial A (resp. B) such that A(i) = ai (resp. B(i) = bi). Since the coefficients of A (resp.
B) can be computed as a linear combination of the ai’s (resp. bi’s), the players can compute
representations of such coefficients by local computation.

– Players can compute 〈at+2〉, . . . , 〈a2t+1〉 such that A(i) = ai, again by local computation, since
evaluating a polynomial is a linear operation.

26



– Players can engage in the multiplication step of the online phase with input 〈ai〉, 〈bi〉, and get
〈ci〉 (hopefully ci = aibi) for i = t+ 2, . . . , 2t+ 1. Notice that players call the multiplication step
t times here, so they sacrifice t triples.

– Using only linear computation players can now compute representations of coefficients of the
unique polynomial C ∈ Fpk [X] of degree 2t such that C(i) = ci for i = 1, . . . , 2t+ 1.

– Let K be a field extension of Fpk of degree D. It is possible to think of A,B,C as polynomials
over K, by embedding the coefficients via the natural map Fpk −→ K. Players now evaluate
representations for A(z)B(z), and C(z), where z is a public random element in K, and check if
A(z)B(z) = C(z) by outputting A(z)B(z)−C(z) and checking if the result is zero. This check
can be repeated a number of times in order to lower the error probability. If the check passed
all the times, players consider the original triples as valid; otherwise, they discard the triples
and start again with fresh triples.

Notice that in order to compute A(z)B(z) and C(z), players need to compute at most D2

multiplications over Fpk , since A(z)B(z) can be computed by multiplying aD×D matrix (dependent
of A(z)) with the vector B(z) (over K, multiplication by a fixed element is an endomorphism of K
as a Fpk -vector space). Notice also that we may use the old method of sacrificing more than one
triple per multiplication to get any desired error probability for the multiplications over Fpk . We
analyze below the error probability we must require.

For the analysis of the construction, one sees that if the multiplicative relation was satisfied by
all the original triples, the polynomials AB and C are equal, so the final test passes. In case the
triples did not satisfy the relation, then the polynomials AB and C are different, but since they are
both of degree at most 2t, they can agree in at most 2t points. Therefore, if z is a root of AB −C,
then the test passes, and uniform elements in K are roots of AB − C with probability at most
2t/|K|. If z is not a root of AB − C, the test passes only if the multiplication A(z)B(z) does give
the correct result, so if we make sure this happens with probability at most 2t/|K| (by sacrificing
enough triples in the process), then the error probability of the construction is bounded by 2t/|K|
for a single run of the test. In order to get negligible error probability we reapeat this phase enough
times.

An important fact to notice is that in this construction we need 2t + 1 ≤ Fpk , since otherwise
there are not enough elements to evaluate the polynomials. In order to circumvent this restriction,
one can still apply the above construction but replacing Fpk with an extension Fpk′ with the required
property.

Asymptotically, we see that as we increase the number t+ 1 of triples checked, we always need
to sacrifice t triples, and in addition the number we need to check the multiplication(s) in K. If
we assume that we want to hit the desired error probability with just one iteration of the test, we
have 2−sec = 2t/|K| from which we get log |K| = sec + log 2t. The degree of the extension to K is
log |K|/ log pk, and the number of basic secure multiplications we need is at most the square of this
number, which is (sec + log 2t)2/(log pk)2. For each of these, we need error essentially 2−sec, so the
number of triples we need, say m, satisfies 2−sec = (1/pk)m, so we get m = sec/ log pk. This in total
grows only poly-logarithmically with t, so we conclude that for a given desired error probability,
the number of triples we need to sacrifice to check t+ 1 triples is O(t+ polylog(t)).

Comparing the two Approaches: A Concrete Example. We here compare the above ap-
proaches for checking triples. Suppose p = 2 and k = 8, so Fpk = F28 . Suppose there are also
t+ 1 = 128 triples to check with security level of 2−80.

27



Using the latter approach, with K = F216 , we need to sacrifice t = 127 triples to generate
〈ct+2〉, . . . , 〈c2t+1〉; moreover we need to perform 4 secure multiplications to check if A(z)B(z) =
C(z), since K is a vector space of dimension 2 over F28 . In order for the multiplications to be
secure enough, we need them to be correct up to error probability (2 · 127)/216 ≈ 2−8 for the entire
multiplication A(z)B(z). This will be the case if for each of the 4 small multiplications we use 3
triples for the multiplication, namely one to do the actual multiplication an two to check the first
one. This gives a total error of at most 4 · 2−16 ≤ 2−8. So since one run of the test leads to an error
probability of ≈ 2−8, we need 10 runs to decrease the error probability to 2−80. Therefore, the total
number of triples to sacrifice is 128 + 4 · 3 · 10 = 248, while with the original approach the number
of triples to sacrifice would have been 128 · 10 = 1280.

A.5 Preprocessing Phase

Proof (Theorem 3).
Recall first that we assume the cryptosystem has an alternative key generation algorithm

KeyGen∗() which is a randomized algorithm that outputs a meaningless public key p̃k with the
property that an encryption of any message Enc

p̃k
(x) is statistically indistinguishable from an en-

cryption of 0. Furthermore, if we set (pk, sk)← KeyGen() and p̃k← KeyGen∗(), then pk and p̃k are
computationally indistinguishable.

We construct a simulator SPREP for ΠPREP. In a nutshell, the simulator will run a copy of the
protocol. Here, it will play the honest players’ part while the environment Z plays for the corrupt
players. The simulator also internally runs copies of FKeyGen and FRand, in order to simulate calls
to these functionalities. Note that in the following we say that the simulator executes or performs
some part of the protocol as shorthand for the simulator going through that part with Z. During
the protocol execution, whenever Z sends ciphertexts on behalf of corrupt players, the simulator
can obtain the plaintexts, since it knows the secret key. These values are then used to generate
input to FPREP. A precise description is provided in Figure 12.

We now need to show that no Z can distinguish between the simulated and the real process. By
contradiction, we assume that there exists Z that can distinguish these two cases with significant
advantage ε. The output of Z is a single bit, thought of a as guess at one of the two cases. Concretely,
we assume

A(Z) := Pr [“Real”← Z(Real process)]− Pr [“Real”← Z(Simulated process)]

≥ ε.

We will show that such Z can be used to distinguish between a normally generated public key and
a meaningless one with basically the same advantage. This leads to a contradiction, since a key
generated by the normal key generator is computationally indistinguishable from a meaningless
one.

More in detail, we construct an algorithm B that takes as input a public key pk∗ (randomly
chosen as either a normal public key or a meaningless one), sets up a copy of Z, goes through the
protocol with Z and uses its output to guess the type of key it got as input. During the process
B uniformly chooses a bit (that can be thought as a switch between “Real” and “Simulation”): in
case pk∗ is correctly computed, if the bit is set to “Real”, Z’s view is indistinguishable from a real
execution of the protocol, while if the bit is set to “Simulation”, Z’s view is indistinguishable from
a simulated run. However, in case pk∗ is meaningless, both choices of the bit lead to statistically

28



Simulator SPREP

SReshare(em): This is a subroutine the simulator will use while executing the main steps of the protocol described
below. Any time in ΠPREP, when there is a call to Reshare(em), the simulator proceeds as the protocol, but
it performs the following extra tasks in order to retrieve the quantity ∆m:
– On step 2 the simulator decrypts Encpk(f1), . . . ,Encpk(fn) and obtains the values f1, . . . , fn
– On step 5 the simulator performs step 2 of FKeyGenDec, and thereby obtains m+ f decrypting em+f , and

(m + f)′ from the adversary
– The simulator sets ∆m ← (m + f)′ − (m + f), that is ∆m is the difference between the output chosen

by the adversary for the decryption of em+f and the decryption itself.
– The simulator computes and stores m1 ← (m + f)′ − f1, and mi ← −fi for i 6= 1.

Initialize:
– The simulator performs the initialization steps of ΠPREP. The call to FKeyGenDec in step 1 is simulated

by running KeyGen to generate the key pair (pk, sk). The simulator then sends pk to the players and
stores sk.

– Steps 2–5 are performed according to the protocol, but the simulator decrypts every broadcast ciphertext
and obtains α1, . . . , αn, β1, . . . , βn

– Step 6 is performed according to the protocol, but the simulator gets ∆1 ← SReshare(eγ(α·β1)), . . . ,∆n ←
SReshare(eα·βn)

– The simulator calls Initialize on FPREP with input {αi}i∈A at step 1, {βi}i∈A at step 3 and ∆1, . . . ,∆n

at step 5
Pair:

– The simulator performs step 1 according to the protocol
– Steps 2–3 are performed according to the protocol, but the simulator decrypts every broadcast ciphertext

and obtains r1, . . . , rn
– Step 4 is performed according to the protocol, but the simulator gets ∆ ← SReshare(er·α), ∆1 ←

SReshare(er·β1), . . . ,∆n ← SReshare(er·βn)
– The simulator calls Pair on FPREP with input {ri}i∈A at step 1, and ∆,∆1, . . . ,∆n at step 3

Triple:
– The simulator performs step 1 according to the protocol
– Steps 2–3 are performed according to the protocol, but the simulator decrypts every broadcast ciphertext

and obtains a1, . . . ,an, b1, . . . ,bn
– Steps 4–5 are performed according to the protocol, but the simulator gets ∆a ← SReshare(ea·α), ∆b ←

SReshare(eb·α)
– Steps 6–7 are performed according to the protocol, but the simulator gets c1, . . . cn and δ ← SReshare(ec)
– Step 8 is performed according to the protocol, but the simulator gets ∆c ← SReshare(ec·α)
– The simulator calls Triple on FPREP with input {ai}i∈A, {bi}i∈A at step 1, ∆a,∆b, δ at step 3, {ci}i∈A

in step 5, and ∆c at step 7

Fig. 12. The simulator for FPREP.

indistinguishable views. Hence, if Z guesses correctly whether B chose “Real” or “Simulation”, B
guesses that pk∗ was a standard public key; otherwise B guesses that pk∗ was meaningless.

For simplicity we describe the algorithm B for the two-party setting, where there is a corrupt
party P1 and an honest party P2: On input pk∗, where pk∗ is a public key (either meaningless or
standard), B starts executing the protocol ΠPREP, playing for P2, while Z plays for P1. B does
exactly what the simulator would do, with some exceptions:

1. It uses the public key it got as input, instead of generating a key pair initially.
2. B cannot decrypt ciphertexts from P1 since it does not know the secret key (e.g. at step 4

of Initialize, step 2 of Pair, step 2 of Triple, etc.). Instead, B exploits that P1 and P2 ran the
protocol ΠZKPoPK with P1 as prover. That is, P1 proved that he knows encodings of appropriate
size corresponding to the plaintext inside the ciphertexts broadcast in the previous step. This
means B can use the knowledge extractor of the protocol ΠZKPoPK followed by decoding to

29



extract the shares from P1 (e.g. αi, βi at step 4 of Initialize, etc). At this point B continues the
protocol as if it had decrypted. Note that the knowledge extractor requires rewinding of the
prover (which here effectively is Z). B can do this as it runs its own copy of Z and since it also
controls the copy of FRand used in the protocol, it can issue challenges of its choice to Z.

3. When P2 gives a ZK proof for a set of ciphertexts, B will simulate the proof. This is done by
running the honest verifier simulator to get a transcript (a, e, (z, T )) and letting the copy of
FRand output e that occurs in the simulate transcript.

In the end B uniformly chooses to generate a real or a simulated view. In the first case, B
outputs to Z exactly those values for P2 that were used in the execution of the protocol. In the
other case, B generates the output for P2 as FPREP would do. That means that P2’s shares a2,b2, c2
of a triple 〈a〉, 〈b〉, 〈c〉 will be determined by choosing a,b at random, setting c ← a · b and then
letting a2 ← a− aReal1 , b2 ← b− bReal1 , c2 ← c− cReal1 .

It can now be seen that if pk∗ is a normal key, then the view generated by B corresponds
statistically to either a real or a simulated execution: if B chooses the simulation case, the only
differences to the actual simulator are 1) the simulator executes the ZK proofs given by P2 according
to the protocol while B simulates them; and 2) the simulator opens the ciphertexts using the secret
key to decrypt, while B uses the extractor for ΠZKPoPK and computes the plaintexts from its results.
As for 1) the ZK proof is statistical ZK so this leads to a statistically indistinguishable distribution.
As for 2), note that for every ciphertext ex generated by P1, the extractor for ΠZKPoPK will, except
with negligible probability, be able to find an encoding x (resp. randomness r) smaller than Bplain
(resp. Brand), with ex = Encpk(x, r). This follows from soundness of ΠZKPoPK and admissibility of
the cryptosystem. Then, by correctness of the cryptosystem, computing the plaintexts as B does,
will indeed give the same result as decrypting, except with negligible probability. If B chooses the
real case, a similar argument shows that we get a view statistically indistinguishable from a real
run of the protocol. Hence if pk∗ is a normal key, Z can guess B’s choice of “Real” or “Simulation”
with advantage essentially ε.

On the other hand if pk∗ is a meaningless key, the encryptions contain statistically no information
about the values inside. Moreover, all messages sent in the zero-knowledge protocols where P2 acts
as prover, do not depend on the specific values that P2 has, since the proofs are simulated. We
conclude that essentially no information on any value held by P2 is revealed. This is the case also
for step 5 of Reshare(em): m+f is retrieved, but no information on m is revealed, since f is uniform.

The view Z sees consists of the view of the corrupt player(s) and the output of the honest
player(s). We just argued that the view of the corrupt player is essentially independent of the
internal values B uses for P2, and hence also independent of whether B chooses the real or the
simulated case. Therefore, the output generated for the honest player(s) seen by Z is in both cases a
set of (essentially) uniformly and independently chosen shares and MAC keys. As a result, if we use
a meaningless key, a real execution and a simulated execution are statistically indistinguishable, and
the guess of Z will equal B’s random choice of “Real” or “Simulation” with probability essentially
1/2.

An easy calculation now shows that the advantage of B is

A(B) := Pr [“Standard Key”← B(pk)]− Pr
[
“Standard Key”← B(p̃k)

]
≥ A(Z)/2− δ
= ε/2− δ,

30



for some negligible δ that accounts for the differences between the involved distributions. However,
if ε is non-negligible, then ε/2− δ is also non-negligible, which contradicts the assumption on that
meaningless keys are statistically indistinguishable from standard ones. ut

A.6 Distributed Decryption

Proof (Theorem 4). The requirement B + 2sec · B < q/2 implies that t′ = t mod p, since ‖ri‖∞ <
2sec ·B/(n · p) for i = 1, . . . , n. Therefore the protocol allows players to retrieve the correct message
if all the players are honest.

We now build a simulator SDDec to work on top of FKeyGenDec, such that the adversary cannot
distinguish whether it is playing with the decryption protocol and FKeyGen or the simulator and
FKeyGenDec. We let A denote the set of players controlled by the adversary.

Simulator SDDec

Key Generation: This stage is needed to distribute shares of a secret key.
– Upon “start”, the simulator sends “start” to FKeyGenDec and obtains pk. Moreover, the simulator obtains

(ski)i∈A from the adversary.
– The simulator (internally) sets random (ski)i/∈A such that (ski)i=1,...,n is a full vector of shares of 0.
– The simulator sends pk to A.

Public Decryption: This stage simulates a public decryption.
– Upon “decrypt c,B”, the simulator sends “decrypt c” to FKeyGenDec and obtains m = Decsk(c).
– It then computes the value vi for all players except for an honest player Pj .
– It then samples rj uniformly with infinity norm bounded by 2sec ·B/(n · p) and computes

t̃j ← −
∑
i6=j

vi + p · rj + encode(m).

– For each other honest player Pi, it computes ti honestly (using c, ski).
– The simulator broadcasts the values (ti)i/∈A,i6=j , t̃j and obtains (t∗i )i∈A from the adversary.

– It then sends m′ ← decode
((

t̃j +
∑
i∈A t∗i +

∑
i/∈A,i6=j ti

)
mod p

)
to FKeyGenDec so that the ideal func-

tionality sends “Result m′” to all the players.
Private Decryption: This stage simulates a private decryption.

– Upon “decrypt c,B to Pj”, the simulator sends “decrypt c to Pj” to FKeyGenDec.
– If Pj is corrupt, the simulator obtains c,m = Decsk(c) from FKeyGenDec and acts as in the simulated

public decryption.
– If Pj is honest, the simulator receives c from FKeyGenDec, t∗i from each corrupt player Pi and ti from

each honest player.
• The simulator samples rj uniformly with infinity norm bounded by 2sec ·B/(n · p).
• It evaluates t̃j ← −

∑
i6=j vi + p · rj .

• It computes ε←
(
t̃j +

∑
i∈A t∗i +

∑
i/∈A,i6=j ti

)
mod p

• Finally it sends δ ← decode(ε) to FKeyGenDec in order to get Decsk(c) + δ to Pj .

Fig. 13. The simulator for ΠDDec.

In a simulated decryption the adversary receives pk and (ti)i/∈A,i 6=j , t̃j from SDDec. The distri-
bution of pk is the same as in a real conversation, since it was sampled using the same algorithm
as in a real conversation. The distribution of simulated ti, i 6= j is statistically close to the real
one, since ti was computed correctly using shares of a possible secret key. We can therefore focus
on the case where all the players but one are dishonest. We first analyse the simulation of public

31



decryption, introducing a hybrid machine, and prove its output is statistically indistinguishable
from Pj ’s output (in the real protocol) and perfectly indistinguishable from Pj ’s simulated output.

Hybrid: On input (ski)i=1,...,n, c, reconstruct sk, compute Decsk(c), sample rj uniformly with in-
finity norm bounded by 2sec ·B/(n · p) and output t̃j ← −

∑
i 6=j vi + p · rj + encode(m).

Notice that t̃j = vj−t+encode(m)+p ·rj . Now, for a distribution X, define ϕ(X) := p ·X+vj .
Notice that tj = ϕ(U), where U denotes the uniform distribution over vectors of integral entries
bounded with infinity norm 2sec · B/(n · p); moreover, since t − encode(m) is a multiple of p, one
can write t̃j = ϕ(U + (encode(m)− t)/p). Notice that ‖(encode(m)− t)/p‖∞ ≤ (B + p)/p, so the
distribution U + (encode(m)− t)/p is statistically close to U , since the probability of distinguishing
U + (encode(m)− t)/p and U is bounded by the ratio

‖(encode(m)− t)/p‖∞
2sec ·B/(n · p) + (B + p)/p

≤ (B + p)/p

2sec ·B/(n · p) + (B + p)/p
= O(n · 2−sec),

which is negligible. Therefore t̃j is statistically close to tj .
What is left to prove is that the simulation of private decryption to an honest player Pj is

statistically indistinguishable from the real protocol. In the real protocol Pj computes tj and

m′ ← decode

(∑
i∈A

t∗i +
∑
i/∈A

ti

)
.

In that case the error m′ −m introduced by the adversary depends only on the value

ε′ :=

(∑
i∈A

(t∗i − ti)

)
mod p

computed using the actual secret key. In the simulation the error introduced by the adversary is

ε =

t̃j +
∑
i∈A

t∗i +
∑

i/∈A,i 6=j

ti

 mod p =

(∑
i∈A

(t∗i − ti)

)
mod p,

computed using secret shares of 0. Since the secret sharing scheme has privacy threshold n and the
sums involve at most n− 1 shares, the quantities ε and ε′ are statistically indistinguishable. ut

B A lower Bound for the Preprocessing

In this section, we show that any preprocessing matching the properties we have, must output the
same amount of data as we do, up to a constant factor. We use the following theorem for 2-party
computation from [28]. It talks about a setting where the parties A,B have access to a functionality
that gives a random variable U to A and V to B with some guaranteed joint distribution PUV of
U, V . Given this, the parties compute securely a function f : X × Y 7→ Z, where A holds x ∈ X ,
and B holds y ∈ Y. This function should have the property that there exists inputs y1, y2 such that
for all x 6= x′, f(x, y1) 6= f(x′, y1); and for all x, x′, f(x, y2) = f(x′, y2). In other words, for some
inputs B learns all of A’s input, but other inputs B learns nothing new.

32



Theorem 6. Let f : X ×Y 7→ Z be a function with inputs y1, y2 as above. If there exists a protocol
that computes f securely with access to PUV and with error probability ε in the semi-honest model,
then

H(V ) ≥ I(U ;V ) ≥ log |X | − 7(ε log |X |+ h(ε))

We will also need the following technical lemma

Lemma 1. Let R be a random variable defined over the natural numbers. Then there exists a
constant C such that E(R) ≥ H(R)− 1− C.

Proof (Lemma 1). Let

I :=

{
i | i ≥ log

(
1

Pr[R = i]

)}
.

Under such a definition, one can write H(R) as

H(R) =
∑
i∈I

Pr[R = i] · log

(
1

Pr[R = i]

)
+
∑
i/∈I

Pr[R = i] · log

(
1

Pr[R = i]

)
By the construction of I, one can bound the first summand as follows∑

i∈I
Pr[R = i] · log

(
1

Pr[R = i]

)
≤
∑
i∈I

Pr[R = i] · i

≤
∑
i

Pr[R = i] · i

= E(R).

For the second summand one needs to work a bit more. Let q(i) := log(1/Pr[R = i]). Then∑
i/∈I

Pr[R = i] · log

(
1

Pr[R = i]

)
=
∑
i/∈I

2−q(i) · q(i).

We now claim that
2−q(i) · q(i) ≤ 2i · i, for all 0 6= i /∈ I.

This happens if and only if
2−q(i) · 2log(q(i)) ≤ 2−i · 2log(i).

Taking the logarithm of such relation one gets −q(i) + log(q(i)) ≤ −i+ log(i), which is equivalent
to q(i)− log(q(i)) ≥ i− log(i).
Since q(i) = log(1/Pr[R = i]) ≥ i for all i /∈ I, and i ≥ 1, the latter relation is always satisfied.
Therefore, one can bound the second summand by C +

∑
i≥1 2−i · i, where C = 2−q(0) · q(0).

Moreover
∑

i≥1 2−i · i converges to 1, so the second summand can be bound by 1 + C.
Finally, one can reassemble all the reasoning into one and get∑

i∈I
Pr[R = i] · log

(
1

Pr[R = i]

)
+
∑
i/∈I

Pr[R = i] · log

(
1

Pr[R = i]

)
≤ E(R) + C + 1.

The last inequality implies that H(R) ≤ E(R) + 1 + C ut

33



With this result, we can prove the lower bound claimed earlier:

Proof (Theorem 2). Suppose we have an on-line protocol π that satisfies the assumptions in the
theorem. Consider any player Pi and suppose we want to compute the function

fT ((x,x′), y) = yx + (1− y)x′.

Here y ∈ Fpk and x,x′ are vectors over Fpk of length T . Pi will have input y and each Pj , j 6= i will
have as input substrings xj ,x

′
j such that the concatenation of all xj (x′j) is x (x′). Finally, only

Pi learns the output fT ((x,x′), y).
Clearly, fT can be computed using a circuit of size O(T ), and this will be the circuit promised

in the theorem. Note that our assumed protocol π can handle circuits of size S and can therefore
compute fT securely where T is Θ(S).

We can now transform π to a two-party protocol π′ for parties A and B. A has input x,x′, B
has input y and B is supposed to learn fT ((x,x′), y). Now, π′ simply consists of running π where B
emulates Pi and A emulates all other players. We give to B whatever Pi gets from the preprocessing
and A gets whatever the other players receive, so this defines the random variables U and V . Since
π is secure if Pi is corrupt and also if all other players are corrupt, this trivially means that π′ is
an actively secure two-party protocol for computing fT .

This implies that π′ also computes fT with passive security. As noted in [28], this is actually not
necessarily the case for all functions. The problem is that if the adversary is passive, then active
security does guarantees that there is a simulator for this case, but such a simulator is allowed to
change the inputs of corrupted parties. A simulator for the passive case is not allowed to do this.
However, [28] observe that for some functions, an active simulator cannot get away with changing
the inputs, as this would make it impossible to simulate correctly. They show this is the case for
Oblivious Transfer which is essentially what fT is after we go to the 2-party case. We may therefore
assume π′ is also passively secure.

Finally, we define f ′T (x, y) = fT ((x,0), y) = yx. Obviously π′ can be used to compute f ′T
securely, A just sets her second input to be 0. Moreover f ′T satisfies the conditions in Theorem
6. So we get that H(V ) ≥ log |X | − 7(ε log |X | + h(ε)). If we adopt the standard convention that
the security parameter grows linearly with the input size log |X | then because ε is negligible in the
security parameter, we have that the “error term” 7(ε log |X |+ h(ε)) is o(log |X |).

So we get that H(V ) is Ω(log |X |) = Ω(T log pk) = Ω(S log pk), since T is Θ(S). Recalling that
H(V ) is actually the entropy of the variable Pi received in the original protocol π, we get the first
conclusion of the Theorem.

For the second conclusion about the computational work done, it is tempting to simply claim
that B has to at least read the information he is given and so H(V ) is a lower bound on the
expected number of bit operations. But this is not enough. It is conceivable that in every particular
execution, B might only have to read a small part of the information.

It turns out that this does not happen, however, which can be argued as follows: let B(V ) be
the random variable representing the bits of V that B actually reads. By inspection of the proof of
Theorem 6, one sees that if we replace everywhere V by B(V ) the same proof still applies. So in fact,
we have H(B(V )) ≥ log |X | − 7(ε log |X | + h(ε)). Now let R be the random variable representing
the number of bits B reads from V .

If we condition on R, then the entropy of B(V ) cannot drop by more than H(R), so we have

H(B(V )|R) ≥ H(B(V ))−H(R) ≥ log |X | − 7(ε log |X |+ h(ε))−H(R).

34



Moreover, we also have

H(B(V )|R) =
∑
r

Pr(R = r)H(B(V )|R = r) ≤
∑
r

Pr(R = r)r = E(R)

Putting these two inequalities together, we obtain that

E(R) +H(R) ≥ log |X | − 7(ε log |X |+ h(ε)).

Now, either E(R) ≥ (log |X | − 7(ε log |X |+ h(ε)))/2, or H(R) ≥ (log |X | − 7(ε log |X |+ h(ε)))/2. In
the latter case we have from Lemma 1 that E(R) is much larger than H(R), so we can certainly
conclude that E(R) ≥ (log |X |−7(ε log |X |+h(ε)))/2 in any case. As above, the error term depending
on ε becomes negligible for increasing security parameter, so we get that E(R) is Ω(S log pk) as
desired. ut

C Canonical Embeddings of Cyclotomic Fields

Our concrete instantiation will use some basic results of Cyclotomic fields which we now recap on;
these results are needed for the main result of this Appendix which is a proof of a “folklore” result
about the relationship between norms in the canonical and polynomial embeddings of a cyclotomic
field. This result is used repeatedly in our main construction to produce estimates on the size of
parameters needed.

C.1 Cyclotomic Fields

We first recap on some basic facts about numbers fields, and their canonical embeddings. Focusing
particularly on the case of cyclotomic fields.

Number Fields An algebraic number (resp. algebraic integer) θ ∈ C is the root of a polynomial
(resp. monic polynomial) with coefficients in Q (resp. Z). The minimal polynomial of θ is the unique
monic irreducible f(x) ∈ Q[X] which has θ as a root.

A number field K = Q(θ) is the field obtained by adjoining powers of an algebraic number θ to
Q. If θ has minimal polynomial f(x) of degree N , then K can be considered as a vector space over
Q, of dimension N , with basis {1, θ, . . . , θN−1}. Note that this “coefficient embedding” is relative
to the defining polynomial f(x) Equivalently we have K ∼= Q[X]/f(X), i.e. the field of rational
polynomials with degree less than N , modulo the polynomial f(X). Without loss of generality we
can assume K, from now on, is defined by a monic irreducible integral polynomial of degree N .
The ring of integers OK of K is defined to be the subring of K consisting of all elements whose
minimal polynomial has integer coefficients.

Canonical Embedding There are N field morphisms σi : K −→ C which fix every element of Q.
Such a morphism is called a complex embedding and it takes θ to each distinct complex root of
f(X). The number field K is said to have signature (s1, s2) if the defining polynomial has s1 real
roots and s2 complex conjugate pairs of roots; clearly N = s1 + 2 · s2. The roots are numbered in
the standard way so that σi(θ) ∈ R for 1 ≤ i ≤ s1 and σi+s1+s2(θ) = σi+s1(θ) for 1 ≤ i ≤ s2. We
define σ = (σ1, . . . , σN ), which defines the canonical embedding of K into Rs1 × C2·s2 , where the
field operations in K are mapped into componentwise addition and multiplication in Rs1 × C2·s2 .
To ease notation we will often write α(i) = σi(α), for α ∈ K. We will let ‖α‖p for p ∈ [1, . . . ,∞]
denote the p-norm of α in the coefficient embedding (i.e. the p-norm of the vector of coefficients)
and let ‖σ(α)‖p denote norms in the canonical embedding.

35



Cyclotomic Fields We will mainly be concerned with cyclotomic number fields. The mth cyclotomic
polynomial is given by Φm(X), this is an irreducible polynomial of degree N = φ(m). The number
field defined by Φm(X) is said to be a cyclotomic number field, and is defined by K = Q(ζm), where
ζm is an mth root of unity, i.e. a root of Φm(X). The ring of integers of K is equal to Z[ζm]. The
number field K is Galois, and hence (importantly for us) the polynomial splits modulo p (for any
prime p not dividing m) into a produce of distinct irreducible polynomials all of the same degree.

The key fact is that if Φm(X) has degree d factors modulo the prime p then m divides pd−1. To
see this notice that if Φm(X) factors into N/d factors each of degree d then the finite field Fpd must

contain the mth roots of unity and so m divides pd − 1. In the other direction, if d is the smallest
integer such that m divides pd− 1 then Φm(X) will have a degree d factor since the decomposition
group of the prime p in the Galois group will have order d.

C.2 Relating Norms Between Canonical and Polynomial Embeddings

There is a distinct difference between the canonical and polynomial embeddings of a number field.
In particular notice the following expansions upon multiplication, for x, y ∈ OK ,

‖x · y‖∞ ≤ δ∞ · ‖x‖∞ · ‖y‖∞.
‖σ(x · y)‖p ≤ ‖σ(x)‖∞ · ‖σ(y)‖p.

where

δ∞ = sup

{
‖a(X) · b(X) (mod f(X))‖∞

‖a(X)‖∞ · ‖b(X)‖∞
: a, b ∈ Z[X],deg(a),deg(b) < N

}
.

In this section we show that one can more tightly control the expansion factor of elements in the
polynomial representation; as long as they are drawn randomly with a discrete Gaussian distribu-
tion. In particular we prove the following theorem; this result is well known to people working in
ideal lattice theory, but proofs have not yet appeared in any paper.

Theorem 7. Let K denote a cyclotomic number field then there is a constant Cm, depending only
on m, such that for all α ∈ OK we have

– ‖σ(α)‖∞ ≤ ‖α‖1.

– ‖α‖∞ ≤ Cm · ‖σ(α)‖∞.

We recall some facts about various matrices associated with roots of unity, see [26] and the full
version of [22]. First some notation; for any integer m ≥ 2: We set ζm = exp(2 ·π ·

√
−1/m) to be a

root of unity for an integer m. As usual we let N = φ(m) and we define Z∗m = {am,i : 0 ≤ i < N}
to be a complete set of representatives for Z∗m with 1 ≤ am,i < m. We let A ⊗ B, for matrices A
and B, denote the Kronecker product. We let It denote the t× t identity matrix. All a× b matrices
M in this section will have elements mi,j indexed by 0 ≤ i < a and 0 ≤ j < b; i.e. we index from
zero; this is to make some of the expressions easier to write down. The infinity norm for a matrix
M = (mi,j) is defined by

‖M‖∞ := max


N−1∑
j=0

|mi,j |


N−1

i=0

.

36



We define the N ×N CRT matrix as follows:

CRTm :=
(
ζ
am,i·j
m

)
0≤i,j<N

.

Then we define the constant Cm in the above theorem as Cm = ‖CRT−1m ‖∞. From which the proof
now immediately follows:

Proof (Theorem 7). For a cyclotomic field the canonical embedding is given by the map σ(α) =
CRTm ·α, where α is the vector of the coefficient embedding of α, i.e. α considered as a polynomial
in θ a root of F (X) = Φm(X) and CRTm is the matrix, defined earlier, i.e. it is equal to

CRTm =

1 θ(1) . . . θ(1)N−1

...
...

...

1 θ(N) . . . θ(N)N−1

 .

For the first part of the theorem we note that, on writing α =
∑N−1

i=0 xi · θi, we have

∣∣∣α(i)
∣∣∣ =

∣∣∣∣∣∣
N−1∑
j=0

xj · θ(i)j
∣∣∣∣∣∣ ≤

N−1∑
j=0

|xj | · |θ(i)j | =
N−1∑
j=0

|xj | = ‖x‖1 = ‖α‖1.

For the second part we note that for all β ∈ OK ,

‖β‖∞ = ‖CRT−1m · σ(β)‖∞ ≤ ‖CRT−1m ‖∞ · ‖σ(β)‖∞

from which the result follows. ut
The key question then is how large can Cm become. So we now turn to this problem; giving a
partial answer.

The m×m DFT matrix is defined by:

DFTm :=
(
ζi·jm
)
0≤i,j<m .

Let m′ be a divisor of m then for i ∈ {0, . . . ,m− 1} we write i0 = i mod m′ and i1 = (i− i0)/m′.
We then define the m×m “twiddle matrix” to be the diagonal matrix defined by

Tm,m′ := Diag
{
ζi0·i1m

}
i=0,...,m−1 .

Finally we define Lmm′ to be the permutation matrix which fixes the row with index m−1, but sends
all other rows i, for 0 ≤ i < m − 1, to row i ·m′ mod m − 1. Following [26] we use these matrices
to decompose the matrix Dm into D′m and Dk, where m = m′ · k, via the following identity

DFTm = Lmm′ · (Ik ⊗ DFTm′) · Tm,m′ · (DFTk ⊗ Im′) , (3)

This is nothing but the general Cooley-Tukey decomposition of the DFT for composite m. Consider
the Vandermonde matrix

V (x1, . . . , xm) :=


1 x1 x21 . . . xm−11

1 x2 x22 . . . xm−12
...

...
...

...
1 xm x2m . . . xm−1m

 .

It is clear that DFTm = V (1, ζm, ζ
2
m, . . . , ζ

m−1
m ).

37



Lemma 2. We have, for any m,

DFT−1m =
1

m
· V (1, ζ−1m , ζ−2m , . . . , ζ1−mm )

Proof. Let δi,j be defined so that δi,j = 0 if i 6= j and equal to one otherwise. We have(
V (1, ζm, ζ

2
m, . . . , ζ

m−1
m ) ·V (1, ζ−1m , ζ−2m , . . . , ζ1−mm )

)
i,j

=
∑

0≤k<m
ζi·kn · ζ−k·jm

=
∑

0≤k<m
ζk·(i−j)m = m · δi,j .

ut

This leads to the following lemma which gives shows that the infinity norm of the inverse of the
DFT matrix is always equal to one.

Lemma 3. For any m we have ‖DFT−1m ‖∞ = 1.

Proof. If ζm is an m-th root of unity, it is clear that ‖V (1, ζm, ζ
2
m, . . . , ζ

m−1
m )‖∞ = m. In addition

we have ψm = 1/ζm is also an m-th root of unity, thus

‖DFT−1m ‖∞ =
1

m
· ‖V (1, ψm, ψ

2
m, . . . , ψ

m−1
m )‖∞ =

m

m
= 1.

ut

Let m = pe11 · · · p
es
k we define r = p1 · · · ps, m1 = m/r; hence N = φ(m) = φ(r) ·m1. In [22] the

authors specialise the decomposition (3) (by selecting appropriate rows and columns) in the case
m′ = m1 and k = r, to show that to show that, upto a permutation of the rows, the matrix CRTm
is equal to (

Iφ(r) ⊗ DFTm1

)
· T ∗m,m1

· (CRTr ⊗ Im1)

where Tm,m1
∗ is another diagonal matrix consisting of roots of unity. We then have that

Lemma 4. For an integer m ≥ 2 such that m = pe11 · · · p
ek
k we write r = p1 · · · pk, we then have

Cm ≤ Cr.

Proof. As above we write m1 = m/r. First note that ‖A ⊗ It‖∞ = ‖Is ⊗ A‖∞ = ‖A‖∞ for any
matrix A and any integers s and t. Then also note that since CRTm is given, upto a permutation
of the rows, by the above decomposition, we have that CRT−1m is given up to a permutation of the
rows by the decomposition (

CRT−1r ⊗ Im1

)
· T−1 ·

(
Iφ(r) ⊗ DFT−1m1

)
.

So we have

‖CRT−1m ‖∞ = ‖
(
CRT−1r ⊗ Im1

)
· T−1 ·

(
Iφ(r) ⊗ DFT−1m1

)
‖∞,

≤ ‖CRT−1r ⊗ Im1‖∞ · ‖T−1‖∞ · ‖Iφ(r) ⊗ DFT−1m1
‖∞,

= ‖CRT−1r ‖∞ · ‖T−1‖∞ · ‖DFT−1m1
‖∞ = ‖CRT−1r ‖∞.

ut

38



This result means that we can bound Cm for infinite families of values of m, by simply deducing a
bound on Cr, where r is the product of all primes dividing m. For example notice that CRTr = (1)
and hence C2e = C2 = 1 for all values of e. Indeed it is relatively straight forward to determine the
exact value of Cp for a prime p:

Lemma 5. If p is a prime then

Cp =
2 · sin(π/p)

p · (cos(π/p)− 1)
.

Proof. 7 First note that it is a standard fact from algebra (by consider inverses of Vandermonde
matrices for example) that the entries of a row of the matrix CRT−1p are given by the coefficients
of the polynomial

Φp(X)

Φ′p(ζp) · (X − ζp)
, (4)

where each row uses a different root of unity ζp. We then note that

Φ′p(ζp) = (ζp − ζ2p ) · (ζp − ζ3p ) · · · (ζp − ζp−1p )

= ζ−2p · (1− ζp) · (1− ζ2p ) · · · (1− ζp−2p ) · (1− ζp−1p )

(1− 1/ζp)

=
ζ−2p p

1− 1/ζp
=

p

ζ2p − ζp
.

Thus the coefficients of the polynomial in (4) are given by ζp · (ζrp −1)/p for r = 1, . . . , p−1. Where
each row of our matrix is given by a different pth root ζp.

Thus to determine the infinity norm of CRT−1p we simply need to sum the absolute values of
these coefficients, for the first row, since all other rows will be equal:

Cp =

p−1∑
r=1

|ζp(ζrp − 1)/p| = 1

p

p−1∑
r=1

√
2− 2 · cos(2rπ/p)

=
1

p

p−1∑
r=1

2 · sin(rπ/p) =
2 · sin(π/p)

p · (cos(π/p)− 1)

ut

In practice this result means that Cp ≈ 4/π ≈ 1.2732 for all p ≥ 11.
If m is odd then we see that, subject to a permutation of the rows, the matrix CRT2m and

CRTm are identical up to a multiple of −1 for every second column. Thus we have

C2m = Cm for odd values of m.

We find that Cr ≤ 8.6 for squarefree r ≤ 400, which provides a relatively small upper bound on
Cm for an infinite family of cyclotomic fields K. It appears that the size of Cm depends crucially on
the number of prime factors of m. Thus it is an interesting open question to provide a tight upper
bound on Cm. Indeed the growth in Cm seems to be closely related to the growth in the coefficients
of the polynomial Φm(X), which also depends on the number of prime factors of m.

7 This proof was provided to us by Robin Chapman .

39



C.3 Application of the above bounds

An immediate consequence of Theorem 7 is to provide an upper bound on the value δ∞ for cyclo-
tomic number fields. Let α ∈ OK then we have, by the standard inequalities between norms, that
‖α‖1 ≤ N · ‖α‖∞. Thus we have, for α, β ∈ OK ,

‖α · β‖∞ ≤ Cm · ‖σ(α · β)‖∞ ≤ Cm · ‖σ(α)‖∞ · ‖σ(β)‖∞
≤ Cm · ‖α‖1 · ‖β‖1
≤ Cm ·N2 · ‖α‖∞ · ‖β‖∞,

i.e. δ∞ ≤ Cm · N2. When m is a power of two, since Cm = 1 we find the bound δ∞ ≤ φ(m)2;
however in this case it is known that δ∞ = φ(m), thus the above bound is not tight.

A more interesting application, for our purposes, is to bound the infinity norm in the polynomial
embedding of the product of two elements which have been selected with a discrete Gaussian. To
demonstrate this result we will first need to introduce the following standard tailbound:

Lemma 6. Let c ≥ 1 and C = c · exp(1−c
2

2 ) < 1 then for any integer N ≥ 1 and real r > 0 we have

Pr
x←DZN,s

[
‖x‖2 ≥ c · s ·

√
N

2 · π

]
≤ CN .

Note that this implies that

Pr
x←DZN,s

[
‖x‖2 ≥ 2 · r ·

√
N
]
≤ 2−N ,

where r = s/
√

2 · π. If we therefore select α, β ∈ DZN ,s, consider them as elements of OK , we then

have, with overwhelming probability that ‖α‖2, ‖β‖2 ≤ 2 · r ·
√
N . We then apply the standard

inequality between the 2- and the 1-norm to deduce ‖α‖1, ‖β‖1 ≤ 2 · r ·N . We then have that

‖α · β‖∞ ≤ Cm · ‖σ(α · β)‖∞ ≤ Cm · ‖σ(α)‖∞ · ‖σ(β)‖∞
≤ Cm · ‖α‖1 · ‖β‖1
≤ 4 · Cm · r2 ·N2.

D Security, Parameter Choice and Performance

In this Appendix we show that our concrete SHE scheme meets all the security requirements
required by our MPC protocol, i.e. that it is an admissible cryptosystem. On the way we derive
parameter settings, and finally we present some implementation results for the core operations.

Recall a cryptosystem is admissible if it meets the following requirements:

– It is IND-CPA secure.
– It has a KeyGen∗ function with the required properties.
– It is (Bplain, Brand, C)-correct, where Bplain = N · τ · sec2 · 2sec/2+8, Brand = d · ρ · sec2 · 2sec/2+8,

and where C, the set of functions we can evaluate on ciphertexts, contains all formulas evaluated
in the protocol ΠPREP’ (including the identity function). Note that here we choose the values
for Bplain, Brand that correspond to the most efficient variant of the ZK proofs.

Recall in the expressions for Bplain and Brand we have d is the dimension of the randomness space,
i.e. d = 3 · N , τ is a bound on the infinity norm of valid plaintexts, i.e. p/2; and ρ is a bound on
the infinity norm of the randomness in validly generated ciphertexts, i.e. ρ ≈ 2 · r ·

√
N , by the

tailbound of Lemma 6.

40



IND-CPA and KeyGen∗’s properties: We first turn to discussing security. Since our scheme is
identical (bar the distributed decryption functionality) to that of [7], security can be reduced to
the hardness of the following problem.

Definition 2 (PLWE Assumption). For all sec ∈ N, let f(X) = fsec(X) ∈ Z[X] be a polynomial
of degree N = N(sec), let q = q(sec) ∈ Z be a prime integer, let R = Z[X]/f(X) and R = R/qR,
and let χ denote a distribution over the ring R. The polynomial LWE assumption PLWEf,q,χ states
that for any l = poly(sec) it holds that

{(ai, ai · s+ ei)}i∈[l] ≈ {(ai, ui)}i∈[l]

where s is sampled from the distribution χ, and ai, ui are uniformly random in Rq. We require
computational indistinguishability to hold given only l samples, for some l = poly(sec).

In particular our scheme is semantically secure if the PLWEΦm(X),q0,DNρ (s)-problem is hard. The

hardness of the same problem also implies that the output from KeyGen() is computationally
indistinguishable from that of KeyGen∗().

Thus our first task is to derive relationships between the parameters so as to ensure the first
two properties of being admissible are satisfied, i.e. the PLWE problem is actually hard to solve.
The basic parameters of our scheme are the degree of the associated number field N = φ(m),
the standard deviation r of the used Gaussian distribution, and the modulus q. We first turn to
estimating r; we do this by using the “standard” analysis of the underlying LWE problem.

We first ensure that r is chosen to avoid combinatorial style attacks. Consider the underlying
LWE problem as being given by s ·A+ e = v, where e is the LWE error vector, and A is a random
N × t matrix over Fq. In [1] the authors present a combinatorial attack which breaks LWE in time

2O(‖e‖2∞) with high probability. Since e is chosen by the discrete Gaussian with standard deviation
r, if we pick r large enough then this attack should be prevented. Thus choosing r such that r > 3.2
will ensure that r is large enough to avoid combinatorial attacks, i.e. s ≥ 8.

We now turn to the distinguishing problem, namely given v can we determine whether it arises
from an LWE sample, or from a uniform sample. We determine a lower bound on N . The natural
“attack” against the decision LWE problem is to first find a short vector w in the dual lattice
Λq(A

T)∗ and then check whether w · vT is close to an integer. If it is then the input vector is an
LWE sample, if not it is random. Thus to ensure security, following the argument in [23][Section
5.4.1], we require

r ≥ 1.5

‖w‖2
.

Following the work of [14] we can estimate, for t� N , the size of the output of a lattice reduction
algorithm operating on the lattice Λq(A

T)∗. In particular if the algorithm tries to find a vector
with root Hermite factor δ (thus δ measures the difficulty in breaking the underlying SHE system,
typically one may select δ ≈ 1.005, but see later for other choices) then we expect to find a vector
w of size

1

q
min(q, δt · qN/t).

Following the analysis of [23] the above quantity is minimized when we select t = t′ :=
√
N log(q)/ log(δ).

This leads us to the deduce the lower bound

r ≥ 1.5 ·max(1 , δ−t
′ · q1−N/t′).

41



Noise of a Clean Ciphertext: We now turn to determining the bound, in the infinity norm,
of the value obtained in decrypting valid ciphertexts. Consider what happens when we decrypt a
clean ciphertext, encrypted via (c0, c1) = Encpk(x, r), with r = (u,v,w). This looks like a PLWE
sample (c1, c0) where the “noise” term, for a validly generated clean ciphertext, is given by

t = c0 − s · c1
= x + p · (e · v + w + s · u)

By our estimates in Appendix C.3 we can bound the infinity norm of t by

‖t‖∞ ≤
p

2
+ p ·

(
4 · Cm · r2 ·N2 + 2 ·

√
N · r + 4 · Cm · r2 ·N2

)
=: Y.

(Bplain, Brand, C)-correctness: Whilst IND-CPA is about security in relation to validly created
ciphertexts, our distributed decryption functionality must be secure even when some ciphertexts
are not completely valid. This was why we introduced the notion of (Bplain, Brand, C)-correctness.
We need to pick Bplain and Brand so that Bplain ≥ N ·τ ·sec2 ·2sec/2+8 and Brand ≥ d·ρ·sec2 ·2sec/2+8.
Since Bplain � Brand we estimate the noise term associated to such a “clean” ciphertext will be
bounded by Y ′ = (Brand/ρ)2 · Y = 9 ·N2 · sec4 ·2sec+16 · Y . In our MPC protocol we only need to
be able to evaluate functions of the form

(x1 + · · ·+ xn) · (y1 + · · ·+ yn) + (z1 + · · ·+ zn).

We can, via the results in Appendix C.3, crudely estimate the size of B, from Section 6, needed to
ensure valid decryption. Our crude (over-) estimate therefore comes out as

B ≤ δ∞ · (n · Y ′) · (n · Y ′) + (n · Y ′)
≤ Cm ·N2 · n2 · Y ′2 + n · Y ′

≤ Cm ·N2 · n2 · c2sec · Y 2 + n · csec · Y =: Z

where csec = 9 ·N2 · sec4 · 2sec+8. We take Z as the bound, which we then need to scale by 1 + 2sec

to ensure we have sufficient space to enable the distributed decryption algorithm. Hence, the value
of q needs to be selected so that Z · (1 + 2sec) < q/2.

So in summary we need to choose parameters such that

q > 2 · Z · (1 + 2sec),

r > max
{

3.2, 1.5 · δ−t′ · q1−N/t′
}
,

where sec is the statistical security parameter, δ is a measure of how hard it is to break the
underlying SHE scheme, and t′ =

√
N log(q)/ log(δ). This leads to a degree of circularity in the

dependency of the parameters, but valid parameter sets can be found by a simple search technique.

42



Specific Parameter Sets: To determine parameters for fixed values of (Fpk)s and n we proceed
as follows. There are two interesting cases; one where p is fixed (i.e. p = 2) and one where we only
care that p is larger than some bound (i.e. p > 232, or p > 264). The latter case of p > 264 is more
interesting as such size numbers can be utilized more readily in applications since we can simulate
integer arithmetic without overflow with such numbers. In addition using such a value of p means
we do not need to repeat our ZKPoKs, or replicate the MACs so as to get a cheating probability
of less than 2−40.

Our method in all cases is to first fix p, n, sec and δ, we then search using the above inequalities
for (rough) values of q and N which satisfy the inequalities above. We then search for exact values
of p and N which satisfy our functional requirements on p (i.e. fixed or greater than some bound)
plus N larger than the bound above, such that N is the degree of F (X) = Φm(X) and F (X) splits
into at least s factors of degree divisible by k over Fp.

Given this precise value for N , we then return to the above inequalities to find exact values of
q and r. In all our examples below we pick n = 3, sec = 40, and δ = 1.0052.

Example 1. We first look at p > 232. Our first (approximate) search reveals we need N > 14300,
q ≈ 2430 and r = 3.2 (assuming Cm ≤ 2). We then try to find an optimal value of N ; this is done
by taking increasing primes p > 232 and factoring p− 1. The factors of p− 1 correspond to values
of m such that Φm(X) factors into φ(m) factors modulo p. So we want to find a p such that p− 1
is divisible by an m, so that N = φ(m) > 14300. A quick search reveals candidates of

(p,N,m) = (232 + 32043, 14656, 14657).

Picking m in this way will maximise the value of s = n, and hence allow us to perform more
operations in parallel. In addition since m is prime we know, by Lemma 5, that Cm ≈ 1.2732, thus
justifying our assumption in deriving the bounds of Cm ≤ 2.

Selecting m to be the prime 14657 in addition allows us to evaluate s = p−1 = 14656 runs of the
triple production algorithm in parallel. The message expansion factor, given we require N · log2(q)
bits to represent N elements in Fp is given by

N · log2(q)

N · log2(p)
=

log2(q)

log2(p)
=

430

32
≈ 13.437.

Example 2. Performing the same analysis for a p > 264, our first naive search of parameters reveal
we need an n ≈ 16700 and q ≈ 2500. We then search for specific parameters and find p = 264 + 4867
is pretty near to optimum, which results in a prime value of m of 16729. We find the expansion
factor is given by

log2(q)

log2(p)
=

500

64
≈ 7.81.

Example 3. We now look at the case p = 2 and k = 8, i.e. we are looking for parameters which
would allow us to compute AES circuits in parallel; or more generally circuits over F28 . Our first
approximate search reveals that we need N > 12300, q ≈ 2370 and r = 3.2. So we now need to
determine a value m such that

N = φ(m) > 12100 and 2d ≡ 1 (mod m) and d ≡ 0 (mod 8).

43



A quick search reveals candidates of

(m,N) = (17425, 12800)

since Φ17425(X) factors into s = 320 factors of degree d = 40 modulo 2. Thus using this value of m
we are able to work with s = 320 elements of F28 in parallel. The message expansion factor, given
we require N · log2(q) bits to represent 320 elements in F28 is given by

N · log2(q)

8 · s
=
d · 370

8
= 1850.0

For this value of m we find C17425 ≈ 9.414.

We present the following run-times we have achieved. We time the operations for encrypting
and decrypting clean ciphertexts, the time to homomorphically compute (cx�cy)�cz, plus the time
to decrypt the said result. The times are given in seconds, and in brackets we present the amortized
time per finite field element. All timings were performed on an Intel Core-2 6420 running at 2.13
GHz.

Enc Dec (Clean) (cx � cy) � cz Decsk((cx � cy) � cz)
Example Time (s) Time (s) Time (s) Time (s)

1 0.72 {0.00005} 0.35 {0.00002} 1.43 {0.0001} 0.72 {0.00005}
2 3.13 {0.00019} 1.54 {0.00009} 6.27 {0.0004} 3.15 {0.00018}
3 1.26 {0.00394} 0.60 {0.00188} 2.46 {0.0077} 1.23 {0.00384}

Estimating Equivalent Symmetric Security Level: The above examples were computed using
the root Hermite factor of δ = 1.005. Mapping this “hardness” parameter for the underlying lattice
problem to a specific symmetric security level (i.e. 80-bit security, or 128-bit security) is a bit of a
“black art” at present.

In [9] the authors derive an estimate for the block size needed to obtain a given root Hermite
factor, assuming an efficient BKZ lattice reduction algorithm is used. They then provide estimates
as to the run time needed for a specific enumeration using this block size. As an example of their
analysis they estimate that a block size of 286 is needed to obtain a root Hermite factor of δ = 1.005.
Then they estimate that the run time needed to perform the enumeration in a projected lattice of
such dimension (the key sub-procedure of the BKZ algorithm) takes time roughly between 280 and
2175 operations. Thus a value of δ = 1.005 can be considered secure; however their estimates are
not precise enough to produce parameters associated with a given symmetric security level.

In [20] the authors take a different approach and simply extrapolate run times for the NTL
implementation of BKZ. By looking at various LWE instances, they derive the following equation
linking the expected run-time of a distinguishing attack and the root Hermite factor

log2 T =
1.8

log2 δ
− 110.

The problem with this approach is that NTL’s implementation of BKZ is very old, and hence is
not state-of-the-art; on the other hand we are able to derive a direct linkage between δ and log2 T .
Using this equation we find the following equivalences:

44



log2 T 80 100 128 196 256
δ 1.0066 1.0059 1.0052 1.0041 1.0034

Using these estimates for δ we re-run the above analysis to find approximate values for N and
q in our three example applications; again assuming n = 3 and sec = 40.

Fp : p > 232 Fp : p > 264 F28

N > log2 q ≈ N > log2 q ≈ N > log2 q ≈
δ = 1.0066 11300 430 12900 490 9500 360
δ = 1.0059 12600 430 14700 500 10900 370
δ = 1.0052 14300 430 16700 500 12300 370
δ = 1.0041 18600 440 21100 500 15600 370
δ = 1.0034 22400 440 25500 500 18800 370

As can be seen the security parameter has only marginal impact on log2 q, and results in a
doubling of the size of N as we increase from a security level of 80 bits to 256 bits. As a comparison
if we, for security level 128 bits, i.e. δ = 1.0052, increase the value of sec from 40 to 80 we find the
following parameter sizes:

Fp : p > 232 Fp : p > 264 F28

N > log2 q ≈ N > log2 q ≈ N > log2 q ≈
δ = 1.0052 18700 560 21000 630 16700 500

E Functionalities

Functionality FRand

Random Sample: When receiving (rand) from all parties, it samples a uniform r ← {0, 1}u and outputs
(rand , r) to all parties.

Random modulo p: When receiving (rand , p) from all parties, it samples a uniform value e← Fpk and outputs
(rand , e) to all parties.

Fig. 14. The ideal functionality for coin-flipping.

Functionality FAMPC

Initialize: On input (init , pk) from all parties, the functionality activates and stores the modulus p.
Input: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?) from all other parties, with varid a fresh

identifier, the functionality stores (varid , x).
Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory and

varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y mod p).
Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory

and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y mod p).
Output: On input (output , varid) from all honest parties (if varid is present in memory), the functionality

retrieves (varid , x) and outputs it to the environment. If the environment inputs OK then x is output to all
players. Otherwise ⊥ is output to all players.

Fig. 15. The ideal functionality for arithmetic MPC.

45



Functionality FPREP

Usage: We first describe two macros, one to produce [[v]] representations and one to produce 〈v〉 representations.
We denote by A the set of players controlled by the adversary.

Bracket(v1, . . . ,vn,∆1, . . . ,∆n, β1, . . . , βn), where v1, . . . ,vn,∆1, . . . ,∆n ∈ (Fpk )s, β1, . . . , βn ∈ Fpk
1. Let v =

∑n
i=1 vi

2. For i = 1, . . . , n
(a) The functionality computes the MAC γ(v)i ← v · βi and sets γi ← γ(v)i +∆i

(b) For every corrupt player Pj , j ∈ A the environment specifies a share γji
(c) The functionality sets each share γji , j /∈ A, uniformly such that

∑n
j=1 γ

j
i = γi

3. The functionality sends (vi, (βi, γ
i
1, . . . , γ

i
n)) to each honest player Pi (dishonest players already have

the respective data).
Angle(v1, . . . ,vn,∆, α), where v1, . . . ,vn,∆ ∈ (Fpk )s, α ∈ Fpk

1. Let v =
∑n
i=1 vi

2. The functionality computes the MAC γ(v)← α · v and sets γ ← γ(v) +∆
3. For every corrupt player Pi, i ∈ A the environment specifies a share γi
4. The functionality sets each share γi i /∈ A uniformly such that

∑n
i=1 γi = γ

5. The functionality sends (0,vi, γi) to each honest player Pi (dishonest players already have the respective
data).

Initialize: On input (init , p, k, s) from all players, the functionality stores the prime p and the integers k, s. It
then waits for the environment to call either “stop” or “OK”. In the first case the functionality sends “fail”
to all honest players and stops. In the second case it does the following:
1. For each corrupt player Pi, i ∈ A, the environment specifies a share αi
2. The functionality sets each share αi, i /∈ A uniformly
3. For each corrupt player Pi, i ∈ A, the environment specifies a key βi
4. The functionality sets each key βi i /∈ A uniformly
5. The environment specifies ∆1, . . . ,∆n ∈ (Fpk )s

6. It runs the macro Bracket(Diag(α1), . . . ,Diag(αn),∆1, . . . ,∆n, β1, . . . , βn).
Pair: On input (pair) from all players, the functionality waits for the environment to call either “stop” or “OK”.

In the first case the functionality sends “fail” to all honest players and stops. In the second case it does the
following:
1. For each corrupt player Pi, i ∈ A, the environment specifies a share ri
2. The functionality sets each share ri, i /∈ A uniformly
3. The environment specifies ∆,∆1, . . . ,∆n ∈ (Fpk )s

4. It runs the macros Bracket(r1, . . . , rn,∆1, . . . ,∆n, β1, . . . , βn) and Angle(r1, . . . , rn,∆, α).
Triple: On input (triple) from all players, the functionality waits for the environment to call either “stop” or

“OK”. In the first case the functionality sends “fail” to all honest players and stops. In the second case it
does the following
1. For each corrupt player Pi, i ∈ A, the environment specifies shares ai,bi
2. The functionality sets each share ai,bi, i /∈ A uniformly. Let a :=

∑n
i=1 ai, b :=

∑n
i=1 bi

3. The environment specifies ∆a,∆b, δ ∈ (Fpk )s

4. It sets c← a · b + δ
5. For each corrupt player Pi, i ∈ A, the environment specifies shares ci
6. The functionality sets each share ci, i /∈ A uniformly with the constrain

∑n
i=1 ci = c

7. The environment specifies ∆c ∈ (Fpk )s

8. It runs the macros Angle(a1, . . . ,an,∆a, α), Angle(b1, . . . ,bn,∆b, α), Angle(c1, . . . , cn,∆c, α).

Fig. 16. The ideal functionality for making the global key [[α]], pairs [[r]], 〈r〉 and triples 〈a〉, 〈b〉, 〈c〉

46


