
Goliath: a horizontally-scalable storage system for
crypto.

Liam Zebedee

Abstract

The need for scalable storage systems in crypto infrastructure remains largely
unaddressed.
Goliath is a novel horizontally-scalable storage network for crypto inspired by
Google’s File System (GFS), adapted for decentralized environments. Using
Goliath, users can deploy clusters for storing blockchain state and history, decen-
tralized AI models and their outputs, and confidential data stores. Clusters are
read-write, permissioned by public keys and ZK proofs, and can grow in size
dynamically.

1 Introduction.

1.1 Unbundling Ethereum.

The Ethereum blockchain was invented in 2015, a monolithic bundling of many inventions: Indexes
(logs), execution (EVM), sequencing (mempool), consensus (PoW + GHOST), data availability
(coinbase). Since then, every aspect of this stack is being torn out and spun into its own protocol.

Overall, Ethereum represents a maturing ecosystem, wherein modules have diverged into more
specialized subcomponents. For example, the Lyra Protocol began as a DeFi protocol on Ethereum
L1, and then later spun out as an optimistic rollup L2, enabling them to scale with cheaper transcation
fees, and then replaced their data availability with Celestia for even more savings passed on to the
user.

Curiously, there is an aspect missing from this stack: storage. Every Ethereum node, every Ethereum
L2 sequencer, every blockchain requires storage for its apps - both for the raw state of the database
(e.g. ERC20 balances) and for the history of the chain itself (what is used to sync). And storage so
far has remained the exact same - operators must manually manage and allocate storage via attaching
HDD’s.

Component Ethereum (2015) Ethereum protocols (2024)
Indexes Logs Subgraphs, Shadow, Custom indexers
Execution EVM Parallel EVM rollups, WebAssembly (Arbi-

trum AnyTrust), custom ZK-proven VM’s
(Starknet, Scroll)

Sequencing Mempool Decentralized sequencers, threshold-
encrypted mempools

Data Availability Coinbase Celestia, EigenDA, Danksharding
Security models Replicated state machines Optimistic rollups, Validity rollups / ZK-

proofs
Economic/validator
distribution

Ethereum social layer Eigenlayer, Symbiotic

Table 1.1: Unbundling the Ethereum monolith.

We have been tracking the development of Ethereum since 2015, and have been interested in
innovating in this space. This whitepaper serves as a research exploration into creating something
new - a cryptonetwork for scalable storage.

1.2 A storage cryptonetwork.

Crypto infrastructure demands a scalable storage system in many areas of the stack. Syncing a
blockchain is extremely expensive and slow, indexing and downloading from many peers from
scratch for every node. After a blockchain synchronises, every node must keep a full copy of state
on their storage device, ruling out devices with low storage capacities from participating. There is a
huge demand for decentralized storage systems that exist independently of blockchains - for example
for indexers, for hosting decentralized AI models, confidential data stores [5].

While there have been products, no solution has really succeeded as a modular component in the
same way Celestia has for data availability. BitTorrent is designed primarily for data sharing, cannot
be used to write data, and is not a cryptonetwork where you can pay for storage as $ETH pays for
blockspace. Filecoin has succeeded in building an economic model, but its product has failed to
capture the market. There are many potential reasons for Filecoin’s lack of adoption - the API to
read/write storage is cumbersome, it requires asynchronously interacting with an orderbook (storage
deals) rather than in Ethereum where users purchase blockspace synchronously from a proto-AMM
(the progressive gas auction), the product does not provide guarantees of read/write speeds. Although
Filecoin failed, its underlying technology came close - many prominent crypto companies use IPFS
to verifiably host data, such as Zora - but instead of paying to put the data on Filecoin, they run their
own IPFS nodes.

While we don’t claim to know what the market wants, we believe a storage network that is en-
capsulated so users can deploy their own clusters is key. Rather than a single monolithic shared
environment, users should be able to deploy their own storage cluster, with their own nodes, with
different replication and mirroring factors, economic settings that reward data publishers, read/write
quotas, and so on.

1.3 Conceptual design.

Our design for this system comes from Google’s distributed systems, namely GFS [6] and Bigtable
[4].

Key contributions . We rebuild the Google File System within a byzantine trust model [8] as a
cryptonetwork. Instead of Chubby and Paxos, we use a blockchain on Tendermint. The master server
is replaced by the blockchain node, which performs deterministic and non-deterministic roles (such
as checking liveness via heartbeats). Chunkservers, which provide the storage to clients, perform
the same function as in GFS - though are regularly issued data availability challenges in the style
of Celestia and Filecoin. The total storage capacity of the network is tracked by the master node,

2

and sold via a custom-built automated market maker. Users of Goliath storage clusters interact via
ECDSA wallets, and are able to read and write files and directories in an S3-compatible interface.

2 Design.

Our intuition for building Goliath is through reading the Google distributed systems literature, and
noting the analogues.

Firstly, we will briefly explain Google File System. Then we will give an overview of the components
and their analogues in the crypto space. Then we will sketch the design for the Goliath system.

2.1 Google File System.

Google File System (GFS) [6] is a scalable, distributed file system designed to handle large amounts
of data across numerous machines. It organizes files into fixed-size chunks, typically 64 megabytes
each, which are stored on multiple chunkservers to ensure reliability and availability. A single master
server manages metadata, such as the namespace, access control, and the mapping of files to their
respective chunks and chunkservers. The key insight of GFS is that the master can fit all the metadata
in memory, allowing it to efficiently oversee and coordinate the entire system. By distributing chunks
across many chunkservers, GFS can scale storage capacity horizontally as more servers are added,
balancing the load and enhancing performance.

In order to elect a server as the master process, GFS uses Chubby [3]. Chubby is a strongly-consistent
highly-available lock file service developed by Google. Chubby allows application developers to
store small files locked to a single network process via the Paxos [10] consensus algorithm. In GFS,
a master server is identified by its lock on a Chubby file. If the master process crashes, the lock is
released, and another server can take the lock and assume the role of the master. The orchestration of
such servers is done by a separate system, Borg.

The analogue for these Google systems is clear. The Paxos consensus algorithm can be replaced by
a byzantine fault tolerant algorithm such as Tendermint [2]. The Chubby lock file service, a small
stateful program, can be replaced by a smart contract on a blockchain. Finally, in order to verify the
chunkservers are indeed storing data - we can introduce data availability sampling, whereby nodes
provide a random proof that they are hosting a subset of data.

Google Crypto analogue
Paxos consensus Tendermint consensus
Chubby lock file service Smart contract
GFS master Blockchain node
GFS chunkserver Chunkserver with data availability

proofs

Table 2.1: Google/crypto distributed systems analogues.

Non-deterministic computation. One interesting difference to Ethereum L2’s is that Goliath makes
use of non-deterministic computation affordances in Cosmos blockchains. Namely, the master process
is a Tendermint blockchain, though unlike Ethereum smart contracts, we perform out-of-protocol
functions that are usually reserved for the role of keepers within a crypto context - an example of this
is connecting to chunkservers, performing regular heartbeats to verify their liveness.

2.2 System overview.

1. Goliath cluster. A Goliath cluster consists of a Tendermint blockchain representing the
master process, and a set of worker nodes referred to as chunkservers, which perform the
data storage.

2. Master process. The master process is implemented in Go, as a Tendermint blockchain. It
stores the file index (file paths, replication factor, chunks, permissions), chunk servers (ad-
dress, chunk sets, heartbeat, capacities), read/write leases (locks), token balances (accounts).

3

It runs the functions to manage chunkservers (indexing their chunks, heartbeats to check
status, assigning a primary, data availability checks), allocating chunks to chunkservers (as-
signment, replication), pricing and selling storage (automated market maker), and allocating
leases for file writes to users.

3. Chunkserver process. The chunk server process is implemented in Go, as a standalone
process. It stores chunks. It follows commands given by the master blockchain, including
replicating chunks, serving reads to users, answering data availability checks. It verifies
leases issued by the master and then authorises writes. There is one chunkserver deemed the
primary which determines write order, the rest follow.

4. Client library. The client library is used by users to read and write data to a Goliath cluster.
Control flow begins at the master, where users acquire a write lease which ensures writes are
consistent. Users then interact directly with the chunkserver primary to upload chunk data,
which is then replicated on secondaries, and finally committed. Chunkservers are cached
inside the client library to reduce load on the master.

2.3 Tokenomics.

Goliath functions similarly to a blockchain, but instead of selling blockspace, we sell storage. The
master keeps track of the total capacity of the storage system. Users pay transaction fees to write data.
The price paid is a function of an automatic market maker, modelled after Uniswap v2 [1], which
models the storage supply. Price increases when storage utilization is high, and decreases when it
is low. Nodes are incentivised to come online and saturate demand for storage through automatic
”surge pricing” incentives.

3 Product.

Goliath can be used to deploy horizontally-scalable storage clusters for cryptonetworks. The chief
benefit of a cryptonetwork is its longetivity and open-source alignment; a cryptonetwork is public
infrastructure that is robust to political change.

We discuss a couple of use cases for Goliath below:

Permissioning Operators can setup a Goliath cluster and permission file system read/write access
for different users based on cryptographic identities, tokens, or even ZK proofs which show the
validity of data. For example, the Ethereum blockchain could use Goliath to store its block history,
by setting a write permission check that requires the node to provide a ZK proof of consensus.

Data collaboration Goliath can be used for archiving and mirroring datasets. The file system will
be designed so that nodes can selectively mirror subsets of / the entire file system. Operators get the
best of both worlds - they can deploy clusters on their own hardware, whilst also running an open
protocol which allows users to mirror any and all of the dataset. This is similar to a data storage
consortium.

Publish, prove, get paid. Goliath will allow people to get paid anytime someone downloads/uses
their data. For example, an open-source blockchain indexer could spend compute power building
blockchain indexes and publish them to Goliath. Anytime someone wants to read data (for example,
all ERC20 addresses that have interacted with a contract), they can pay a small fee and access this
prebuilt index. This not only improves the customer experience, since they don’t have to wait for
their indexer to run, it also deduplicates work in the marketplace, by allowing one node to publish,
prove, and get paid. ZK proofs play an important role here - allowing people to ”try before you buy”
through validating the data is valid and not junk. Encrypted data can be trustlessly sold using schemes
such as fair data exchange (FDE) [12] from a16z.

Onchain AI agents. In 2040 there will exist a computer platform where fully autonomous Turing-
complete processes (RISC-V executables) can run and pay for their compute, networking and storage
purely via crypto. They will have highly-developed reasoning systems that various high-level human
corporations interact with via distributed training algorithms [11] [13]. Why will they use AI’s over
humans? There will be no comparison - AI agents will work deeper and longer. They will sit on

4

problems for days, weeks, and months in ”system 2” mode. Unlike humans, who require NDA’s
to prevent leakage of proprietary information, AI’s can be run as pure algorithms inside encrypted
secure multi-party computation circuits [9]. They will be provably trustworthy and reliably neutral
due to cryptography and alignment. These AI intelligence softwares will be deployed autonomously
for the same reasons that blockchains are useful - an unbiased global layer will make the cost of
coordination much lower. Just as hedge funds develop highly-sophisticated trading strategies which
make markets more efficient, thus producing more accurate signals for the market supply-demand
process, so will there be firms developing highly-sophisticated AI models which will be used by firms
to improve their economy too. Agents will be colocated with public information (price feeds, AMM
pools, prediction markets), jointly operated with private information using MPC technology, and
produce private/public outputs. These AI models may take actions of their own - perhaps using the
joint private information of two firms to buy/sell assets in markets. They may even produce products
of their own - for example crunching the datasets of two firms, producing a ZK proof of a solution to
a mutual problem without revealing the solution itself. The choice to buy this solution (thus paying
the ”hedge fund” who developed it) being enacted again over MPC, only proceeding with public and
irreversible payment via a blockchain [12].

Databases Crypto lacks database systems which can be used to replicate very basic web2 websites
- for example, forum boards, imageboards, chat systems, and even further onto products like Spotify
and Github, which are simply relational interfaces to data. In order to build these decentralized
database systems, we need to first have the storage systems in place to actually persist data. Goliath
can be used as a foundation to build decentralized databases, just as GFS is used as a foundation for
Google Bigtable and Spanner.

Rebuilding the original WWW vision. The original vision for the web was a shared workspace
where people could visit websites, edit documents, and link out to each other. Part of what makes this
hard is that users don’t want to run their computer all the time, and providing edit access to everyone
is hard when all computers have different specifications. Goliath provides a storage backend which
can make this possible. By linking Goliath to an open naming system like ENS, and modifying the
browser to access ENS content through Goliath, users can publish websites and openly permission
read/write access to other users. We believe this is important for science, that anyone is able to share
their knowledge and collaborate seamlessly using open-source software systems.

4 Implications

Based purely on technical analogues, it appears that Goliath could theoretically work similar to
Google File System, with minimal modifications. Google reports a sample GFS cluster with 72 TB
of storage capacity, distributed across 372 nodes, with 20 MB of metadata required on the master. At
a modest 12.5 MB/s downlink per node, this cluster supports a 30 MB/s aggregate write throughput,
and read rates of 583 MB/s.

These statistics are not intended to portray an academic reflection, however are enticing as a compari-
son point to existing crypto storage systems.

We look to geohot’s ”The World Computer” [7] as the anchor point for future systems. While existing
blockchains are focused on scaling execution throughput (gas per second, gigagas, etc.), we need to
be scaling storage too.

References
[1] H. Adams, N. Zinsmeister, and D. H. Robinson. Uniswap v2 core. 2020. URL https:

//api.semanticscholar.org/CorpusID:221835652.

[2] E. Buchman, J. Kwon, and Z. Milosevic. The latest gossip on bft consensus, 2019. URL
https://arxiv.org/abs/1807.04938.

[3] M. Burrows. The chubby lock service for loosely-coupled distributed systems. In 7th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2006.

5

https://api.semanticscholar.org/CorpusID:221835652
https://api.semanticscholar.org/CorpusID:221835652
https://arxiv.org/abs/1807.04938

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. E. Gruber. Bigtable: A distributed storage system for structured data. In Proceedings
of the 7th USENIX Symposium on Operating Systems Design and Implementation (OSDI’06),
2006. URL http://labs.google.com/papers/bigtable.html.

[5] F. Collective. Suave specifications - confidential data store. URL https://github.com/
flashbots/suave-specs/blob/main/specs/rigil/confidential-data-store.md.

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In Proceedings of the
nineteenth ACM symposium on Operating systems principles, SOSP ’03, pages 29–43, New
York, NY, USA, 2003. ACM. ISBN 1-58113-757-5. doi: 10.1145/945445.945450. URL
http://doi.acm.org/10.1145/945445.945450.

[7] G. Hotz. The world computer. URL https://geohot.github.io/blog/jekyll/update/
2024/02/26/the-worlds-computer.html.

[8] L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals problem. ACM Trans. Pro-
gram. Lang. Syst., 4(3):382–401, 1982. URL http://dblp.uni-trier.de/db/journals/
toplas/toplas4.html#LamportSP82.

[9] Y. Lindell. Secure multiparty computation (MPC). Cryptology ePrint Archive, Paper 2020/300,
2020. URL https://eprint.iacr.org/2020/300.

[10] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J.
ACM, 27(2):228–234, apr 1980. ISSN 0004-5411. doi: 10.1145/322186.322188. URL
https://doi.org/10.1145/322186.322188.

[11] M. Ryabinin, T. Dettmers, M. Diskin, and A. Borzunov. Swarm parallelism: Training large
models can be surprisingly communication-efficient, 2023. URL https://arxiv.org/abs/
2301.11913.

[12] E. N. Tas, I. A. Seres, Y. Zhang, M. Melczer, M. Kelkar, J. Bonneau, and V. Nikolaenko. Atomic
and fair data exchange via blockchain. Cryptology ePrint Archive, Paper 2024/418, 2024. URL
https://eprint.iacr.org/2024/418.

[13] B. Yuan, Y. He, J. Q. Davis, T. Zhang, T. Dao, B. Chen, P. Liang, C. Re, and C. Zhang.
Decentralized training of foundation models in heterogeneous environments, 2023. URL
https://arxiv.org/abs/2206.01288.

6

http://labs.google.com/papers/bigtable.html
https://github.com/flashbots/suave-specs/blob/main/specs/rigil/confidential-data-store.md
https://github.com/flashbots/suave-specs/blob/main/specs/rigil/confidential-data-store.md
http://doi.acm.org/10.1145/945445.945450
https://geohot.github.io/blog/jekyll/update/2024/02/26/the-worlds-computer.html
https://geohot.github.io/blog/jekyll/update/2024/02/26/the-worlds-computer.html
http://dblp.uni-trier.de/db/journals/toplas/toplas4.html#LamportSP82
http://dblp.uni-trier.de/db/journals/toplas/toplas4.html#LamportSP82
https://eprint.iacr.org/2020/300
https://doi.org/10.1145/322186.322188
https://arxiv.org/abs/2301.11913
https://arxiv.org/abs/2301.11913
https://eprint.iacr.org/2024/418
https://arxiv.org/abs/2206.01288

	Introduction.
	Unbundling Ethereum.
	A storage cryptonetwork.
	Conceptual design.

	Design.
	Google File System.
	System overview.
	Tokenomics.

	Product.
	Implications

