
Verifiable bandwidth sampling in P2P networks

Liam Zebedee

Dappnet

Abstract. Decentralized data hosting is blocked by the ability to
guarantee speed of access. We propose a mechanism called verifiable
bandwidth sampling, wherein a node samples another node’s speed for
solving a continuous off-chain data availability challenge. The challenge
is designed to fit within the timekeeping of a verifiable clock - a
blockchain consensus protocol. And in doing so, the bandwidth of a
connection is securely measured. Building upon this result, we can
design an automated market maker for data hosting (storage and
bandwidth) which can scale horizontally in capacity.

Keywords: decentralized frontends · Mechanism design · Data
availability sampling · P2P networks.

1 Defining bandwidth

What is bandwidth?

Bandwidth =
Amount of Data

Time

For the bandwidth in the path A->B for nodes A and B, the bandwidth is
defined as:

Bandwidth =
Amount of Data
Treceived − Tsent

Our goal is to come up with a way to measure this. To begin, let’s look at
hash-lock time contracts.

1.1 Atomic swaps using HLTC’s

Say we have a blockchain where we can deploy smart contracts.

A hashlock time contract (HLTC) [4] is a type of smart contract where a reward
is locked inside a contract, and can only be claimed if you reveal a preimage to
a specific hash.

What’s interesting about a HLTC is how they are used for cross-chain atomic
swaps.



2 Liam Zebedee

There are two nodes, and each one has coins they want to atomically swap. Alice
has bitcoins, Bob has ether.

1. Alice generates a random secret s, and computes the hash of the secret,
hash(s) = h. Alice sends h to Bob.

2. Alice and Bob both lock their asset into a smart contract with the
following rules (Alice locks first, Bob locks after seeing Alice’s asset
successfully locked). On Alice’s side, if the secret is provided within 2X
seconds, then the asset is transferred to Bob, otherwise it is sent back to
Alice. On Bob’s side, if the correct secret (ie. the value whose hash is h) is
provided within X seconds, then the asset is transferred to Alice, otherwise
it is sent back to Bob.

3. Alice reveals the secret within X seconds in order to claim the asset from
Bob’s contract. However, this also ensures that Bob learns the secret allowing
Bob to claim the asset from Alice’s contract.

This atomic swap is demonstrably causal. By Alice claiming the coins, and
revealing her secret, she causes Bob to be able to claim his coins.

Can we use this casual chain to our advantage?

1.2 Onion routing

In onion routing [5], a node encrypts a data packet to be sent through a
specific network path. For a packet that follows a path of A->B->C->D->E,
the packet is encrypted as P = enc(enc(enc(enc(enc,A), B), C), D), E). Each
node "unwraps" the packet by decrypting each layer and sending it to the next
node.

The causality here forces a packet to be proxied through multiple nodes, which
provides some privacy in terms of the origins of the packet.

Logically, the packet can only be read by E if it has passed through A, B, C
and D for decryption.

What’s interesting is that this enforces a form of verifiable transmission. Since
a node must send it to the next node, in order for the next node to receive it,
etcetera.

Using onion routing, we can construct a minimal proof of data transfer. Each
node records the hash of the layer they decrypted to a blockchain like Ethereum
[3]. The time between two recordings is at minimum the time it took to send the
packet from the 1st to the 2nd node, since logically, they could only receive the
packet if it has proceeded through this onion path.



Verifiable bandwidth sampling in P2P networks 3

1.3 A naive proof-of-data-transfer protocol

We could construct a contract for proof-of-data-transfer, by blending an
onion-route style mechanism with the incentive design of a hash-lock time
contract.

We commit to a hash of the data upfront, and lock a reward. We then post the
packet from node A to node B. Node B races to download the packet, and then
decrypt it with their keypair. As soon as they do, they submit a transaction to
reveal and claim their reward.

In doing this, we inadvertently measure the time it takes for node B to receive
this data from node A.

To recap the phases of this protocol:

1. Setup. Node A sets up the data transfer contract, committing a reward that
can be claimed by revealing the preimage - which is a secret contained in
the packet. The contract records the start time.

2. Send. Node A constructs the packet containing the secret, and encrypts it
with Node B’s key so only they can decrypt it. They send the packet.

3. Receive. Node B receives the packet, decrypts it to get the secret. They
submit the secret on-chain to claim the reward.

4. Measure speed. The contract records the receipt time, and calculates the
latency as

latency = Treceived − Tstart

.

But there are problems:

1. Collusion. Node A could preshare the secret with node B, and collude
against the protocol.

2. Inaccurate timekeeping. Using a blockchain means using the block as a
verifiable tick for a clock. But if a block comes every 12s, that means our
timing can only be as accurate as the minimum tick - every 12s.

Collusion is solved by using an unpredictable challenge value in place of the
secret. Instead of a secret, Alice commits to a challenge predicate - can node
B provide a random chunk of data according to a random oracle index at a
specific time in future? This is similar to a data availability challenge [2] [1]. The
random oracle could be defined as the block hash in 10 blocks, and this could be
modulo the data string as to be a random data availability challenge. When the
node receives the packet B, they must provide the hashes of some data leaf at
a random index plus some seed value, thus ensuring neither A or B can collude
ahead of time.

Solving inaccurate timekeeping is detailed below.



4 Liam Zebedee

1.4 Accurate timekeeping in the verifiable clock model

This protocol would suffice to measure latency, but our verifiable clock, the
blockchain, is not granular enough in its measurement. Keep in mind - the block
time of Ethereum proof-of-stake is 12s, the block time of Solana is at least
250ms. We can only measure time in increments as small as the block time - for
Ethereum this is 12s increments. The latency of sending a simple ping packet is
somewhere in the range of 5- 500ms. Steps 1 and 4 of this protocol would occur
within a single block! And the latency would be 0.

Let’s consider a different frame of mind - a very large data packet that couldn’t
be transferred in a single block. Consider the time it takes to transfer a packet the
size of 3GB over a link of 50 MB/s. This would take 3000/50 = 60 seconds. Now
considering that our verifiable clock, the blockchain, has a tick of roughly 12s
(the consensus rate) - this means the transmission would take place over many
blocks. This means we could measure the latency to some accuracy.

By sampling enough data such that it exceeds the minimum clock tick of one
block (12s), we can properly measure the bandwidth of a node. We can use two
forms of timekeeping - real time (in terms of Unix clock time to millisecond
accuracy) and block time (in terms of block height). In the previous example,
the transmission latency in real time is 3000/50 = 60 seconds. 60/12 = 5 blocks.
The data transmission speed was 3GB/5 blocks, or 0.6GB/block.

For a home internet connection of 10Mbits/s, or 1.2MB/s, this would entail
transferring 3MB’s of data. Perhaps instead of fixing the amount of data, we
can fix the time frame.

1.5 Sending a verifiable rate of data

In the previous section, we managed to verify bandwidth by sending a verifiable
amount of data and measuring the timeframe. But the data size is quite big -
3GB. For a large network of nodes being sampled regularly, this would be a lot
of used bandwidth. Is there a more efficient mechanism?

Bandwidth =
Amount of Data

Time

Recall the definition of bandwidth. Instead of fixing the amount of data variable,
what if we fixed the time? Our protocol would test a node by measuring how
much data it can send in 20 blocks?

Imagine we have an entropy generator, which we can use to perform a continuous
data availability sample.

2 Verifiable bandwidth sampling

We call this technique verifiable bandwidth sampling, in reference to data
availability sampling popularised by Celestia and Ethereum [2] [1] [3].



Verifiable bandwidth sampling in P2P networks 5

Verifiable bandwidth sampling is a technique to establish a minimum bound on
the transfer speed between two nodes, in a byzantine security model. The data
is transmitted in an onion route, which ensures a form of verifiable
transmission. Once the node receives the packet, they record the time to a
blockchain. The blockchain acts as a verifiable clock that cannot be
manipulated. The node receives a reward for recording the packet receipt,
according to a hash-lock time contract -like mechanism. To prevent collusion,
the sampler locks the reward according to an unpredictable challenge - a data
availability sample based on a future blockhash.

2.1 Implications

We can use verifiable bandwidth sampling as a way to build an automated market
maker (AMM) for bandwidth, and ultimately, a cryptonetwork for data hosting
and retrieval.

3 A fast network for hosting decentralized frontends

Consider the problem of decentralized frontends - how do we pay for frontend
hosting in a way which guarantees speed of access?

A blockchain is not a scalable solution. Storing data in blockchains is expensive,
and they do not scale storage capacity by adding more nodes. They are replicated
state machines.

Filecoin and Arweave are demonstrably not solutions either, since they do not
guarantee download speeds (bandwidth). They also do not feature an economic
model which allows the network to grow/shrink hosting capacity in response to
demand.

What is needed is a network that has measured capacity in terms of two
resources: storage and bandwidth. That can dynamically incent more capacity
when there is high download demand.

We propose creating this using the verifiable bandwidth sampling
mechanism:

1. Nodes join the network, and contribute storage and bandwidth.

2. Their capacity is regularly verified by means of verified bandwidth sampling.

3. The network sells hosting (storage + bandwidth) using an automated market
maker. The market maker prices bandwidth and storage using a constant
product curve.

Using this network, it should be possible for anyone to buy hosting for data as
easily as they buy blockspace on Ethereum.

Imagine this for decentralized frontends. The average size of a simple frontend
(HTML, JS, CSS, assets) is 5MB. Consider a network of one node with 5MB/s



6 Liam Zebedee

upload and 5MB of storage. The network’s hosting capacity can support 1 user
downloading a dapp per second. Now imagine that there are 10 users who want
to download a dapp. The supply is 1 and the demand is 10. What if the network
were able to dynamically increase the reward for contributing hosting capacity
to incent new nodes to come online, the same way Uber surge pricing incentivises
more drivers to come online?

Beyond decentralized frontends, we believe this service is valuable for
autonomous AI agents. We believe human consciousness will be uploaded into
the machine soon - in fact, this is already possible today. Designing a simple
prompt in the style of "your name is Liam, you are an Australian idiot with a
LaTeX editor" is enough to clone 1 bit of personality into a digital replica of
yourself, and this will increase in detail in the decades to come. Soon too will
the AI models will be able to perform economically-meaningful work, and
where will they domicile? Traditional cloud service providers like AWS are
garrisoned by jurisdiction and law - we believe the AI’s will naturally choose to
reside in cyberspace, where they are unencumbered by KYC and other
mechanisms. They will use blockchains to store their wealth, and to store their
machine body (data)? We believe they will need an elastic substrate, which
this protocol is designed to offer.

References
1. Al-Bassam, M. Lazyledger: A distributed data availability ledger with client-side

smart contracts, 2019.
2. Al-Bassam, M., Sonnino, A., and Buterin, V. Fraud proofs: Maximising

light client security and scaling blockchains with dishonest majorities. CoRR
abs/1809.09044 (2018).

3. Buterin, V. A next generation smart contract & decentralized application
platform.

4. Buterin, V. Chain interoperability. Tech. rep., 9 2016.
5. Dingledine, R., Mathewson, N., and Syverson, P. Tor: The second-

generation onion router. In In Proceedings of the 13th Usenix Security Symposium
(2004).


