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Abstract. We put forward the study of a new primitive that we call Vector Commitment (VC, for
short). Informally, VCs allow to commit to an ordered sequence of q values (m1, . . . ,mq) in such a way
that one can later open the commitment at specific positions (e.g., prove that mi is the i-th committed
message). For security, Vector Commitments are required to satisfy a notion that we call position
binding which states that an adversary should not be able to open a commitment to two different
values at the same position. Moreover, what makes our primitive interesting is that we require VCs
to be concise, i.e. the size of the commitment string and of its openings has to be independent of the
vector length.
We show two realizations of VCs based on standard and well established assumptions, such as RSA,
and Computational Diffie-Hellman (in bilinear groups). Next, we turn our attention to applications
and we show that Vector Commitments are useful in a variety of contexts, as they allow for compact
and efficient solutions which significantly improve previous works either in terms of efficiency of the
resulting solutions, or in terms of ”quality” of the underlying assumption, or both. These applica-
tions include: Verifiable Databases with Efficient Updates, Updatable Zero-Knowledge Databases, and
Universal Dynamic Accumulators.

Keywords. Vector Commitments, Commitments, Accumulators, Zero-Knowledge Databases, Verifi-
able Databases.

1 Introduction

Commitment schemes are one of the most important primitives in cryptography. Informally, they
can be seen as the digital equivalent of a sealed envelope: whenever a party S wants to commit to
a message m, she puts m in the envelope. At a later moment, S opens the envelope to publicly
reveal the message she committed to. In their most basic form commitment schemes are expected
to meet two requirements. A commitment should be hiding, meaning with this that it should not
reveal information about the committed message, and binding which means that the committing
mechanism should not allow S to change her mind about m. More precisely, this means that the
commitment comes with an opening procedure that can be efficiently verified, i.e. one should be
able to efficiently check that the opened message is the one S originally committed to. Thus, a
commitment scheme typically involves two phases: a committing one, where a sender S creates a
commitment C on some messages m, using some appropriate algorithm and a decommitting stage,
where S reveals m and should ”convince” a receiver R that C contains m. A commitment scheme
is said to be non-interactive if each phase requires only one messages from S to R.

Commitment schemes turned out to be extremely useful in cryptography and have been used
as a building block to realize highly non-trivial protocols and primitives. Because of this, the basic
properties discussed above have often turned out to be insufficient for realizing the desired func-
tionalities. This led researchers to investigate more complex notions realizing additional properties
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and features. Here we discuss a couple of these extensions, those more closely related to the results
presented in this paper.

Trapdoor commitment schemes (also known as chameleon commitments) come with a public
key and a (matching) secret key (also known as the trapdoor). Knowledge of the trapdoor allows to
completely destroy the binding property. On the other hand, the scheme remains binding for those
who know only the public key. A special case of trapdoor commitments are (trapdoor) Mercurial
commitments, a notion formalized by Chase et al. in [12]. Here the binding property is further
relaxed to allow for two different decommitting procedures: a hard and a soft one. In the committing
phase one can decide as whether to create a hard commitment or a soft one. A hard commitment is
like a standard one: it is created to a specific message m, and it can be opened only to m. Instead,
a soft commitment is initially created to “no message”, and it can later be soft-opened (or teased)
to any m, but it cannot be hard-opened.

1.1 Our Contributions

In this paper we introduce a new and simple, yet powerful notion of commitment, that we call Vector
Commitment (VC, for short). Informally, VCs allow to commit to an ordered sequence of q values
(i.e. a vector), rather than to single messages. This is done in a way such that it is later possible
to open the commitment w.r.t. specific positions (e.g., to prove that mi is the i-th committed
message). More precisely, vector commitments are required to satisfy what we call position binding.
Position binding states that an adversary should not be able to open a commitment to two different
values at the same position. While this property, by itself, would be trivial to realize using standard
commitment schemes, what makes our design interesting is that we require VCs to be concise, i.e.,
the size of the commitment string as well as the size of each opening have to be independent of the
vector length.

Vector commitments can also be required to be hiding, in the sense that one should not be
able to distinguish whether a commitment was created to a vector (m1, . . . ,mq) or to (m′1, . . . ,m

′
q),

even after seeing some openings. We, however, notice that hiding is not a crucial property in the
realization of vector commitments. Therefore, in our constructions we will not focus on it. While this
might be surprising at first, we motivate it as follows. First, all the applications of VCs described in
this paper do not require such a property. Second, hiding VCs can be easily obtained by composing
a non-hiding VC with a standard commitment scheme (see Section 3 for more details).

Additionally, Vector Commitments need to be updatable. Very roughly, this means that they
come equipped with two algorithms to update the commitment and the corresponding openings.
The first algorithm allows the committer, who created a commitment Com and wants to update it
by changing the i-th message from mi to m′i, to obtain a (modified) Com′ containing the updated
message. The second algorithm allows holders of an opening for a message at position j w.r.t. Com
to update their proof so as to become valid w.r.t. the new Com′.

Next, we turn our attention to the problem of realizing vector commitments. Our technical
contributions are two realizations of VCs from standard and well established assumptions, namely
RSA and Computational Diffie-Hellman (over bilinear groups)3.

Finally, we confirm the power of this new primitive by showing several applications (see below)
in which our notion of Vector Commitment allows for compact and efficient solutions, which signif-

3 Precisely, our construction relies on the Square Computational Diffie-Hellman assumption (see Assumption 3 in
Section 2.1) which however has been shown equivalent to the standard CDH [23, 1].
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icantly improve previous works either in terms of efficiency of the resulting solutions, or in terms
of “quality” of the underlying assumption, or both.

Verifiable Databases with Efficient Updates. Very recently, Benabbas, Gennaro and Vahlis
[4] formalized the notion of Verifiable Databases with Efficient Updates (VDB, for short). This
primitive turns out to be extremely useful to solve the following problem in the context of verifiable
outsourcing of storage. Assume that a client with limited resources wants to store a large database
on a server so that it can later retrieve a database record, and update a record by assigning a new
value to it. For efficiency, it is crucial that the computational resources invested by the client to
perform such operations must not depend on the size of the database (except for an initial pre-
processing phase). On the other hand, for security, the server should not be able to tamper with
any record of the database without being detected by the client.

For the static case (i.e., the client does not perform any update) simple solutions can be achieved
by using message authentication or signature schemes. For example, the client first signs each
database record before sending it to the server, and then the server is requested to output the
record together with its valid signature. However, this idea does not work well if the client performs
updates on the database. The problem is that the client should have a mechanism to revoke the
signatures given to the server for the previous values. To solve this issue, the client could keep track
of every change locally, but this is in contrast with the main goal, i.e., using less resources than
those needed to store the database locally.

Solutions to this problem have been addressed by works on accumulators [27, 7, 8], authenticated
data structures [26, 22, 28, 32], and the recent work on verifiable computation [4]. Also, other recent
works have addressed a slightly different and more practical problem of realizing authenticated
remote file systems [31]. However, as pointed out in [4], previous solutions based on accumulators
and authenticated data structures either rely on non-constant size assumptions (such as q-Strong
Diffie-Hellman), or they require expensive operations such as generation of prime numbers, and
re-shuffling procedures. Benabbas et al. propose a nice solution with efficient query and update
time [4]. Their scheme relies on a constant size assumption in bilinear groups of composite order,
but does not support public verifiability (i.e., only the client owner of the database can verify the
correctness of the proofs provided by the server).

In this work, we show that Vector Commitments can be used to build Verifiable Databases
with efficient updates that allow for public verifiability. More importantly, if we instantiate this
construction with our VC based on CDH, then we obtain an implementation of Verifiable Databases
that relies on a standard constant-size assumption, and whose efficiency improves over the scheme
of Benabbas et al. as we can use bilinear groups of prime order.

Updatable Zero Knowledge Elementary Databases. Zero Knowledge Sets allow a party
P , called the prover, to commit to a secret set S in a way such that he can later produce proofs
for statements of the form x ∈ S or x 6∈ S. The required properties are the following. First, any
user V (the verifier) should be able to check the validity of the received proofs without learning
any information on S (not even its size) beyond the mere membership (or non-membership) of the
queried elements. Second, the produced proofs should be reliable in the sense that no dishonest
prover should be able to convince V of the validity of a false statement. Zero Knowledge Sets (ZKS)
were introduced and constructed by Micali, Rabin and Kilian [24]4. Micali et al.’s construction was

4 More precisely, Micali et al. addressed the problem for the more general case of elementary databases (EDB),
where each key x has associated a value D(x) in the committed database. In the rest of this paper we will slightly
abuse the notation and use the two acronyms ZKS and ZK-EDB interchangeably to indicate the same primitive.
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abstracted away by Chase et al. [12], and by Catalano, Dodis and Visconti [9]. The former showed
that ZKS can be built from trapdoor mercurial commitments and collision resistant hash functions,
and also that ZKS imply collision-resistant hash functions. The latter showed generic constructions
of (trapdoor) mercurial commitments from the sole assumptions that one-way functions exist. These
results taken together [12, 9], thus, show that collision-resistant hash functions are necessary and
sufficient to build ZKS in the CRS model. From a practical perspective, however, none of the above
solutions can be considered efficient enough to be used in practice. A reason is that all of them
allow to commit to a set S ⊂ {0, 1}k by constructing a Merkle tree of depth k, where each internal
node is filled with a mercurial commitment (rather than the hash) of its two children. A proof that
x ∈ {0, 1}k is in the committed set consists of the openings of all the commitments in the path
from the root to the leaf labeled by x (more details about this construction can be found in [24,
12]). This implies that proofs have size linear in the height k of the tree. Now, since 2k is an upper
bound for |S|, to guarantee that no information about |S| is revealed, k has to be chosen so that
2k is much larger than any reasonable set size.

Catalano, Fiore and Messina addressed in [10] the problem of building ZKS with shorter proofs.
Their proposed idea was a construction that uses q-ary trees, instead of binary ones, and suggested
an extension of mercurial commitment (that they called q-Trapdoor Mercurial Commitment) which
allows to implement it. The drawback of the specific realization of qTMC in [10] is that it is not as
efficient as one might want. In particular, while the size of soft openings is independent of q, hard
openings grow linearly in q. This results in an ”unbalanced” ZK-EDB construction where proofs of
membership are much longer than proofs of non membership.

In a follow-up work, Libert and Yung [20] proposed a very elegant solution to this problem.
Specifically, they managed to construct a q-mercurial commitment (that they called concise) achiev-
ing constant-size (soft and hard) openings. This resulted in ZK-EDB with very short proofs, as by
increasing q one can get an arbitrarily “flat” tree5. Similarly to [10], the scheme of Libert and Yung
[20] also relies on a non-constant size assumption in bilinear groups: the q-Diffie-Hellman Exponent
[6].

Our main application of VCs to ZKS is the proof of the following theorem:

Theorem 1 (informal) A (concise) trapdoor q-mercurial commitment can be obtained from a
vector commitment and a trapdoor mercurial commitment.

The power of this theorem comes from the fact that, by applying the generic transform of Cata-
lano et al. [10], we can immediately conclude that Compact ZKS (i.e. ZKS with short membership
and non-membership proofs) can be built from mercurial commitments and vector commitments.

Therefore, when combining our realizations of Vector Commitments with well known (trapdoor)
mercurial ones (such as that of Gennaro and Micali [14] for the RSA case, or that from [24], for
the CDH construction) we get concise qTMCs from RSA and CDH. Moreover, when instantiating
the ZK-EDB construction of Catalano et al. [10] with such schemes, one gets the first compact
ZK-EDB realizations which are provably secure under standard assumptions.

Our CDH realization induces proofs whose length is comparable to that induced by Libert and
Yung’s commitment [20], while relying on more standard and better established assumptions.

Additionally, and more importantly, we show the first construction of updatable ZK-EDB with
short proofs. The notion of Updatable Zero Knowledge EDB was introduced by Liskov [21] to extend
ZK-EDB to the (very natural) case of “dynamic” databases. In an updatable ZK-EDB the prover is

5 The only limitation is that the resulting CRS grows linearly in q.
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allowed to change the value of some element x in the database and then output a new commitment
C ′ and some update information U . Users holding a proof πy for a y 6= x valid w.r.t. C, should be
able to use U to produce an updated proof π′y that is valid w.r.t. C ′. In [21] is given a definition of
Updatable Zero Knowledge (Elementary) Databases together with a construction based on mercurial
commitments and Verifiable Random Functions [25] in the random oracle model. More precisely,
Liskov introduced the notion of updatable mercurial commitment and proposed a construction,
based on discrete logarithm, which is a variant of the mercurial commitment of Micali et al. [24].

Using Vector Commitments, we realize the first constructions of “compact” Updatable ZK-EDB
whose proofs and updates are much shorter than those of Liskov [21]. In particular, we show how to
use VCs to build Updatable ZK-EDB from updatable qTMCs (which we also define and construct)
and Verifiable Random Functions in the random oracle model. We stress that our solutions, in
addition to solving the open problem of realizing Updatable ZK-EDB with short proofs, further
improve on previous work as they allow for much shorter updates as well6.

In [14] Gennaro and Micali addressed the problem of extending the security of zero knowledge
databases to resist against adversaries that may correlate existing database commitments and proofs
to create fake commitments or proofs. They introduced the notion of Independent Zero Knowledge
Databases and proposed several realizations under different assumptions. As an additional contri-
bution, in Appendix 5.4 we show that, using the same approach, Vector Commitments can be used
also for realizing compact constructions of Independent Zero-Knowledge Databases.

Fully Dynamic Universal Accumulators. Cryptographic Accumulators were first introduced
by Benaloh and De Mare [5], and allow to produce a compact representation of a set of values,
the accumulator, in such a way that one can later give evidence that a given element is contained
in the accumulator. The security notion for this primitive requires that users different from the
one who generated the accumulator should not be able to produce false proofs. The notion has
been later extended to capture the dynamic case in which the accumulated set can evolve in time,
and it is possible to update both the accumulator and previously issued proofs [8]. In particular,
performing such updates should be more efficient than recomputing these values from scratch.
Another extension of cryptographic accumulators are Universal Accumulators [18]. In addition to
proving that a given value is in the accumulator, these allow to issue proofs of non-membership,
i.e., giving evidence that a given element is not in the accumulator.

It is worth noting that all known constructions of cryptographic accumulators (dynamic and
universal) secure without random oracles either work over composite order groups and use expensive
operations for mapping set elements to prime numbers [2, 8], or they work in prime order groups but
rely on relatively young non-constant size assumptions, such as q-Strong Diffie Hellman or q-Diffie
Hellman Exponent [18, 27, 7]. Moreover, a drawback of the schemes in prime order groups is that
they support only sets of bounded polynomial size. However, as argued in [7], this restriction can
be fairly reasonable in practice. More importantly, this drawback is justified by a great efficiency
as these schemes only need to do group multiplications for performing the most critical operations
(e.g., creating the accumulator). 7

6 This is because, in all known constructions, the size of the update information linearly depends on the height of
the tree.

7 There are also constructions of accumulators based on Merkle tree, which rely only on collision-resistant hash
functions. However, in such schemes the size of the proofs logarithmically depends on the size of the set, and do
not allow for efficient updates. In this paper we are interested in schemes allowing for constant-size proofs and
efficient updates.
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Additional Applications of (Hiding) Vector Commitments. If one is willing to consider
Vector Commitments which also hide the committed vector, additional applications are possible.
Here we briefly describe the case of pseudonymous credentials, an application already identified by
Kate et al. [17] when introducing polynomial commitments. Assume a user owns a set of credentials
(m1, . . . ,mq), each corresponding to a position i, and he wants to prove that his i-th credential is
mi (without revealing mj , ∀j 6= i). The credentials are certified by a trusted entity who signs them.
However, if the user makes a commitment C to (m1, . . . ,mq) and the trusted entity signs C, then
the user’s proof can be just the signature on C and the opening of C to mi at position i. If the
latter proof has constant size, then the communication cost of the verification protocol is constant
too. Kate et al. show how to solve this problem using polynomial commitment schemes. However,
it is easy to see that our notion of concise VC fits this application as well. Moreover, our concrete
schemes allow for two new solutions of this problem relying, respectively, on RSA and CDH (rather
than on Strong DH in bilinear groups as in [17]).

1.2 Road map

The paper is organized as follows. Section 2 contains some basic notations and definitions. In Section
3 we introduce the notion of Vector Commitments and we describe our concrete schemes. In Sections
4, 5 and 6 we describe applications of Vector Commitments, namely the ones of Verifiable Databases,
Updatable Zero-Knowledge Databases, and Universal Dynamic Accumulators respectively. Finally,
we postpone to Appendix A the formal definitions of ZK-EDBs and the generic construction of
Catalano et al. [11] while in Appendix B we discuss a result on stronger security properties of
updatable mercurial commitments which is of independent interest.

2 Preliminaries

In what follows we will denote with k ∈ N the security parameter, and by poly(k) any function
which bounded by a polynomial in k. An algorithm A is said to be PPT if it is modeled as a
probabilistic Turing machine that runs in time polynomial in k. Informally, we say that a function

is negligible if it vanishes faster than the inverse of any polynomial. If S is a set, then x
$← S

indicates the process of selecting x uniformly at random over S (which in particular assumes that
S can be sampled efficiently). If n is an integer, we denote with [n], the set containing the integers
1, 2, . . . , n.

2.1 Computational assumptions

An integer N is called RSA modulus if it is the product of two distinct prime numbers p, q. Given
a public RSA modulus N , a public exponent e, such that gcd(e, φ(N)) = 1, and a random value
z ∈ ZN , the RSA problem asks to compute the unique y ∈ ZN such that z = ye mod N . The public
exponent can be chosen according to various distributions, in particular different distributions give
rise to different variant of the problem. In this paper we consider the RSA problem where e is
chosen as a random (` + 1)-bit prime (for some parameter `). More formally, the corresponding
RSA assumption states the following.

Assumption 2 [RSA] Let k ∈ N be the security parameter, N a random RSA modulus of length
k, z be a random element in ZN and e be an (` + 1)-bit prime (for a parameter `).Then we say
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that the RSA assumption holds if for any PPT adversary A the probability

Pr[y←A(N, e, z) : ye = z mod N ]

is negligible in k.

Assumption 3 [Square-CDH] Let k ∈ N be the security parameter. Let G be a group of prime

order p, g ∈ G be a generator and a
$← Zp. We say that the Square Computational Diffie-Hellman

Assumption holds in G if for every PPT algorithm A, the probability Pr[A(g, ga) = ga
2
] is at most

a negligible function in k.

In [23, 1] is shown that the Square-CDH assumption is equivalent to the classical Computational
Diffie-Hellman (CDH) assumption.

3 Vector Commitments

In this section we introduce the notion of Vector Commitment. Informally speaking, a vector com-
mitment allows to commit to an ordered sequence of values in such a way that it is later possible
to open the commitment only w.r.t. a specific position. We define Vector Commitments as a non-
interactive primitive, that can be formally described via the following algorithms:

VC.KeyGen(1k, q) Given the security parameter k and the size q of the committed vector (with
q = poly(k)), the key generation outputs some public parameters pp (which implicitly define
the message space M).

VC.Compp(m1, . . . ,mq) On input a sequence of q messages m1, . . . ,mq ∈M and the public parame-
ters pp, the committing algorithm outputs a commitment string C and an auxiliary information
aux.

VC.Openpp(m, i, aux) This algorithm is run by the committer to produce a proof Λi that m is the
i-th committed message. In particular, notice that in the case when some updates have occurred
the auxiliary information aux can include the update information produced by these updates.

VC.Verpp(C,m, i, Λi) The verification algorithm accepts (i.e., it outputs 1) only if Λi is a valid proof
that C was created to a sequence m1, . . . ,mq such that m = mi.

VC.Updatepp(C,m,m′, i) This algorithm is run by the committer who produced C and wants to
update it by changing the i-th message to m′. The algorithm takes as input the old message
m, the new message m′ and the position i. It outputs a new commitment C ′ together with an
update information U .

VC.ProofUpdatepp(C,Λj ,m
′, i, U) This algorithm can be run by any user who holds a proof Λj for

some message at position j w.r.t. C, and it allows the user to compute an updated proof Λ′j
(and the updated commitment C ′) such that Λ′j will be valid w.r.t. C ′ which contains m′ as
the new message at position i. Basically, the value U contains the update information which is
needed to compute such values.

For correctness, we require that ∀k ∈ N, q = poly(k), for all honestly generated parameters

pp
$← VC.KeyGen(1k, q), if C is a commitment on a vector (m1, . . . ,mq) ∈ Mq (obtained by run-

ning VC.Compp possibly followed by a sequence of updates), Λi is a proof for position i generated
by VC.Openpp or VC.ProofUpdatepp (∀i = 1, . . . , q), then VC.Verpp(C,mi, i,VC.Openpp(mi, i, aux))
outputs 1 with overwhelming probability.
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The attractive feature of vector commitments is that they are required to meet a very simple
security requirement, that we call position binding. Informally, this says that it should be infeasible,
for any polynomially bounded adversary having knowledge of pp, to come up with a commitment
C and two different valid openings for the same position i. More formally:

Definition 4 [Position Binding] A vector commitment satisfies position binding if ∀i = 1, . . . , q
and for every PPT adversary A the following probability (which is taken over all honestly generated
parameters) is at most negligible in k:

Pr

[
VC.Verpp(C,m, i, Λ) = 1∧
VC.Verpp(C,m′, i, Λ′) = 1 ∧m 6= m′

| (C,m,m′, i, Λ, Λ′)← A(pp)

]
Moreover, we require a vector commitment to be concise in the sense that the size of the

commitment string C and the outputs of VC.Open are both independent of q.

Vector commitments can also be required to be hiding. Informally, a vector commitment is hiding
if an adversary cannot distinguish whether a commitment was created to a sequence (m1, . . . ,mq)
or to (m′1, . . . ,m

′
q), even after seeing some openings (at positions i where the two sequences agree).

We observe, however, that hiding is not a critical property in the realization of vector commitments.
Indeed, any construction of vector commitments which does not satisfy hiding, can be easily fixed
by composing it with a standard commitment scheme, i.e., first commit to each message separately
using a standard commitment scheme, and then apply the VC to the obtained sequence of com-
mitments. Moreover, neither the applications considered in this paper nor that considered in [19]
require the underlying VC to be hiding. For these reasons, in our constructions we will only focus
on the realization of the position binding property. We leave a formal definition of hiding for the
full version of the paper.

3.1 A Vector Commitment based on CDH

Here we propose an implementation of concise vector commitments based on the CDH assumption
in bilinear groups. Precisely, the security of the scheme reduces to the Square Computational
Diffie-Hellman assumption(see Definition 3 in Section 2.1), which has been shown equivalent to the
standard CDH assumption [23, 1]. Our construction is reminiscent of the incremental hash function
by Bellare and Micciancio [3], even if we develop new techniques for creating our proofs that open
the commitment at a specific position.

VC.KeyGen(1k, q) Let G,GT be two bilinear groups of prime order p equipped with a bilinear map

e : G×G → GT . Let g ∈ G be a random generator. Randomly choose z1, . . . , zq
$← Zp. For all

i = 1, . . . , q set: hi = gzi . For all i, j = 1, . . . , q, i 6= j set hi,j = gzizj .

Set pp = (g, {hi}i∈[q], {hi,j}i,j∈[q],i 6=j). The message space is M = Zp. 8

VC.Compp(m1, . . . ,mq) Compute

C = hm1
1 hm2

2 · · ·h
mq
q

and output C and the auxiliary information aux = (m1, . . . ,mq).

8 The scheme can be easily extended to support arbitrary messages in {0, 1}∗ by using a collision-resistant hash
function H : {0, 1}∗ → Zp.
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VC.Openpp(mi, i, aux) Compute

Λi =

q∏
j=1,j 6=i

h
mj

i,j =

 q∏
j=1,j 6=i

h
mj

j

zi

VC.Verpp(C,mi, i, Λi) If the following equation holds

e(C/hmi
i , hi) = e(Λi, g)

then output 1. Otherwise output 0.
VC.Updatepp(C,m,m′, i) Compute the updated commitment C ′ = C · hm′−mi . Finally output C ′

and U = (m,m′, i).
VC.ProofUpdatepp(C,Λj ,m

′, U) A client who owns a proof Λj , that is valid w.r.t. to C for some
message at position j, can use the update information U = (m,m′, i) to compute the updated
commitment C ′ and produce a new proof Λ′j which will be valid w.r.t. C ′. We distinguish two
cases:
1. i 6= j. Compute the updated commitment C ′ = C · hm′−mi while the updated proof is

Λ′j = Λj · (hm
′−m

i )zj = Λj · hm
′−m

j,i .

2. i = j. Compute the updated commitment as C ′ = C ·hm′−mi while the updated proof remains
the same Λi.

The correctness of the scheme can be easily verified by inspection. We prove its security via the
following theorem

Theorem 5 If the CDH assumption holds, then the scheme defined above is a concise vector com-
mitment.

Proof. We prove the theorem by showing that the scheme satisfies the position binding property.
For sake of contradiction assume that there exists an efficient adversary A who produces two valid
openings to two different messages at the same position, then we show how to build an efficient
algorithm B that uses A to break the Square Computational Diffie-Hellman assumption.
B takes as input a tuple (g, ga) and its goal is to compute ga

2
.

First, B selects a random i
$← [q] as a guess for the index i on which A will break the position

binding. Next, B chooses zj
$← Zp, ∀j ∈ [q], j 6= i, and it computes:

∀j ∈ [q] \ {i} : hj = (gzj ), hi,j = (ga)zj , hi = ga

∀k, j ∈ [q] \ {i} : k 6= j : hk,j = gzkzj ,

B sets pp = (g, {hi}i∈[q], {hi,j}i,j∈[q],i 6=j) and runs A(pp). Notice that the public parameters are per-
fectly distributed as the real ones. The adversary is supposed to output a tuple (C,m,m′, j, Λj , Λ

′
j)

such that: m 6= m′ and both Λj and Λ′j correctly verify at position j.
If i 6= j, then B aborts the simulation. Otherwise it computes

ga
2

= (Λi/Λ
′
i)
(mi−m′i)−1

.

To see that the output is correct, observe that since the two openings verify correctly, then it holds:

e(C, hi) = e(hmi , hi)e(Λi, g) = e(hm
′

i , hi)e(Λ
′
i, g)
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which means that
e(hi, hi)

m−m′ = e(Λ′i/Λi, g)

Since hi = ga, one can easily sees that this justifies the correctness of B’s output.
Notice that if A succeeds with probability ε, then B has probability ε/q of breaking the Square-

CDH assumption.

Efficiency and Optimizations. A drawback of our scheme is that the size of the public pa-
rameters pp is O(q2). This can be significant in those applications where the vector commitment
is used with large datasets (e.g., the applications proposed in sections 4 and 6). However, we first
notice that the verifier does not need the elements hi,j . Furthermore, our construction can be easily
optimized in such a way that the verifier does not need to store all the elements hi of pp. The
optimization works as follows. Who runs the setup signs each pair (i, hi), includes the resulting
signatures σi in the public parameters given to the committer pp, and publishes the signature’s
verification key. Next, the committer includes σi, hi in the proof of an element at position i. This
way the verifier can store only g and the verification key of the signature scheme. Later, each time
it runs the verification of the vector commitment it has to check the validity of hi by checking that
σi is a valid signature on (i, hi).

3.2 A Vector Commitment based on RSA

Here we propose a realization of vector commitments from the RSA assumption (whose definition
is given in section 2.1).

VC.KeyGen(1k, `, q) Randomly choose two k/2-bit primes p1, p2, set N = p1p2, and then choose q
(`+ 1)-bit primes e1, . . . , eq that do not divide φ(N). For i = 1 to q set

Si = a
∏q

j=1,j 6=i ej .

The public parameters pp are (N, a, S1, . . . , Sq, e1, . . . , eq). The message space isM = {0, 1}`. 9

VC.Compp(m1, . . . ,mq) Compute
C ← Sm1

1 · · ·S
mq
q

and output C and the auxiliary information aux = (m1, . . . ,mq).
VC.Openpp(m, i, aux), Compute

Λi ← ei

√√√√ q∏
j=1,j 6=i

S
mj

j mod N

Notice that knowledge of pp allows to compute Λi efficiently without the factorization of N .
VC.Verpp(C,m, i, Λi) The verification algorithm returns 1 if m ∈M and

C = Smi Λ
ei
i mod N

Otherwise it returns 0.
VC.Updatepp(C,m,m′, i) Compute the updated commitment C ′ = C · Sm′−mi . Finally output C ′

and U = (m,m′, i).

9 As in the CDH case, also this scheme can be extended to support arbitrary messages by using a collision-resistant
hash function H : {0, 1}∗ → {0, 1}`.
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VC.ProofUpdatepp(C,Λj ,m
′, i, U) A client who owns a proof Λj , that is valid w.r.t. to C for some

message at position j, can use the update information U to compute the updated commitment
C ′ and to produce a new proof Λ′j which will be valid w.r.t. C ′. We distinguish two cases:

1. i 6= j. Compute the updated commitment as C ′ = CSm
′−m

i while the updated proof is

Λ′j = Λj
ej

√
Sm

′−m
i (notice that such ej-th root can be efficiently computed using the elements

in the public key).
2. i = j. Compute the updated commitment C ′ = C · Sm′−mi while the updated proof remains

the same Λi.

In order for the verification process to be correct, notice that one should also verify (only once) the
validity of the public key by checking that the Si’s are correctly generated with respect to a and
the exponents e1, . . . , eq.

The correctness of the scheme can be easily verified by inspection. We prove its security via the
following theorem.

Theorem 6 If the RSA assumption holds, then the scheme defined above is a concise vector com-
mitment.

Proof. We prove the theorem by showing that the scheme satisfies the position binding property.
More precisely, assume for sake of contradiction that there exists an efficient adversary that produces
two valid openings to two different messages at the same position, then we show how to build an
algorithm B that breaks the RSA assumption.
B is run on input (N, z, e), where e is an (`+ 1)-bit prime, and it uses A to compute a value y

such that z = ye mod N . B proceeds as follows. First, it randomly chooses an index j ∈ {1, . . . , q}
and sets ej = e and a = z. The rest of the public key is computed as required by the VC.KeyGen
algorithm.
B runs A(pp) and gets back (S,m,m′, i, Λi, Λ

′
i) where m 6= m′ and both Λi and Λ′i are correctly

verified. If i 6= j, then B aborts the simulation. Otherwise it proceeds as follows. From the equations
S = Smi Λ

ei
i , S = Sm

′
i Λ′eii we get

Sm−m
′

i = (Λ′i/Λi)
ei

Let δ = m−m′ and Λ = Λ′i/Λi, the equation above can be rewritten as

aδ
∏

j 6=i ej = (Λ)ei

If Λ = 1 then we can factor with non-negligible probability (this is because, a being a random
element in ZN it is of high order with very high probability, see [15] for details). Thus, assum-
ing Λ 6= 1 we can apply the Shamir’s trick [30] to get an ei-th root of a. In particular, since
gcd(m

∏
j 6=i ej , ei) = 1, by the extended Euclidean Algorithm we can compute two integers λ, µ

such that λm
∏
j 6=i ej + µei = 1. This leads to the equation

a = Λλeiaµei

thus Λλaµ is the required root.

Efficiency and Optimizations. This scheme suffers the same drawback as the one based on
CDH given in the previous section. Namely, the size of the public parameters is linear in q. Also
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this construction can be easily optimized in such a way that the verifier stores only a constant
number of elements, instead of the entire public parameters. The ideas is basically the same as that
given for the scheme based on CDH. The only difference is that here the signature is computed on
(i, Si, ei).

3.3 A Vector Commitment with constant-size public parameters

A limitation of the constructions of Vector Commitments described before is that the size of the
public parameters depends on q. However, this might be a limitation in several applications, such
as the ones we showed. For instance, it affects the size of the common reference string in ZK EDB
constructions, or it bounds the size of the sets or the databases that can be supported by our
accumulators and verifiable database schemes.

In this section we show that our Vector Commitment scheme based on RSA given in section
3.2 can be modified so as to obtain a scheme where the public parameters have constant size.
Unfortunately, the new scheme is computationally less efficient compared to the other constructions.
Though, we give it as a proof of concept to show that realizing vector commitments with public
parameters of size constant and independent of q is possible.

In order to obtain such variant we apply a technique used by Waters and Hohenberger in [16]
to obtain a deterministic function that outputs primes.

We describe below the modified key generation algorithm.

VC.KeyGen(k, `, q) Randomly choose two k/2-bit primes p1, p2 and set N = p1p2. Then randomly

select a seed s for a pseudorandom function fs : {0, 1}∗ → {0, 1}`+1 and a binary string c
$←

{0, 1}`+1 and define the function Fs,c(j) = fs(i, j) ⊕ c where i ≥ 1 is the smallest index such
that fs(i, j)⊕c is odd and prime. Let a be a random element in ZN . For i = 1 to q we implicitly
define

Si = a
∏q

j=1,j 6=i ej

where ej = Fs,c(j) ∀j = 1, . . . , q. The public key vpk is set as (N, a, s, c) and the message space
is M = {0, 1}`.

The rest of the scheme is basically the same where the elements Si and ei are reconstructed
using the function Fs,c(·).

The scheme above can be proved secure using the same proof of Theorem 6 extended with the
techniques presented in [16] (Theorem 4.1) to show that the function fs(·) is “good enough” to
have a correct simulation. The reader can refer to [16] for details omitted here. This allows us to
state the following theorem:

Theorem 7 If the RSA assumption holds, and f is a pseudorandom function, then the scheme
given above is a Vector Commitment.

4 Verifiable Databases with Efficient Updates from Vector Commitments

In this section we show that vector commitments allow to build a verifiable database scheme.
This notion has been formalized very recently by Benabbas, Gennaro and Vahlis [4]. Intuitively, a
verifiable database allows a weak client to outsource the storage of a large database D to a server in
such a way that the client can later retrieve the database records from the server and be convinced
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that the records have not been tampered with. In particular, since the main application is in the
context of cloud computing services for storage outsourcing, it is crucial that the resources invested
by the client after transmitting the database (e.g., to retrieve and update the records) must be
independent of the database’s size. While a solution for the static case in which the database is not
updated can be obtained using standard techniques (e.g., digital signatures), the setting in which
the client can update the values of the database records need different ideas.

Here we describe a solution based on our notion of Vector Commitments. Our construction, when
instantiated with our CDH-based VC, allows for an efficient scheme, yet it is based on a standard
constant-size assumption such as Computation Diffie-Hellman in bilinear groups. Furthermore, our
scheme allows for public verifiability, that was not supported by the scheme in [4].

We begin by recalling the definition of Verifiable Databases. Our definition closely follows that
in [4] except for some changes that we introduce because we consider public verifiability. We denote
a database D as a set of tuples (x, vx) in some appropriate domain, where x is the key, and vx is
the corresponding value. We denote this by writing D(x) = vx. In our case we consider keys that
are integers in the interval {1, . . . , q}, where q = poly(k), whereas the DB values can be arbitrary
strings v ∈ {0, 1}∗.

A Verifiable Database scheme VDB is defined by the following algorithms:

VDB.Setup(1k, D) On input the security parameter k and a database D, the setup algorithm is run
by the client to generate a secret key SK that is kept private by the client, a database encoding
S that is given to the server, and a public key PK that is distributed to all users (including the
client itself) who wish to verify the proofs.

VDB.Query(PK, S, x) On input a database key x, the query processing algorithm is run by the
server, and returns a pair τ = (v, π).

VDB.Verify(PK, x, τ) The public verification algorithm outputs a value v if τ verifies correctly w.r.t.
x (i.e., D(x) = v), and an error ⊥ otherwise.

VDB.ClientUpdate(SK, x, v′) The client update algorithm is used by the client to change the value
of the database record with key x, and it outputs a value t′x and an updated public key PK′.

VDB.ServerUpdate(PK, S, x, t′x) The server update algorithm is run by the server to update the
database according to the value t′x produced by the client.

Before defining the notion of security we remark that a crucial requirement is that the size of
the information stored by the client as well as the time needed to compute verifications and updates
must be independent of the size |D| of the database.

Roughly speaking, a Verifiable Database is secure if the server cannot convince users about the
validity of false statements, i.e., that D(x) = v where v is not the value vx that the client wrote in
the record with key x.

More formally, this notion is defined by the following experiment:

Experiment ExpVDB
A (k)[D]

(PK,SK, S)
$← VDB.Setup(1k, D)

For i = 1 to T = poly(k)

(xi, v
(i)
xi )

$← A(PK, S, t′1, . . . , t
′
i−1)

(PKi, t
′
i)

$← VDB.ClientUpdate(SK, xi, v
(i)
xi )

(x∗, τ∗)
$← A(PK, S, t′1, . . . , t

′
T )

v∗←VDB.Verify(PK, x∗, τ∗)

If v∗ 6= ⊥ and v∗ 6= v
(T )
x∗ return 1, else return 0.
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In the experiment, after every update query, we implicitly assign PK←PKi, and v
(i)
x ←v(i−1)x for all

the x 6= xi not involved in the update.
For any initial database D, we define the advantage of an adversary A in the experiment

ExpVDB
A (k)[D] as follows:

AdvVDB
A,D (k) = Pr

[
ExpVDB

A (k)[D] = 1
]

Definition 8 [Security] A Verifiable Database scheme VDB is secure if for any database D ∈
[q]× {0, 1}∗, where q = poly(k), and for any PPT adversary A, it holds:

AdvVDB
A,D (k) ≤ ε(k)

where ε is a negligible function in k.

4.1 A Verifiable Database scheme from Vector Commitments

Now we show how to build a verifiable database scheme VDB from a vector commitment VC. The
construction follows.

VDB.Setup(1k, D) LetD = {(i, vi)}qi=1. Run pp
$← VC.KeyGen(1k, q). Compute (C, aux)←VC.Compp(v1,

. . . , vq) and set PK = (pp, C), S = (pp, aux, D), SK = ⊥.
VDB.Query(PK, S, x) Let vx = D(x). Compute Λx←VC.Openpp(vx, x, aux) and return τ = (vx, Λx).
VDB.Verify(PK, x, τ) Parse τ as (vx, Λx). If VC.Verpp(C, x, vx, Λx) = 1, then return vx. Otherwise

return ⊥.
VDB.ClientUpdate(SK, x, v′x) To update the record with key x, the client first retrieves the record x

from the server (i.e., it asks the server for τ←VDB.Query(PK, S, x) and checks that VDB.Verify(PK, x, τ) =

vx 6= ⊥). Then, it computes (C ′, U)
$← VC.Updatepp(C, vx, v

′
x, x) and outputs PK′ = (pp, C ′)

and t′x = (PK′, v′x, U).
VDB.ServerUpdate(pk, S, x, t′x) Let t′x = (PK′, v′x, U). The server writes v′x in the database record

with key x and adds the update information U to aux in S.

Theorem 9 If VC is a vector commitment, then the Verifiable Database scheme described above is
secure.

Proof. As usual, we proceed by contradiction. Assume there exists an adversary A that has non-
negligible advantage ε in the experiment ExpVDB

A (k)[D] for some initial database D. Then we show
that such adversary can be used to build an efficient algorithm B that uses A to break the position
binding of the vector commitment.
B takes as input the public parameters of the vector commitment pp. Given the database D, B

computes a commitment (C, aux)←VC.Compp({vx}x∈D) on the database. Next, it sets PK = (pp, C)
and S = (pp, aux, D) and runs A(PK, S). It is easy to see that PK and S are distributed exactly as in
the real construction. To answer the update queries of A, B simply runs the real VDB.ClientUpdate
algorithm. Notice that this not require any secret knowledge.

Let (x∗, τ∗) be the tuple returned by the adversary at the end of the experiment where τ∗ =
(v∗, Λ∗). If the adversary wins in breaking the security of the verifiable database scheme, then recall

that it must hold VDB.Verify(PK, x∗, τ∗) = v∗, v∗ 6= ⊥ and v∗ 6= v
(T )
x∗ , where v

(T )
x∗ is the database

value with key x∗ correctly computed after the T update queries. B computes the honest proof
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Λx∗←VC.Open(v
(T )
x∗ , x

∗, aux) (which correctly verifies by the completeness of the scheme), and it

outputs (C, x∗, v
(T )
x∗ , v

∗, Λx∗ , Λ
∗). Since A breaks the security of the verifiable database, Λ∗ must

verify correctly for v∗ (i.e., VC.Verpp(C, x∗, v∗, Λ∗) = 1). Therefore, one can see that the tuple

(C, x∗, v
(T )
x∗ , v

∗, Λx∗ , Λ
∗) breaks the position binding of the vector commitment. This completes the

proof.

Supporting Private Verifiability. Our construction allows any user holding the public key PK
to verify the proofs produced by the server. Although this is an additional property with respect to
some previous works (i.e., [4]), in some applications one may need to enable only the database owner,
i.e., the client, to verify the proofs produced by the server. Here we notice that our scheme can be
easily modified in order to support private verifiability. The idea is to use a pseudorandom function
fs(·) and to compute the vector commitment on the values yx = fs(vx) instead of vx. The client
keeps the seed s as part of its secret key and it uses s to recompute fs(·) in the (private) verification
algorithm. It is not hard to see that such modified scheme is secure with private verification.

Furthermore, our scheme can also be modified to work in a hybrid case when the client would
like to decide from time to time whether to allow public verification of specific records. The idea is
to use a verifiable random function [25] instead of a PRF. Similarly to the private case, the vector
commitment is computed on the outputs of the VRF (computed on each database value vx). Next,
when the client wants to convince a third party about the validity of a proof for a record x, it can
release the VRF proof for vx. If the VRF proofs are not revealed, then the scheme preserves private
verification. This follows immediately from the security of the VRF. Indeed, as long as the proofs
are not revealed, the outputs of the function look random, i.e., the function behaves like a PRF.

A note on the size of the public key. If one looks at the concrete Verifiable Database scheme
resulting by instantiating the vector commitment with one of our constructions in sections 3.1 and
3.2 a problem arises. In VDBs the public key must have size independent of the DB size, but this
happens not to be the case in our CDH and RSA constructions where the public parameters pp
depend on q. To solve this issue we thus require this transform to use vector commitments with
constant size parameters. Concretely, we can use the variant of our RSA construction that has this
property, or, for a better efficiency, our CDH/RSA constructions in Section 3 with the respective
optimizations that enable the verifier to store only a constant number of elements of pp. A detailed
description of this optimization was given in the previous section.

5 (Updatable) Zero-Knowledge Elementary Databases from Vector
Commitments

In this section we show that Vector Commitments can be used to build Zero-Knowledge Elementary
Databases (ZK-EDBs). In particular, following the approach of Catalano, Fiore and Messina [10],
we can solve the open problem of building compact ZK-EDBs based on standard constant-size
assumptions. Furthermore, in the next section we will show that the same approach can be extended
to build Updatable ZK-EDBs, thus allowing for the first compact construction of this primitive.
Since the updatable case is more interesting in practice, we believe that this can be a significant
improvement.

Zero-Knowledge Elementary Databases. We first recall the notion of Zero-Knowledge Ele-
mentary Databases. Let D be a database and [D] be the set of all the keys in D. We assume that
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[D] is a proper subset of {0, 1}∗. If x ∈ [D], we denote with y = D(x) its associated value in the
database D. If x /∈ [D] we let D(x) = ⊥. A Zero Knowledge (Elementary) Database system is
formally defined by a tuple of algorithms (Setup,Commit,Prove,V) that work as follows:

– Setup(1k) takes as input the security parameter k and generates a common reference string
CRS.

– Commit(CRS,D), the committer algorithm, takes as input a database D and the common
reference string CRS and outputs a public key ZPK and a secret key ZSK.

– Prove(CRS,ZSK, x) On input the common reference string CRS, the secret key ZSK and an
element x, the prover algorithm produces a proof πx of either D(x) = y or D(x) = ⊥.

– V(CRS,ZPK, x, πx) The verifier algorithm outputs y if D(x) = y, out if D(x) = ⊥, and ⊥ if
the proof πx is not valid.

We say that such a scheme is a Zero-Knowledge Elementary Database if it satisfies completeness,
soundness and zero-knowledge. The exact meaning of such requirements is given in appendix A.
Here we only explain them informally. In a nutshell, completeness requires that proofs generated by
honest provers are correctly verified; soundness imposes that a dishonest prover cannot prove false
statements about elements of the database; zero-knowledge guarantees that proofs do not reveal
any information on the database (beyond their validity).

Towards Building Zero-Knowledge Elementary Databases. Chase et al. showed a general
construction of ZK-EDB from a new primitive, that they called trapdoor mercurial commitment,
and collision-resistant hash functions [12]. At a very high level, the idea of the construction is to
build a Merkle tree in which each node is the mercurial commitment (instead of a hash) of its two
children. This construction has been later generalized by Catalano et al. so as to work with q-ary
trees instead of binary ones [10, 11] in order to obtain more efficient schemes. This required the
introduction of a new primitive called trapdoor q-mercurial commitments (qTMC), and it basically
shows that the task of building ZK-EDBs can be reduced to that of building qTMCs. Therefore, in
what follows we simply show how to build qTMCs using vector commitments. Then one can apply
the generic methodology of Catalano et al. (that is recalled in Appendix A.1) to obtain compact
ZK-EDBs. We stress that in the construction of Catalano et al. the value q is the branching factor
of the tree and is not related to the size of the database. Thus, even if vector commitments reveal
q in the clear, this does not compromise the security of ZK-EDBs.

5.1 Useful definitions of mercurial commitments

Trapdoor mercurial commitments A trapdoor mercurial commitment scheme is defined by the
following set of algorithms (the definitions given in this section are taken from [10]):

KeyGen(1k) is a probabilistic algorithm that takes in input a security parameter k and outputs a
pair of public/private keys (pk, tk).

HCompk(m) Given a message m, this algorithm computes a hard commitment C to m using the
public key pk and returns some auxiliary information aux.

HOpenpk(m, aux) The hard opening algorithm produces a hard decommitment π to the message
m correlated to (C, aux) = HCompk(m).

HVerpk(m,C, π) The hard verification algorithm HVerpk(m,C, π) accepts (outputs 1) only if π
proves that C is a hard commitment to m.
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SCompk() produces a soft commitment C and an auxiliary information aux. We observe that a soft
commitment string C is created to no message in particular.

SOpenpk(m, flag, aux) produces a soft decommitment τ (also known as ”tease”) to a message m.
The parameter flag ∈ {H, S} points out if τ corresponds to a hard commitment (C, aux) =
HCompk(m) or to a soft commitment (C, aux) = SCompk(). A soft decommitment τ to m says
that ”if the commitment C produced together with aux can be opened at all, then it would
open to m”.

SVerpk(m,C, τ) checks if τ is a valid decommitment for C to m. If it outputs 1 and τ corresponds
to a hard commitment C to m, then C could be hard-opened to m.

Fakepk,tk() produces a “fake” commitment C which at the beginning is not bound to any message.
It also returns an auxiliary information aux.

HEquivpk,tk(m, aux) The hard equivocation algorithm generates a hard decommitment π for (C, aux) =
Fakepk,tk() to the message m. A fake commitment is quite similar to a soft commitment with
the additional property that it can be hard-opened.

SEquivpk,tk(m, aux) generates a soft decommitment τ tom using the auxiliary information produced
by the Fake algorithm.

To satisfy the correctness property we require that ∀m ∈ M the following statements are false
only with negligible probability:

1. if (C, aux) = HCompk(m):

HVerpk(m,C,HOpenpk(m, aux)) = 1

SVerpk(m,C,SOpenpk(m,H, aux)) = 1

2. If (C, aux) = SCompk():

SVerpk(m,C, qSOpenpk(m,S, aux)) = 1.

3. If (C, aux) = Fakepk,tk():

HVerpk(m,C,HEquivpk,tk(m, aux)) = 1

SVerpk(m,C,SEquivpk,tk(m, aux)) = 1

Security properties. We require that a trapdoor mercurial commitment scheme satisfies the
following security properties:

– Mercurial binding. Having knowledge of pk, it is computationally infeasible for an algorithm
A to come up with C,m, π,m′, π′ such that either one of the following cases holds:

• π is a valid hard decommitment for C to m and π′ is a valid hard decommitment for C to
m′, with m 6= m′. We call such case a ”hard collision”.

• π is a valid hard decommitment for C to m and π′ is a valid soft decommitment for C to
m′, with m 6= m′. We call such case a ”soft collision”.

– Mercurial hiding. There exists no PPT adversary A that, knowing pk, can find a message
m ∈ M for which it can distinguish (C, SOpenpk(m,H, aux)) from (C ′,SOpenpk(m,S, aux′)),
where (C, aux) = HCompk(m) and (C ′, aux′) = SCompk().
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– Equivocations. There exists no PPT adversary A that, having knowledge of the public key pk
and the trapdoor key tk, can win in the following games with non-negligible probability. In such
games A must tell apart the ”real” world from its corresponding ”ideal” world. The challenger
flips a binary coin b ∈ {0, 1}. If b = 0 it gives to A a real commitment/decommitment tuple; if
b = 1 it gives to A an ideal tuple produced using the fake algorithms.

• HHEquivocation. A chooses m ∈M and gives it to the challenger. If b = 0 the challenger
gives to A a pair (C, π) such that: (C, aux) = HCompk(m) and π = HOpenpk(m, aux).
Otherwise it returns (C, π) such that: (C, aux) = Fakepk,tk() and π = HEquivpk,tk(m, aux).

• HSEquivocation. A chooses m ∈ M and gives it to the challenger. If b = 0 the chal-
lenger gives to A a real commitment-decommitment tuple (C, τ) such that: (C, aux) =
HCompk(m) and τ = SOpenpk(m,H, aux). Otherwise the challenger produces an ideal tuple
with: (C, aux) = Fakepk,tk() and τ = SEquivpk,tk(m, aux).

• SSEquivocation. If b = 0 the challenger generates (C, aux) = SCompk() and gives C to A.
Then A chooses m ∈ M, gives such m to the challenger and receives SOpenpk(m,S, aux).
Otherwise if b = 1 A first gets Fakepk,tk(), then it chooses m ∈M, gives it to the challenger
and finally receives SEquivpk,tk(m, aux).

At some point A outputs b′ as its guess for b and wins if b′ = b.

As claimed in [9] it is easy to see that the mercurial hiding is implied by the HHEquivocation
and HSEquivocation.

Trapdoor q-mercurial commitments The notion of trapdoor q-mercurial commitment (qTMC)
extends the notion of mercurial commitments in the sense that it allows to (mercurially) commit to
(ordered) sequences of messages, rather than to single ones. Formally qTMCs are defined in terms
of the following algorithms (the definitions given in this section are taken from [10]):

qKeyGen(1k, q) is a probabilistic algorithm that receives as input a security parameter k, the pa-
rameter q indicating the length of valid sequences and outputs a pair of public/private keys
(pk, tk).

qHCompk(m1, · · · ,mq) Given an ordered tuple of q messages, qHCom computes a hard commitment
C to (m1, · · · ,mq) using the public key pk and returns some auxiliary information aux.

qHOpenpk(m, i, aux) Let (C, aux) = qHCompk(m1, · · · ,mq), if m = mi the hard opening algorithm
produces a hard decommitment π. The algorithm returns an error message otherwise.

qHVerpk(m, i, C, π) The hard verification algorithm qHVerpk(m, i, C, π) accepts (outputs 1) only if
π proves that C is created to a sequence (m1, · · · ,mq) such that mi = m.

qSCompk() produces a soft commitment C and an auxiliary information aux. A soft commitment
string C is created to no specific sequence of messages.

qSOpenpk(m, i, flag, aux) produces a soft decommitment τ (also known as ”tease”) to a message m
at position i. The parameter flag ∈ {H,S} indicates if τ corresponds to either a hard commit-
ment (C, aux) = qHCompk(m1, · · · ,mq) or to a soft commitment (C, aux) = qSCompk(). The
algorithm returns an error message if C is a hard commitment and m 6= mi.

qSVerpk(m, i, C, τ) checks if τ is a valid decommitment for C to m of index i. If it outputs 1 and τ
corresponds to a hard commitment C to (m1, · · · ,mq), then C could be hard-opened to (m, i),
or rather m = mi.

qFakepk,tk() takes as input the trapdoor tk and produces a q-fake commitment C. C is not bound
to any sequence (m1, · · · ,mq). It also returns an auxiliary information aux.
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qHEquivpk,tk(m1, · · · ,mq, i, aux) The non-adaptive hard equivocation algorithm generates a hard
decommitment π for (C, aux) = qFakepk,tk() to the i-th message of (m1, · · · ,mq). The algorithm
is non adaptive in the sense that, for a given C, the sequence (m1, · · · ,mq) has to be determined
once and for all, before qHEquiv is executed. A q-fake commitment is very similar to a soft
commitment with the additional property that it can be hard-opened.

qSEquivpk,tk(m, i, aux) generates a soft decommitment τ to m of position i using the auxiliary
information produced by the qFake algorithm.

The correctness requirements for trapdoor q-mercurial commitments are essentially the same as
those for ”traditional” commitment schemes. In particular we require that ∀(m1, · · · ,mq) ∈ Mq,
the following statements are false only with negligible probability.

1. if (C, aux) = qHCompk(m1, · · · ,mq): qHVerpk(mi, i, C, qHOpenpk(mi, i, aux)) = 1 ∀i = 1 . . . q

2. If (C, aux) = qHCompk(m1, · · · ,mq) qSVerpk(mi, i, C, qSOpenpk(mi, i,H, aux)) = 1 ∀i = 1 . . . q

3. If (C, aux) = qSCompk() qSVerpk(mi, i, C, qSOpenpk(mi, i,S, aux)) = 1 ∀i = 1 . . . q

4. If (C, aux) = qFakepk,tk() qHVerpk(mi, i, C, qHEquivpk,tk(m1, · · · ,mq, i, aux)) = 1 and
qSVerpk(mi, i, C, qSEquivpk,tk(mi, i, aux)) = 1 ∀i = 1 . . . q

Security. The security properties for a trapdoor q-mercurial commitment scheme are as follows:

– q-Mercurial binding. Having knowledge of pk it is computationally infeasible for an algorithm
A to come up with C,m, i, π,m′, π′ such that either one of the following cases holds:

• π is a valid hard decommitment for C to (m, i) and π′ is a valid hard decommitment for C
to (m′, i), with m 6= m′. We call such case a ”hard collision”.

• π is a valid hard decommitment for C to (m, i) and π′ is a valid soft decommitment for C
to (m′, i), with m 6= m′. We call such case a ”soft collision”.

– q-Mercurial hiding. There exists no PPT adversary A that, knowing pk, can find a tuple
(m1, · · · ,mq) ∈ Mq and an index i for which it can distinguish (C, qSOpenpk(mi, i,H, aux))
from (C ′, qSOpenpk(mi, i,S, aux′)), where (C, aux) = qHCompk(m1, · · · ,mq) and (C ′, aux′) =
qSCompk().

– Equivocations. There exists no PPT adversary A that, knowing pk and the trapdoor tk, can
win any of the following games with non-negligible probability. In such games A should be able
to tell apart the ”real” world from the corresponding ”ideal” one. The games are formalized
in terms of a challenger that flips a binary coin b ∈ {0, 1}. If b = 0 it gives to A a real
commitment/decommitment tuple; if b = 1 it gives to A an ideal tuple produced using the fake
algorithms.

In the q-HHEquivocation and the q-HSEquivocation games below, A chooses (m1, · · · ,mq) ∈
Mq and receives a commitment string C. Then A gives an index i ∈ {1, · · · , q} to the challenger
and finally it receives a hard decommitment π.

• q-HHEquivocation. If b = 0 the challenger hands to A the value (C, aux) =
qHCompk(m1, · · · ,mq). A gives i to the challenger and gets back π = qHOpenpk(mi, i, aux).
Otherwise the challenger computes
(C, aux) = qFakepk,tk(), π = qHEquivpk,tk(m1, · · · ,mq, i, aux).

• q-HSEquivocation. The challenger computes
(C, aux) = qHCompk(m1, · · · ,mq), π = qSOpenpk(mi, i,H, aux) in the case b = 0 or (C, aux) =
qFakepk,tk(), π = qSEquivpk,tk(mi, i, aux) if b = 1.
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• q-SSEquivocation. If b = 0 the challenger generates (C, aux) = qSCompk() and gives C
to A. Next, A chooses m ∈M and an index i ∈ {1, · · · , q}, it gives (m, i) to the challenger
and receives back qSOpenpk(m, i,S, aux). If b = 1, A first gets qFakepk,tk(), then it chooses
m ∈M, i ∈ {1, · · · , q}, gives (m, i) to the challenger and gets back qSEquivpk,tk(m, i, aux).

At some point A outputs b′ as its guess for b and wins if b′ = b.

As for the case of trapdoor mercurial commitments (see [9]) it is easy to see that the q-mercurial
hiding is implied by the q-HSEquivocation and q-SSEquivocation.

5.2 Trapdoor q-Mercurial Commitments from Vector Commitments and Mercurial
Commitments

Here we show how to combine (concise) vector commitments and standard trapdoor commitment
to obtain (concise) trapdoor qTMC. For lack of space, we defer the interested reader to [11] for the
definitions of (trapdoor) mercurial commitments and trapdoor q-mercurial commitments.

Let TMC = (KeyGen,HCom,HOpen,HVer, SCom, SOpen, SVer,Fake,HEquiv, SEquiv) be a trap-
door mercurial commitment and VC = (VC.KeyGen,VC.Com,VC.Open,VC.Ver) be a vector com-
mitment. We construct a trapdoor qTMC as follows:

qKeyGen(1k) Run pp
$← VC.KeyGen(1k, q) and (PKTMC, TKTMC)

$← KeyGen(1k) and set pk = (pp,
PKTMC) and tk = TKTMC.

qHCompk(m1, . . . ,mq) For i = 1 to q compute (Ci, aux
i
TMC)

$← HComPKTMC
(mi). Next, compute

(C, auxVC) ← VC.Compp(C1, . . . Cq). The output is C and the auxiliary information is aux =
(auxVC,m1, C1, aux

1
TMC, . . . ,mq, Cq, aux

q
TMC).

qHOpenpk(mi, i, aux) Extract (mi, Ci, aux
i
TMC) from aux and set

Λi ← VC.Openpp(Ci, i, auxVC). The opening information is τi = (Λi, Ci, πi) where πi is the
output of HOpenPKTMC

(mi, aux
i
TMC).

qHVerpk(C,mi, i, τi) Parse τi as (Λi, Ci, πi). The hard verification algorithm returns 1 if and only
if both HVerPKTMC

(Ci, mi, πi) and VC.Verpp(C,Ci, i, Λi) return 1.

qSCompk() For i = 1 to q compute (Ci, aux
i
TMC) ← SComPKTMC

(). Next, compute (C, auxVC) ←
VC.Compp(C1, . . . , Cq). The output is C and the auxiliary information is aux = (auxVC,m1, C1, aux

1
TMC, . . . ,mq, Cq, aux

q
TMC).

qSOpenpk(mi, i, flag, aux) Extract (mi, Ci, aux
i
TMC) from aux and set

Λi ← VC.Openpp(Ci, i, auxVC). The opening information is τi = (Λi, Ci, πi) where πi is the
output of SOpenPKTMC

(mi, aux
i
TMC).

qSVerpk(C,m, i, τi) Parse τi as (Λi, Ci, πi). The soft verification algorithm returns 1 if and only if
both SVerPKTMC

(Ci,mi, πi) and VC.Verpp(C,Ci, i, Λi) return 1.

qFakepk,tk() This is the same as the qSCom algorithm.

qHEquivpk,tk(m, i, aux) Extract (Ci, aux
i
TMC) (for all i = 1 to q) and set Λi ← VC.Openpp(Ci, i, auxVC).

The hard equivocation is τi = (Λi, Ci, πi) where πi is the output of HEquivPKTMC,tkTMC
(m, auxiTMC)

qSEquivpk,tk(m, i, aux) Extract (Ci, aux
i
TMC) (for all i = 1 to q) and set Λi ← VC.Openpp(Ci, i, auxVC).

The soft equivocation is τi = (Λi, Ci, πi) where πi is the output of SEquivPKTMC,tkTMC
(m, auxiTMC)

The correctness of the scheme easily follows from the correctness of the underlying building
blocks. Its security follows from the following theorem

Theorem 10 Assuming that TMC is a trapdoor mercurial commitment and VC is a vector com-
mitment, then the scheme defined above is a trapdoor q-mercurial commitment.
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Proof. We prove the theorem by showing that all the properties of trapdoor q-mercurial commit-
ments are satisfied.

q-Mercurial Binding. Here we show that neither kind of collisions (i.e. hard or soft ones) are
possible. We start by discussing the case of hard collisions. The case of soft collisions is basically
the same.

Hard Collisions. Assume that there is an adversary A that manages to succeed in the following
experiment with non negligible probability. A receives in input the public key of the qTMC he
intends to attack and produces a commitment C together with two valid (but different!) openings
(τi, τ

′
i). In particular assume that, wlog, both τi and τ ′i are valid decommitments for messages

in position i. For simplicity assume that τi = (Λi, Ci, πi) opens to mi at position i, while τ ′i =
(Λ′i, C

′
i, π
′
i) opens to m′i at position i (and of course mi 6= m′i). We distinguish two (mutually

exclusive) types of openings the adversary might produce:

Type I Ci = C ′i
Type II Ci 6= C ′i

Type I. If the adversary produces two different openings of type I it is easy to see that one can break
the mercurial binding of TMC. Indeed both τi and τ ′i are correctly verified (i.e. HVerPKTMC

(Ci,mi, πi) =
1 and HVerPKTMC

(Ci,m
′
i, π
′
i) = 1) and thus the tuple (Ci,mi, πi,m

′
i, π
′
i) is a hard collision for the

mercurial binding of TMC.

Type II. If the adversary produces two openings of type II then it is easy to see that this case
breaks the position binding property of the vector commitment VC. Indeed, by definition, both Λi
and Λ′i are correctly verified openings (i.e. VC.Verpp(C,Ci, i, Λi) = 1 and VC.Verpp(C,C ′i, i, Λ

′
i) = 1).

Thus one can output (C,Ci, C
′
i, i, Λi, Λ

′
i) to break the position binding.

Soft Collisions. This proof is almost identical to that given for hard collision and is omitted. The
only difference is that if the adversary outputs two openings of type I, here we break the mercurial
binding of TMC by finding a soft collision for it.

Equivocation and Hiding. In all the cases we show that it is infeasible for an adversary, on input
both the public key and the trapdoor, to distinguish between a real commitment/decommitment
tuple and a fake/equivocation one.

In general A receives in input the pair (pk, tk), gives an index i and a tuple (m1, . . . ,mq) and
receives back a tuple (Sb, τb) that is generated using different algorithms according to a secret bit
b. If we consider τb = (Λi, Ci, πi) and observe the pair (Sb, Λi), it is easy to see that in all the
cases these elements have always the same distribution no matter of which algorithm has generated
them. Thus the only elements that might have different distributions according to b are Ci and πi,
but these are indistinguishable provided that TMC satisfies hiding and equivocations.

On the efficiency of the CDH instantiation. By instantiating the above scheme with our
vector commitment based on CDH (and with the discrete log based TMC from [24]), one gets a
qTMC based on CDH whose efficiency is roughly the same as that of the scheme in [20] based
on q-DHE. For the sake of a fair comparison we notice that in our construction the reduction to
CDH is not tight (due to the non-tight reduction from Square-DH to CDH [23]), and our scheme
suffers from public parameters of size O(q2). In contrast, the scheme by Libert and Yung has a
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tight reduction to the q-DHE problem and achieves public parameters of size O(q). However, we
think that the CDH and the q-DHE assumptions are not easily comparable, especially given that
the latter is defined with instances of size O(q), where q is known to degrade the quality of the
assumption (see [13, 29] for some attacks). Furthermore, a more careful look shows that in our
scheme the verifier does not need to store this many elements. This is because the hi,j ’s are not
required for verification. Thus, from the verifier side, the space required is actually only O(q). In the
application of ZK-EDBs such an optimization reflects on the size of the common reference string.
More precisely, while the server still needs to store a CRS of size O(q2), the client is required to
keep in memory only a portion of the CRS of size of O(q) (thus allowing for comparable client-side
requirements with respect to [20]).

5.3 Updatable ZK-EDBs with Short Proofs and Updates

In most practical applications databases are frequently updated. The constructions of ZK-EDBs
described so far do not deal with this and the only way of updating a ZK-EDB is to actually
recompute the entire commitment from scratch every time the database changes. This is highly
undesirable as previously issued proofs can no longer be valid.

Liskov addressed this problem in [21] by introducing the notion of Updatable Zero-Knowledge
Databases and proposing a construction for it. Updatable ZK-EDB solve the issue by providing two
update procedures. On the one hand, the prover is allowed to change the value D(x) of elements
in the database and then output a new commitment Com′ together with some update information
U . On the other hand, a user who holds a proof πy for a key y 6= x can use U to produce π′y which
will be valid w.r.t. Com′ and the key y.

Liskov distinguished between opaque and transparent updates, but addressed only the problem
of constructing ZK EDBs with transparent updates10. Informally, the difference between the two
notions is that an opaquely updated database commitment is indistinguishable from a new one.
Instead, transparent updates explicitly reveals that an update has occurred an thus provide a way
to update existing proofs.

In [21] it is showed how to build Updatable ZK EDB by appropriately modifying the basic
approach of combining Merkle trees and mercurial commitments [21]. In particular, rather than
using standard mercurial commitments, Liskov employed a new primitive called updatable mercurial
commitment. Very informally, updatable mercurial commitments are like standard ones with the
additional feature that they allow for two update procedures. The committer can change the message
inside the commitment and produce: a new commitment and an update information. These can later
be used by verifiers to update their commitments and the associated proofs (that will be valid w.r.t.
the new commitment). Therefore whenever the prover changes some valueD(x) in the database, first
he has to update the commitment in the leaf labeled by x and then he updates all the commitments
in the path from x to the root. The new database commitment is the updated commitment in the
root node, while the database update information contains the update informations for all the nodes
involved in the update.

A natural question raised by the methodology above is whether the zero-knowledge property
remains preserved after an update occurs, as the latter reveals information about the updated key.
To solve this issue Liskov proposed to “mask” the label of each key x (i.e. the paths in the tree)
using a pseudorandom pseudonym N(x) and he relaxed the zero-knowledge property to hold w.r.t.
N(). Further details can be found in [21].

10 More precisely the proposed constructions of opaquely updatable ZK EDBs are either trivial or highly inefficient.
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In [21] two constructions of updatable mercurial commitments are given. One is generic and uses
both standard and mercurial commitments. The other one is direct and builds from the DL-based
mercurial commitment of [24].

Our Result. We introduce the notion of updatable q-mercurial commitments, and then we show
that these can be built from vector commitments and updatable mercurial commitments. Next,
by applying the methodology of Liskov sketched above, adapted with the compact construction of
Catalano et al. [10], we can build the first compact Updatable ZK-EDB. It is interesting to observe
that by using the compact construction the resulting ZK-EDB improves over the scheme in [21]
both in terms of proofs’ size and length of the update information, as these both grow linearly in
the height of the tree logq2

k (which is strictly less than k for q > 2).

Updatable mercurial commitments First, we provide a formal definition of updatable mercu-
rial commitments since in [21] it is only given as a sketch.

An updatable (trapdoor) mercurial commitment (uTMC for brevity) is defined like a mercurial
commitment with the following additional algorithms:

Updatepk(C, aux,m
′) This algorithm is run by the committer who produced C (and holds aux). It

takes as input a message m′ and outputs a new commitment C ′ and an update information U .
Regardless of the type of C, the updated commitment C ′ is always a hard commitment.

ProofUpdatepk(C, π,m
′, U) This algorithm is run by any user who holds a proof π for a commitment

C. Given the update information U and the new message m′, ProofUpdate outputs the updated
commitment C ′ and an updated proof π′ which will be valid w.r.t. C ′ and m′. The updated
proof π′ will be of the same type of π.

The mercurial binding is defined as usual, namely for any PPT adversary it is computationally
infeasible to open a commitment (even an updated one) to two different messages. Then we require
updatable mercurial commitments to satisfy the usual mercurial hiding and equivocations properties
of TMCs, but we also require such properties to hold even for updated commitments, namely when
the adversary can see the update information11.

Remark 11 [On the security of updatable mercurial commitments] Given the hiding and equivo-
cations properties depicted above, one may wonder if they are the strongest possible properties one
can have in a scenario where updates are issued. In fact we notice they are not. For example, there
is no guarantee that an updated commitment is hiding w.r.t. the original message contained before
the update. However, as already noticed by Liskov in [21], such weakness is not a problem for the
means of building updatable ZK EDBs as in this case the committed messages are commitments
themselves.

However since updatable mercurial commitments might have applications outside the context
of updatable ZK EDBs, it would be interesting to consider more general security properties. In
Appendix B we address this problem and we provide augmented security properties for updatable
mercurial commitments that we call Updatable Hiding, Updatable mercurial hiding and Updatable
Equivocations. The schemes given by Liskov in [21] (both the generic one and the one based on
Discrete Log) and the scheme we propose in the following section do not satisfy the new security
definition. Therefore we will show in Appendix B how to realize an updatable mercurial commitment
from RSA that is secure under updatable hiding and equivocations.

11 Notice that since an updated commitment is always a hard commitment, in this case we are interested only to
Hiding and HHEquivocation.
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An updatable mercurial commitment from RSA Here we extend the scheme of Gennaro
and Micali [14] to make it updatable via the following additional algorithms:

Updatepk(C, s, auxTMC,m
′) If C is a hard commitment, parse aux as (m,R, r) and proceed as

follows. Pick a random r′
$← ZN and compute: s′ = r′eT mod N and C ′ = s′m

′
Re mod N .

Otherwise, if C is a soft commitment (i.e. aux = (R, r)) that has been teased to a message m

then proceed as follows. Pick a random r′
$← ZN , set R′ = r−mR and compute s′ = r′eT mod N

and C ′ = s′m
′
R′e mod N . Finally output the updated commitment (C ′, s′) and the update

information U = r′.
ProofUpdatepk(C, π,m

′, U) Who holds a proof π that was valid for C, can use the update informa-
tion U to compute the updated commitment C ′ to m′ and produce a new proof π′ which will
be valid w.r.t. C ′ and m′. The updated commitment is (C ′ = s′m

′
Re mod N, s′ = r′eT mod N).

If π is a soft opening (i.e. π = R) the updated proof π′ remains the same. Otherwise, if π is a
hard opening (i.e. π = (R, r)) the updated proof is π′ = (R, r′).

Theorem 12 If the RSA assumption holds, then the scheme given above is an updatable trapdoor
mercurial commitment.

It is easy to see that the same security proof for the scheme of Gennaro and Micali [14] still
holds in this case.

Updatable q-mercurial commitments. An updatable q-(trapdoor) mercurial commitment is
defined like a qTMC with the following two additional algorithms:

qUpdatepk(C, aux,m
′, i) This algorithm is run by the committer who produced C (and holds the

corresponding aux) and wants to change the i-th committed message with m′. The algorithm
takes as input m′ and the position i and outputs a new commitment C ′ and an update infor-
mation U .

qProofUpdatepk(C, τj ,m
′, i, U) This algorithm can be run by any user who holds a proof τj for some

message at position j in C and allows the user to produce a new proof τ ′j (and the updated
commitment C ′) which will be valid w.r.t. C ′ that contains m′ as the new message at position
i. The value U contains the update information which is needed to compute such values.

The q-mercurial binding property is defined as usual, namely for any PPT adversary it is
computationally infeasible to open a commitment (even an updated one) to two different messages
at the same position.

Hiding and equivocations for updatable qTMCs easily follow from those of updatable mercurial
commitments given in the previous section by extending them to the case of sequences of q messages.

Updatable q-mercurial commitments from Vector Commitments. In this section we extend
the result of Theorem 10 to the updatable case. Namely we show that an updatable qTMC can be
built using an updatable (trapdoor) mercurial commitment uTMC and a vector commitment VC.
The construction is essentially the same as that given in Section 5.2 augmented with the following
update algorithms:

qUpdatepk(C, aux,m
′, i) Parse aux as (m1, C1, aux

1
uTMC, . . . ,mq, Cq, aux

q
uTMC,

auxVC), extract (Ci,mi, aux
i
uTMC) from it and run (C ′i, UuTMC)←UpdatepkuTMC

(Ci, aux
i
uTMC,m

′).
Then update the vector commitment (C ′, U ′)←
VC.Updatepp(C,Ci, C

′
i, i) and output C ′ and U = (U ′, Ci, C

′
i, i, U

i
uTMC).
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qProofUpdatepk(C, τj ,m
′, i, U) The client who holds a proof τj = (Λj , Cj , πj) that is valid w.r.t. to

C for some message at position j, can use the update information U to compute the updated
commitment C ′ and produce a new proof τ ′j which will be valid w.r.t. the new C ′. We distinguish
two cases:

1. i 6= j. Compute (C ′, Λ′j)← VC.ProofUpdatepp(C,Λj , C
′
i, i, U

′) and output the updated com-
mitment C ′ and the updated proof τj = (Λ′j , Cj , πj).

2. i = j. Let (C ′i, π
′
i)←ProofUpdatepkuTMC

(Ci,m
′, πi, U

i
uTMC). Compute the updated commit-

ment as (C ′, Λ′i)← VC.ProofUpdatepp(C,Λi, C
′
i, i, U

′) and the updated proof is τ ′i = (Λ′i, C
′
i, π
′
i).

Theorem 13 If uTMC is an updatable trapdoor mercurial commitment and VC is an updatable
vector commitment, then the scheme given above is an updatable concise trapdoor q-mercurial com-
mitment.

Proof (Sketch). The proof of the q-mercurial binding remains the same as that of Theorem 10
and the same holds for hiding and equivocations of “standard” commitments. To see that hiding
and equivocations hold even for updated commitments, consider the update information U =
(U ′, Ci, C

′
i, i, U

i
uTMC) where C ′i is an updated commitment to m′. Then it is easy to see that U does

not reveal information about m′ as long as the scheme uTMC is hiding.

5.4 Strongly-Independent Compact Zero-Knowledge Databases

Gennaro and Micali introduced in [14] the notion of Independent Zero-Knowledge Databases. Roughly
speaking the independence property prevents an adversary from correlating its database and proofs
to those of an honest prover. In particular Gennaro and Micali show that previous constructions of
ZKDB do not satisfy this stronger notion of security and propose new ones achieving it.

In this section, we show that vector commitments can be used also to significantly improve the
constructions of Independent ZKDB. More specifically, vector commitments can be employed to
build multi-trapdoor q-mercurial commitments that are a basic building block for the construction
of Compact Independent ZKDB.

The section is organized as follows. First, we recall below the notion of Independent Zero-
Knowledge Databases given in [14]. Then, in Appendix 5.4 we show a construction based on multi-
trapdoor q-mercurial commitments. And finally, in Appendix 5.4, we give a construction of multi-
trapdoor q-mercurial commitments from Vector Commitments.

Independent Zero-Knowledge Databases. The definition of strong-independence considers a
two-stage adversary A = (A1,A2). A1 sees ` database commitments Com1, . . . , Com` generated by
honest provers and is allowed to make queries on the underlying databases Db1, . . . , Db`. Finally
A1 must output a new database commitment Com. Then two copies of the second-stage adversary
A2 are run: the first is given oracle access to provers that output proofs of elements in Dbi; the
second copy of A2 has access to an oracle that makes proofs for databases Db′i such that, for all
i = 1 to `, Dbi and Db′i agree on the elements queried by A1.

More formally, we say that a ZK EDB system is strongly-independent if for any PPT adversary
A = (A1,A2) and databases Db1, . . . , Db`, Db

′
1, . . . , Db

′
` there exists a simulator SIM = (SimSetup,

SimCom, SimProve) such that the following probability
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(CRS, t)← SimSetup(1k);
(Comi, sti)← SimCom(CRS, t)∀i = 1, . . . , `;

(Com, st)← ASimProveDbi (sti,Comi)
1 (CRS, st);

(x, πx)← ASimProveDbi (sti,Comi)
2 (CRS, st);

(x, π′x)← ASimProve
Db′i`Qi

Dbi (sti,Comi)
2 (CRS, st) :

V(CRS,Com, x, πx) 6= V(CRS,ZPK, x, π′x) 6=
⊥∧((Com 6= Comi∀i)∨(∃i : Com = Comi∧x /∈
Q′i))


is negligible in k.

In the definition above, Qi is the list of queries made by A1 to the oracle SimProveDbi(sti, Comi)
and we denote with Db′i `Qi Dbi that the database Db′i is restricted to agree with Dbi on the
elements of Qi.

Gennaro and Micali [14] give also two weaker notions of independence. The first one (weak
independence) considers an adversary A1 that outputs the commitment without making any query.
The second one (simply independence) is the same as strong-independence except that A2 is not
allowed to copy one of the honest provers’ commitments.

Strongly-Independent Zero-Knowledge Databases from (multi-trapdoor) q-mercurial
commitments The construction of strongly-independent ZKDBs of Gennaro and Micali [14] uses
as building block a multi-trapdoor mercurial commitment (which we define below) that is combined
with a signature scheme and a collision resistant hash function. Libert and Yung [20] later adapted
this construction to work in the q-ary tree setting of Catalano et al. [10] by using, as building block,
a multi-trapdoor q-mercurial commitment.

Before describing this construction, we first give the definition of multi-trapdoor q-mercurial
commitments. Such a scheme is a collection of the following algorithms:

qKeyGen(1k, q) is a probabilistic algorithm that takes in input a security parameter k, the parameter
q indicating the length of valid sequences and outputs a pair of public/private keys (pk, tk).
The public key also contains the description of a tag space T .

qHCompk(m1, · · · ,mq, tag) Given an ordered tuple of q messages and tag ∈ T , qHCom computes a
hard commitment C to (m1, · · · ,mq) under (pk, tag) and returns an auxiliary information aux.

qHOpenpk(m, i, tag, aux) Let (C, aux) = qHCompk(m1, · · · ,mq, tag
′), if m = mi and tag = tag′

the hard opening algorithm produces a hard decommitment π. Otherwise it returns an error
message.

qHVerpk(m, i, tag, C, π) The hard verification algorithm qHVerpk(m, i, tag, C, π) accepts (outputs 1)
only if π proves that C is created to a sequence (m1, · · · ,mq) and a tag tag′ such that mi = m
and tag′ = tag.

qSCompk(tag) produces a soft commitment C and an auxiliary information aux under (pk, tag). A
soft commitment string C is created to no specific sequence of messages.

qSOpenpk(m, i, tag, flag, aux) produces a soft decommitment τ (also known as ”tease”) to a message
m at position i. The parameter flag ∈ {H, S} indicates if τ corresponds to either a hard commit-
ment (C, aux) = qHCompk(m1, · · · ,mq, tag

′) or to a soft commitment (C, aux) = qSCompk(tag
′).

The algorithm returns an error message if C is a hard commitment and m 6= mi or tag 6= tag′.
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qSVerpk(m, i, tag, C, τ) checks if τ is a valid decommitment for C to m of index i under (pk, tag).
If it outputs 1 and τ corresponds to a hard commitment C to (m1, · · · ,mq), then C could be
hard-opened to (m, i), or rather m = mi.

qTrapGenpk,tk(tag) given tag ∈ T , it outputs a tag-specific trapdoor key tktag.

qFakepk,tktag(tag) takes as input a tag-specific trapdoor tktag and produces a q-fake commitment
C. C is not bound to any sequence (m1, · · · ,mq) but is created to a specific tag. It also returns
an auxiliary information aux.

qHEquivpk,tk(m, i, tag, aux) The hard equivocation algorithm generates a hard decommitment π to
the message of m at position i for (C, aux) = qFakepk,tktag(tag). A q-fake commitment is very
similar to a soft commitment with the additional property that it can be hard-opened.

qSEquivpk,tktag(m, i, tag, aux) generates a soft decommitment τ to m of position i using the auxiliary
information produced by the qFake algorithm.

The correctness requirements are essentially the same as those for trapdoor q-mercurial com-
mitment schemes with the addition of the tag.

The security properties are an extension of the q-mercurial binding, hiding and equivocations
that are given in section 5.1.

q-Mercurial binding The adversary is allowed to choose a set of strings tag1, . . . , tagn ∈ T
that are given to a Challenger who replays back with pk and tktag1 , . . . , tktagn (that are gen-
erated using qTrapGenpk,tk(tagi)). Then the q-mercurial binding holds if it is computation-
ally infeasible for an algorithm A to come up with tag∗ ∈ T \ {tag1, . . . , tagn}, a commit-
ment C and two different openings m, i, π,m′, π′ such that qHVerpk(C, m, i, tag

∗, π) = 1 and
qHVerpk(C,m

′, i, tag∗, π′) = 1, or qHVerpk(C,m, i, tag
∗, π) = 1 and qSVerpk(C,m

′, i, tag∗, π′) =
1.

q-Mercurial hiding and Equivocations These properties are basically the same of standard q-
mercurial commitments. The only difference is that here the adversary is allowed to specify in
each game a tag under which the challenge commitment is created. This means that the tag is
not necessarily hidden in the commitment, but this suffices for the means of our application.

We notice that our definition is slightly different from that given in [20] in that we require
the qSCom and qFake algorithms to take in input the tag. Though this definition is weaker, it is
sufficient for the purposes of our application, namely constructing Compact Independent ZKDBs.

Given a multi-trapdoor q-mercurial commitment, a signature scheme Σ = (kg, sig, ver) and a
collision resistant hash function H : {0, 1}∗ → T (where T is the tag space), strongly-independent
ZKDBs can be realized as follows. To commit to a database one first generates a signing key

pair (vk, sk)
$← kg() and then builds a ZKDB using the construction of [10] (which is recalled

in Appendix A.1) where all the (multi-trapdoor) commitments are generated with the same tag
H(vk). If Com is the database commitment obtained from the procedure above, then the committer
outputs (Com, vk). To generate a proof for an element x, the prover produces πx, as usual, and
outputs (πx, σx) where σx = sigsk(Com, x). Finally, the verification procedure checks the validity
of both πx (w.r.t. the tag H(vk)) and the signature σx.

The strong-independence property of this construction is implied by the q-mercurial binding
of the multi-trapdoor qTMC, the collision resistance of H and the security (unforgeability under
chosen-message attack) of Σ. The proof is the same as that given in [20]. As already noticed above,
our definition of multi-trapdoor q-mercurial commitments is slightly different, but we observe that
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this does not invalidate the existing proof in [20] as the tag H(vk) is known by the simulator when
it computes fake commitments.

Building multi-trapdoor q-mercurial commitments The construction of multi-trapdoor q-
mercurial commitment is basically the same as that of standard trapdoor q-mercurial commitment
in section 5.2 except that the standard mercurial commitment is replaced with a multi-trapdoor
one. This means that the tag is employed only to compute the underlying mercurial commitments.
Multi-trapdoor mercurial commitments were introduced by Gennaro and Micali in [14], though
they did not give an explicit definition for them. The primitive is defined essentially in the same
way as multi-trapdoor q-mercurial commitments when restricted to the case q = 1.

Since Gennaro and Micali give in their paper multi-trapdoor mercurial commitment schemes
based on either the Discrete Log or Strong RSA assumptions [14], we can plug these schemes in
the above construction so as to finally obtain a version of Compact Strongly-Independent ZKDBs.
In particular, by using our vector commitments, we obtain a compact scheme based on standard
constant-size assumptions.

6 Universal Dynamic Accumulators from Vector Commitments

As an additional application of vector commitments, we show that these essentially generalize the
notion of Universal Dynamic Accumulators (UDA). Informally, UDAs are dynamic accumulators
which also support proofs of non membership. More precisely, we show a generic construction of
UDA from vector commitments. Interestingly, by combining this result with the vector commitment
given in Section 3.1, we are able to provide the first accumulator that works in prime order groups
based on a standard constant-size assumption (i.e., CDH). Indeed, all previous constructions [18,
27, 7] in prime order groups rely on relatively young assumptions whose instances’ size is polynomial
in the security parameter.

We start by giving a definition for Universal Dynamic Accumulators. Our definition is inspired
by that given in [7] for the case of basic (i.e. non universal) Dynamic Accumulators12. The defi-
nition uses an accumulator state state, which (also) contains bookkeeping information about the
accumulated set V . A Universal Dynamic Accumulator is defined by the following algorithms:

Acc.Setup(1k, n) takes as input the security parameter k and an integer n such that [n] is a superset
to all the sets that can be accumulated. This algorithm is run by the accumulator authority
and outputs a pair of keys (pk, sk).

Acc.Create(pk, sk, V, n). If V 6⊆ [n], output some error message ⊥. Otherwise, create an accumulat-
ing value accV for V . Output accV and the updated state information state.

Acc.Add(pk, sk, i, accV , state). This algorithm allows to add the element i into the currently accu-
mulated set V . It uses state to retrieve V from accV . Next, it produces an updated accumulator
accV ′ for V ′ = V ∪ {i}, it updates state accordingly, and produces an update information U .
The update information basically keeps track of the changes in the set.

12 We point out, that there are several definitions of UDA in the literature, none of which seems to emerge as the
most popular one (basically almost each construction comes with its own definition). To add our two cents to this
state of affairs, we decided to provide yet another definition, that we believe to be simple to use and general enough
to capture the relevant properties a UDA should have.

28



Acc.Remove(pk, sk, i, accV , state). This algorithm allows to remove the element i from the currently
accumulated set V . It uses state to retrieve V from accV . Next, it produces the updated accumu-
lator accV ′ for V ′ = V − {i}, it updates state accordingly, and produces an update information
U .

Acc.CreateWit(pk, i, accV , state). Again, let V be the set accumulated in accV . This algorithm uses
state to create a witness Witi to prove that i ∈ V (or i 6∈ V ).

Acc.WitUpdate(pk, accV ,Witj , U). Let V be the set (accumulated in accV ) for which Witj is a valid
witness for the element j. Moreover, denote with V ′ the set obtained from V with the changes
in U . This algorithm allows the owner of Witj to produce a new Wit′j , valid with respect to
the accumulated value accV ′ .

Acc.Verify(pk, i,Witi, accV , b) allows to verify whether i ∈ V or not. In particular, the algorithm
outputs 1 if (1) b = 1 and Witi is a valid witness w.r.t. pk, i and accV that i ∈ V , or (2) b = 0
and Witi is a valid witness w.r.t. pk, i and accV that i 6∈ V . In all the remaining cases the
algorithm does not accept and outputs 0.

We require a universal dynamic accumulator to satisfy the correctness and security properties.
Roughly speaking, an UDA is correct if Acc.Verify always outputs 1 when invoked on honestly

generated inputs. More formally, let (pk, sk)
$← Acc.Setup(1k, n) be honestly generated. If accV is the

accumulator for the set V (generated by an execution of Acc.Create, possibly followed by executions
of Acc.Add and/or Acc.Remove) and Witi is a witness for i ∈ V (resp. i 6∈ V ), obtained either from
Acc.CreateWit or from Acc.WitUpdate, then it holds that Acc.Verify(pk, i,Witi, accV , 1) = 1 (resp.
Acc.Verify(pk, i,Witi, accV , 0) = 1)

For security, we require that a dynamic accumulator scheme satisfies a property that we call
set binding. Informally, this property says that an adversary should not be able to prove that an
element i is (resp. is not) in the accumulator represented by accV while i /∈ V (resp. while i ∈ V ).
More formally, for any polynomially bounded algorithm A we define:

AdvsbA(k) = Pr[ (Acc.Verify(pk, i,Witi, accVO , 1) ∧ i /∈ VO) ∨ (Acc.Verify(pk, i,Witi, accVO , 0) ∧ i ∈ VO) |
(i,Witi)←AAdd(·),Remove(·)(pk, acc∅, state);
(acc∅, state)←Acc.Create(pk, sk, ∅, n), (pk, sk)←Acc.Setup(1k, n)]

A is given access to the oracles Add(·), Remove(·) that allow the adversary to, respectively, add
and remove an element into/from the accumulator. Moreover, we denote with VO the set obtained
after the updates asked by A.

Definition 14 [Set binding] A universal dynamic accumulator satisfies set binding if for any PPT
algorithm A, AdvsbA(k) ≤ ε(k) where ε(k) is a function at most negligible in the security parameter
k.

6.1 A scheme based on Vector Commitments

Here we describe how to construct UDA based on the simple notion of Vector Commitments.

Acc.Setup(1k, n) Run pp←VC.KeyGen(1k, n). Output (pk = pp, sk = ε), where ε denotes the empty
string here.
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Acc.Create(pk, sk, V, n) If V 6⊆ [n], output some error message ⊥. Otherwise, let (m1, . . . ,mn) be
the vector where mi = 1 if i ∈ V and mi = 0 otherwise. Run VC.Compk(m1, . . . ,mn) to get
(aux, C). Output accV←C and state←(V, aux).

Acc.Add(pk, sk, i, accV , state). Parse state as (V, aux) and run VC.Updatepk(accV , 0, 1, i) to get the
updated commitment accV ′ and the update information U . Set V ′←V ∪ i and update state to
(V ′, aux). The output is (auxV ′ , state, U).

Acc.Remove(pk, sk, i, accV , state). Parse state as (V, aux) and run VC.Updatepk(accV , 1, 0, i) to get
the updated commitment accV ′ and the update information U . Set V ′←V ∪ i and update state
to (V ′, aux). The output is (auxV ′ , state, U).

Acc.CreateWit(pk, i, accV , state). Parse state as (V, aux) and run VC.Openpk(mi, i, aux) to get the
witness (i.e. the opening) Witi. The output is Witi.

Acc.WitUpdate(pk, accV ,Witj , U). Extract from U the updated value m′ and its position. Run
VC.ProofUpdatepk(accV ,Witj ,m

′, i, U) to get the new accumulated valued accV ′ (i.e. the one
obtained when applying to accV the changes in U) and the updated witness Wit′j . Output Wit′j .

Acc.Verify(pk, i,Witi, accV , b) Output VC.Verpk(accV , b, i,Witi)

The correctness of the scheme follows from the correctness of the underlying vector commitment.
Set binding can be proved via the following theorem

Theorem 15 If VC is a vector commitment, the dynamic universal accumulator constructed above
is set binding.

Proof. Let B be an adversary against the set binding property of the proposed scheme, we show
how to build an equally efficient adversary A against the position binding property of the vec-
tor commitment. A receives on input the parameters pp, and sets pk = pp and sk = ε. Next,
A runs Acc.Create(pk, sk, ∅, n) and executes B on the so obtained values (pk, acc∅, state). Notice
that A can easily answer all Add and Remove queries, by running Acc.Add and Acc.Remove,
respectively. At some point, B halts and hands to A a triplet (i,Wit′i, accVO) such that either
Acc.Verify(pk, i,Wit′i, accVO , 1)∧ i /∈ VO or Acc.Verify(pk, i,Wit′i, accVO , 0)∧ i ∈ VO. Assume, w.l.o.g.,
that the former case applies. Notice that, being accO a correctly computed accumulator, for cor-
rectness, there must exists a witness Witi such that Acc.Verify(pk, i,Witi, accVO , 0). In other words,
Witi is a valid witness of the fact that i 6∈ VO. Moreover, since accVO has been created by A, it
knows such a Witi. This means that the tuple (accVO , 1, 0, i,Wit′i,Witi) will contradict the position
binding of the underlying vector commitment.

Remark 16 In the construction above we restrict our scheme to accumulate integers 1, . . . , n. In
some applications, however, one might want to be able to accumulate any set of size n. A simple way
to do so, would be to publish (signed) triples (i, vi, T ) where vi is the value one wants to associate
to position i, ad T is some auxiliary information that might be required by the application. More
precisely, the issuer of the accumulator uses a secure digital signature scheme, to sign i together
with vi and T . To verify a witness, one would be then required to verify the signature as well. To
update an (accumulated) value at position i, a new signature to (i, v′i, T

′) is (or might be) required
(and this is why in our description above, Acc.Add and Acc.Remove both are allowed to require
knowledge of a secret key)

Remark 17 We observe that the accumulator presented in this section is not expected to conceal
the actual value of the accumulated elements. While it is a common practice to not require any

30



hiding feature from accumulators, there might be cases where such a feature could be useful. We
remark that, at the cost of some inefficiency overhead, our scheme can be easily converted into an
hiding accumulator as follows. To accumulate a set V = {v1, . . . , vn} one first creates a commitment
ci to each vi and then accumulates the resulting ci’s.

References

1. Feng Bao, Robert Deng, and HuaFei Zhu. Variations of diffie-hellman problem. In Sihan Qing, Dieter Gollmann,
and Jianying Zhou, editors, Information and Communications Security, volume 2836 of Lecture Notes in Computer
Science, pages 301–312. Springer Berlin / Heidelberg, 2003.

2. Niko Bari and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature schemes without trees. In
Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 480–494. Springer, May 1997.

3. Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free hashing: Incrementality at reduced cost.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 163–192. Springer, May 1997.

4. Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation of computation over large
datasets. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 111–131. Springer, August
2011.

5. Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative to digital sinatures
(extended abstract). In Tor Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS, pages 274–285. Springer,
May 1993.

6. Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with short ciphertexts and
private keys. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 258–275. Springer, August
2005.

7. Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based on bilinear maps and efficient
revocation for anonymous credentials. In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009, volume 5443
of LNCS, pages 481–500. Springer, March 2009.

8. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient revocation of anony-
mous credentials. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 61–76. Springer, August
2002.

9. Dario Catalano, Yevgeniy Dodis, and Ivan Visconti. Mercurial commitments: Minimal assumptions and efficient
constructions. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 120–144. Springer,
March 2006.

10. Dario Catalano, Dario Fiore, and Mariagrazia Messina. Zero-knowledge sets with short proofs. In Nigel P. Smart,
editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 433–450. Springer, April 2008.

11. Dario Catalano, Mario Di Raimondo, Dario Fiore, and Mariagrazia Messina. Zero-knowledge sets with short
proofs. Information Theory, IEEE Transactions on, 57(4):2488 –2502, april 2011.

12. Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal Malkin, and Leonid Reyzin. Mercurial commitments
with applications to zero-knowledge sets. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS,
pages 422–439. Springer, May 2005.

13. Jung Hee Cheon. Security analysis of the strong Diffie-Hellman problem. In Serge Vaudenay, editor, EURO-
CRYPT 2006, volume 4004 of LNCS, pages 1–11. Springer, May / June 2006.

14. Rosario Gennaro and Silvio Micali. Independent zero-knowledge sets. In Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener, editors, ICALP 2006, Part II, volume 4052 of LNCS, pages 34–45. Springer, July
2006.

15. J. Hastad, A. Schrift, and A. Shamir. The discrete logarithm modulo a composite hides o(n) bits. In Journal of
Computer and System Science, volume 47 (3), pages 376–404, 1993.

16. Susan Hohenberger and Brent Waters. Short and stateless signatures from the RSA assumption. In Shai Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 654–670. Springer, August 2009.

17. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials and their
applications. In Advances in Cryptology - ASIACRYPT 2010, volume 6477, page 178, 2010.

18. Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with efficient nonmembership proofs. In Jonathan
Katz and Moti Yung, editors, ACNS 07, volume 4521 of LNCS, pages 253–269. Springer, June 2007.
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A Zero-Knowledge Databases

Here we formally describe the properties of a zero-knowledge EDB. Let (Setup,Commit,Prove,V)
be an EDB system as defined in section 5. We say that it is a zero-knowledge EDB if:

1. Completeness. ∀ databases D and ∀x ∈ [D]

Pr


CRS

$← Setup(1k); (ZPK,ZSK)
$←

Commit(CRS,D);
πx←Prove(CRS,ZSK, x) : V(CRS,ZPK, x, πx) =
D(x)

 = 1− ε(k)

where ε(k) is negligible in k.
2. Soundness. ∀x ∈ {0, 1}∗ and ∀ PPT algorithms P ′

Pr


CRS

$← Setup(1k); (ZPK ′, πx, π
′
x)

$←
P ′(CRS,D) :
V(CRS,ZPK ′, x, πx),V(CRS,ZPK ′, x, π′x) 6=
⊥ ∧
V(CRS,ZPK ′, x, πx) 6= V(CRS,ZPK ′, x, π′x)


is negligible.
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3. Zero-Knowledge. Let us assume that exists an oracle that, queried on a key x, returns the
correct value associated to x in a database D if x ∈ [D], otherwise it returns ⊥. Then there
exists a simulator SIM = (SimSetup, SimCom,SimProve), where SimProve has oracle access to
D, such that ∀ adversaries A, ∀k ∈ N and ∀ databases D, A’s view V iew(k) in the real game
is indistinguishable from its view V iew′(k) in the game played by SIM .

V iew(k) =



CRS
$← Setup(1k); (ZPK,ZSK)

$← Commit(CRS,D);

(x1, s1)
$← A(CRS,ZPK);πx1←Prove(ZSK, x1) :

(x2, s2)
$← A(CRS,ZPK, s1, πx1);

πx2←Prove(x2, ZSK);
...

: ZPK, x1, πx1 , x2, πx2 ...



V iew′(k) =



(CRS′, t)
$← SimSetup(1k); (ZPK ′, ZSK ′)

$← SimCom();

(x1, s1)
$← A(CRS,ZPK ′);π′x1←SimProveD(x1, ZSK

′) :

(x2, s2)
$← A(CRS′, ZPK ′, s1, π

′
x1);

π′x2←SimProveD(x2, ZSK
′);

...

: ZPK ′, x1, π
′
x1 , x2, π

′
x2


A.1 Compact Zero-Knowledge Databases from trapdoor q-mercurial commitments

In this section we recall the construction given by Catalano et al. in [10, 11] that builds ZK EDBs
from trapdoor q-mercurial commitments, trapdoor mercurial commitments and collision resistant
hash functions.

Let Th be the complete q-ary tree of height h, with qh leaves. Let Uk be a universe of size 2k

and Th be the complete q-ary tree of height h. Each element x ∈ U can be associated to a leaf
of Th and all the nodes in the path from the root to x can be labeled with the q-ary encoding of
x. Thus ε (the empty string) is the label for the root. If v is a non-leaf node, then v1, · · · , vq are
the labels for its q sons. Let S ⊆ Uk and consider the following two subsets of Th: TREE(S) and
FRONTIER(S). TREE(S) is the subtree of Th containing all the nodes in the paths from the
leaves in S to the root. FRONTIER(S) = {v : v /∈ TREE(S) ∧ parent(v) ∈ TREE(S)}.

The construction is given by describing the following algorithms:

Setup(1k) Output the common reference string CRS = (PK,PKM,H) where PK is the public
key of a trapdoor q-mercurial commitment scheme QC, PKM the public key of a trapdoor
mercurial commitment scheme C and H is a collision resistant hash function.

Commit(CRS,D)

1. Let S = {H(x) : x ∈ D,D(x) 6= ⊥}. Construct the tree T = TREE(S)
⋃
FRONTIER(S).

2. ∀ leaf-nodes H(x) set:

nH(x) =

{
H(y) if D(x) = y,

0 if D(x) = ⊥.

compute a hard commitment (CH(x), auxH(x)) = HComPKM (nH(x)) and setmH(x) = H(CH(x)).
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3. ∀ internal nodes u such that u ∈ FRONTIER(S) : (Cu, auxu) = qSComPK().

4. ∀ internal nodes u ∈ TREE(S): (Cu, auxu) = qHComPK(mu1, · · · ,muq), store auxu in u
and set mu = H(Cu) if u 6= ε.

5. Output the commitment of the root: ZPK = (Cε). The secret key ZSK contains all the
stored elements.

Prove(CRS,ZSK, x) The prover algorithm produces a proof πx of the database value of x. We
distinguish between two cases:

1. D(x) = y. The proof πx contains the commitments and the hard openings in the path from

the leaf-node H(x) toward the root: πx =
{
y, CH(x), HOH(x) = HOpenPKM (H(y), auxH(x)),

{Cu, qHOu = qHOpenPK(mv, i, auxu)}v=H(x),··· ,ε−1

}
with u = parent(v), i = indexu(v).

2. D(x) = ⊥. The prover first checks if the leaf node H(x) is in the tree T . If H(x) /∈ T , let
w ∈ FRONTIER(S) be the root of the missing subtree of Tk containing H(x). The prover
builds the subtree rooted in w using the same algorithm as in Commit. The proof πx contains
the commitments and the soft openings in the path from H(x) toward the root ε:{
CH(x), SOH(x) = SOpenPKM (0, S, auxH(x)),

{Cu, qSOu = qSOpenPK(mv, i,H/S, auxu)}v=H(x),··· ,ε−1

}
with u = parent(v), i = indexu(v).

V(CRS,ZPK, x, πx) We consider two cases according to the type of πx:

1. D(x) = y.

(a) Check if HVerPKM (H(y), CH(x), HOH(x)) = 1.
(b) Compute mH(x) = H(CH(x)).
(c) Let v = parent(H(x)) and i such thatH(x) = vi. Check if qHVerPK(mH(x), i, Cv, qHOv) =

1.
(d) compute mv = H(Cv) and iterate as above for u = parent(v), · · · , ε− 1.
(e) Check if qHVerPK(mu, i, ZPK, qHOε) = 1, where u = i is the first node in the path

from the root toward H(x).
(f) If none of the tests above fails, output y, otherwise output ⊥.

2. D(x) = ⊥.

(a) Check if SVerPKM (0, CH(x), SOH(x)) = 1
(b) Compute mH(x) = H(CH(x)).
(c) Let v = parent(H(x)) and i such that H(x) = vi. Check if

qSVerPK(mH(x), i, Cv, qSOv) = 1.
(d) Compute mv = H(Cv) and and iterate as above for u = parent(v), · · · , ε− 1.
(e) Check if qSVerPK(mu, i, ZPK, qSOε) = 1, where u = i is the first node in the path from

the root toward H(x).
(f) If none of the tests above fails output out, else output ⊥.

B Updatable mercurial commitments with updatable hiding

As already noticed in section 5.3, it is interesting to consider security properties for updatable
mercurial commitments that are reasonable in general, not only for the application of building ZK
EDBs. In this section we address this problem and provide augmented security properties for hiding
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and equivocations of updatable mercurial commitments. Finally we will also propose a scheme that
realizes our stronger security definition.

Roughly speaking we would like that the usual hiding and equivocations properties should
be preserved even when updates are issued. For this reason, we define the following augmented
properties:

Updatable Hiding We say that an uTMC has updatable hiding if any PPT adversary A has at
most negligible probability of winning the following game.
The adversary is allowed to choose two messages m0,m1 and then receives C which is a commit-

ment to mb for a randomly chosen b
$← {0, 1}. Then A is allowed to choose other two messages

m′0,m
′
1 and gets (C ′, U) that are an updated commitment and the update information for m′d

where d
$← {0, 1} is chosen at random. Finally A outputs two bits b′, d′ and we say that it wins

if b′ = b and d′ = d.
Informally this property says that given C,C ′ and U it is still infeasible to extract information
about the committed messages. The definition above is intended for computational updatable
hiding. The corresponding perfect and statistical definitions easily follow by making no assump-
tions on the power of the adversary.

Updatable mercurial hiding and equivocations We slightly modify the games of mercurial
hiding and all equivocations (HH, HS, SS) and we say that an uTMC satisfies these proper-
ties if any PPT adversary can win in such games with at most negligible probability. Each
game is modified in a way similar to updatable hiding. Namely, after having seen a commit-
ment/decommitment tuple, we add a final phase where the adversary is allowed to see an
updated commitment C ′ and the related update information U for a message m′ of its choice.
Then we require that the type of C remains hidden even when the adversary is given C,U . Since
an updated commitment is always a hard commitment (by its definition) we are not interested
into concealing its type.
It is easy to see that if a scheme satisfies these augmented properties, then it also satisfies the
standard mercurial hiding and equivocations. Moreover if the mercurial commitment is proper,
then it suffices to check only HH and SS equivocations as these imply all the other properties.

Remark 18 While in standard mercurial commitments the mercurial hiding implies the standard
one, this no longer holds here. Indeed, observe that the games of updatable hiding and updatable
mercurial hiding differ in that in the latter one does not concern about hiding the type of C ′. This
means that updatable hiding has to be independently checked.

B.1 Updatable mercurial commitments with updatable hiding from RSA

In this section we show an updatable mercurial commitment scheme that satisfies our security
definitions given above under the RSA assumption. The scheme is obtained by extending the one
given in section 5.3.

KeyGen(k, `) First, randomly choose two k/2-bit primes p1, p2 and a prime e > N .Next, let T a
random element in ZN and ck be the public key of a standard commitment C = (Com,Open,Ver).
The public key PKTMC is set as (N,T, e, ck) while the trapdoor tk is the e-th root of T .

HComPKTMC
(m) Choose random elements R, r, α ∈ ZN . Then compute s = Tre mod N , C =

s(m+α)Re, (µ, auxµ) = Comck(α). Finally output the commitment (C, s, µ) and the auxiliary
information auxTMC = (m,R, r, α, auxµ).
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HOpenPKTMC
(m, auxTMC) Parse auxTMC as (m′, R, r, α, auxµ). Output ⊥ if m 6= m′ and (R, r, α, πµ)

otherwise (where πµ←Openck(α, auxµ)).

HVerPKTMC
(C, s, µ,m,R, r, α, πµ) The hard verification algorithm returns 1 if and only if s =

Tre mod N , C = s(m+α)Re and Verck(µ, α, πµ) = 1.

SComPKTMC
() Choose random elements R, r, α ∈ ZN . Then compute s = re mod N , C = Re and

(µ, auxµ) = Comck(α). Output the soft commitment (C, s, µ) and the auxiliary information
auxTMC = (R, r, α, auxµ).

SOpenPKTMC
(m, flag, auxTMC) . If flag = H proceed as follows. Parse auxTMC as (m′, R, r, α, auxµ),

if m′ 6= m return ⊥, otherwise output R,α, πµ where πµ←Openck(α, auxµ).

If flag = S, then output (R′, α, πµ) such that R′ = r−(m+α)R mod N , and πµ←Openck(α, auxµ).

SVerPKTMC
(C, s, µ,R, α, πµ) The soft verification algorithm returns 1 if and only if C = s(m+α)Re

and Verck(µ, α, πµ) = 1.

FakePKTMC,tk() This is the same as the SCom algorithm.

HEquivPKTMC,tk
(m, auxTMC) Parse auxTMC as (R, r, α, auxµ) and output (R′, r′, α, πµ) where r′ =

r · (tk)−1 mod N , R′ = r−(m+α)R mod N and πµ←Openck(α, auxµ).

SEquivPKTMC,tk
(m, auxTMC) Parse auxTMC as (R, r, α, auxµ) and output (R′, α, πµ) where R′ =

r−(m+α)R mod N and πµ←Openck(α, auxµ).

Updatepk(C, s, µ, auxTMC,m
′) If C is a hard commitment, parse auxTMC as (m,R, r, α, auxµ) and

proceed as follows. Pick a random r′
$← ZN and compute: s′ = r′eT mod N and C ′ = s′(m

′+α)Re mod
N . Otherwise, if C is a soft commitment (i.e. auxTMC = (R, r, α, auxµ)) that has been teased

to a message m then proceed as follows. Pick a random r′
$← ZN , set R′ = r−(m+α)R and com-

pute s′ = r′eT mod N and C ′ = s′(m
′+α)R′e mod N . Finally output the updated commitment

(C ′, s′, µ) and the update information U = r′.

ProofUpdatepk(C,m
′, π, U) Who holds a proof π that was valid for C, can use the update infor-

mation U to compute the updated commitment C ′ to m′ and produce a new proof π′ which
will be valid w.r.t. C ′ and m′. The updated commitment is (C ′ = s′(m

′+α)Re mod N, s′ =
r′eT mod N,µ). If π is a soft opening (i.e. π = (R,α, πµ)) the updated proof π′ remains the same.
Otherwise, if π is a hard opening (i.e. π = (R, r, α, πµ)) the updated proof is π′ = (R, r′, α, πµ).

Theorem 19 If the RSA assumption holds and C is a commitment, then the scheme given above
is an updatable trapdoor mercurial commitment.

Proof. We prove the theorem by showing that each property is satisfied. The proof of the mercurial
binding is basically the same as that of the scheme of Gennaro and Micali [14]. Let (C, s, µ) be a
commitment and let (R, r, α, πµ) and (R′, r′, α′, π′µ) be two hard openings to m and m′ respectively
(such that m 6= m′). Here we can have two different cases. If α 6= α′ then we can break the binding
of C. Otherwise, if α = α′ we can break RSA as in the proof of [14] (with the additional case that
m = m′ mod φ(N) in which one can factor N).

The scheme clearly satisfies the usual hiding and equivocations properties for the same argument
of [14]. Finally we show below that it satisfies our stronger properties of updatable hiding and
equivocations.

Updatable Hiding and equivocations. In order to prove that the scheme satisfies updatable
hiding we recall below the view of the adversary in this game:

Db,d = {C = s(mb+α)Re, s = reT, µ = Comck(α), C ′ = s′(m
′
d+α)Re, s′ = r′eT,U = r′}.
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One can observe that for any choice of the messages (mb,m
′
d) there exist α,R that satisfy

the equations above. This means that, without µ, the distributions Db,d for b, d ∈ {0, 1} are per-
fectly indistinguishable for any messages m0,m1,m

′
0,m

′
1. Therefore, if the commitment µ is hiding,

updatable hiding also holds.
A similar argument applies in the case of the equivocations properties.
In the case of updatable HHEquivocation the adversary sees either one of the following tuples:

{C = s(m+α)Re, s = reT, µ = Com(α), R, r, πµ, T
1/e, C ′ = s′(m

′+α)Re, s′ = r′eT,U = r′}

{C = Re, s = re, µ = Com(α), (r−(m+α)R), (rT 1/e), πµ, T
1/e, C ′ = s′(m

′+α)(r−(m+α)R)e, s′ = r′eT,U = r′}

where it chooses m and m′. The two views are clearly perfectly indistinguishable.
Finally, in the case of updatable SSEquivocation it is trivial to see that the two views are exactly

the same:

{C = Re, s = re, µ = Com(α), (r−(m+α), R), πµ, T
1/e, C ′ = s′(m

′+α)(r−(m+α)R)e, s′ = r′eT,U = r′}

{C = Re, s = re, µ = Com(α), (r−(m+α), R), πµ, T
1/e, C ′ = s′(m

′+α)(r−(m+α)R)e, s′ = r′eT,U = r′}
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