The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
Google-

ABSTRACT

We have designed and implemented the Google File Sys-
tem, a scalable distributed file system for large distributed
data-intensive applications. It provides fault tolerance while
running on inexpensive commodity hardware, and it delivers
high aggregate performance to a large number of clients

While sharing many of the same goals as previous di
tributed file systems, our design has been driven by obser-
vations of our application workloads and technological envi-
ronment, both current and anticipated, that reflect a marked
departure from some earlier file system assumptions. This
has led us to reexamine traditional choices and explore rad-
i different design point

The file system has successfully met our storage needs.
It is widely deployed within Google as the storage platform
for the generation and processing of data used by our ser-
vice as well as research and development efforts that require
large data sets. The largest cluster to date provides hun-

1. INTRODUCTION

We have designed and implemented the Google File Sys-
tem (GFS) to meet the rapidly growing demands of Google’s
data processing needs. GFS shares many of the same goals
as previous distributed file systems such as performance,
scalability, reliability, and availability. However, its design
has been driven by key observations of our application work-
loads and technological environment, both current and an-
ticipated, that reflect a marked departure from some earlier
file system design assumptions. We have reexamined tradi-
tional choices and explored radically different points in the
design space.

First, component failures are the norm rather than the
exception. The file system consists of hundreds or even
thousands of storage machines built from inexpensive com-
modity parts and is accessed by a comparable number of
client machines. The quantity and quality of the compo-

fault tolerant frens

Google File System

@MaanavKhaitan, @liamzebedee




Overview

Google File System is a horizontally scalable distributed file system designed
by Google in the early 2000's.



https://static.gooqgleusercontent.com/media/research.google.com/en//archiv

e/gfs-sosp2003.pdf

https://static.googleusercontent.com/media/research.google.com/en//peopl
el/jeff/Stanford-DL-Nov-2010.pdf



https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
https://static.googleusercontent.com/media/research.google.com/en//people/jeff/Stanford-DL-Nov-2010.pdf
https://static.googleusercontent.com/media/research.google.com/en//people/jeff/Stanford-DL-Nov-2010.pdf

Motivation: Why GFS?

e Context: building Google in early 2000’s. 20PB (by today’s
standards) web crawl dataset. Can'’t store on a single drive. Buy a
bunch of 1TB disks and wire them up as a storage pool.

e Challenge: how to build something resembling a file system from
this?

e Objectives:
o Designed for streaming reads, not random access.
o Designed to deal with inexpensive hardware which fails often.
o Designed to have sharding.



e System stores modest number of large files.

o Few million files, each typically 100 MB or larger in size.

e Workloads primarily consist of:

o Large streaming reads, individual operations typically read
hundreds of KBs, more commonly 1 MB or more.

o Large, sequential writes that append data to files.

o Small random reads typically reads a few KBs at some
arbitrary offset.

e Concurrent-safe. The system must efficiently implement
well-defined semantics for multiple clients that concurrently
append to the same file.

e Bandwidth > Latency. High sustained bandwidth is more important
than low latency.



How does GFS work?

e Each file is divided into fixed-size “chunks”

e These chunks are distributed across a bunch of chunkservers

e There is one master which stores mappings from:

o (file — chunk IDs)

o (chunk ID — chunkservers which store this chunk)

1

it

£z

[) J

i

o]

g3

{z

' redunda indant



Reading data

1. Client sends request to master
2. Master sends list of chunkservers to client
3. Client sends request to receive data from chunkservers

4. Chunkservers return data back to client



Writing data

Each chunk is assigned one chunkserver as primary.
The primary chunkserver has a short-lived (60s) lease with the master.

The primary decides writes.

gk wp =

Client connects to master, looks up all chunkservers for a chunk.

Client pushes data to chunkservers.

Client sends WRITE to primary chunkserver.

Primary sends WRITE commands to all secondaries.

After all secondaries ACK, the primary applies the write and returns

success to client.

a. Ifeven a single secondary fails, the primary responds with
ERROR to the client



Serialisation

If this was a blockchain, what is the ordering of writes for each chunk?
the global mutation order is defined:

1. first by the lease grant order chosen by the master, and
2. within a lease by the serial numbers assigned by the primary.

eg.

(lease-1, serial-number=4)
(lease-1, serial-number=5)
(lease-1, serial-number=6)
(lease-2, serial-number=7)
(lease-2, serial-number=8)



Core ideas

1 master, 1000s of workers.

e Entire metadata (file system prefix trie) fits in RAM.
e Chunk replication: Each chunk is stored on multiple chunkservers for redundancy.
e Separate control flow from data flow.

e Master doesn't store chunk location mapping on disk; instead it queries the chunkservers
when the master restarts.

e Master stores an “operation log” on disk (write-ahead log).
e Application-defined replication factor for files.
e Relaxed consistency model.

e Smart client library.



Core ideas

e 1 master, 1000s of workers.

e Entire metadata (file system prefix trie) fits in RAM.

One potential concern for this memory-only approach is
that the number of chunks and hence the capacity of the
whole system is limited by how much memory the master
has. This is not a serious limitation in practice. The mas-
ter maintains less than 64 bytes of metadata for each 64 MB
chunk. Most chunks are full because most files contain many
chunks, only the last of which may be partially filled. Sim-
ilarly, the file namespace data typically requires less then
64 bytes per file because it stores file names compactly us-
ing prefix compression.

downloads

report.pdf photo.jpg




Core ideas

e Chunk replication: Each chunk is stored on multiple chunkservers.

Application (file name, chunk index)

GFS master

GFS client

(chunk handle,
chunk locations)

(chunk handle, byte range)

File namespace

= [foo/bar
" | chunk 2ef0

Instructions to chunkserver

Legend:

=)  Data messages
— Control messages

chunk data

Chunkserver state
GFS chunkserver GFS chunkserver
\ Linux file system Linux file system

Blg .-

T o

DECENTRALIZED AND FAULT TOLERANT,
JUST THEWAVY I LIKE IT




Core ideas

4 step 1
e Separate control flow Client |- Master

from data flow. 13 2

Y

A

Secondary
Replica A

l

Primary
Replica =

l Legend:
— Control

Secondary —
ReplicaB |«

Figure 2: Write Control and Data Flow



Core ideas

Master doesn't store chunk location
mapping on disk; instead it queries the

chunkservers when the master restarts.

Master stores an “operation log” on
disk (write-ahead log).

Application-defined replication factor
for files.

2.6.3 Operation Log

The operation log contains a historical record of critical
metadata changes. It is central to GF'S. Not only is it the
only persistent record of metadata, but it also serves as a
logical time line that defines the order of concurrent op-
erations. Files and chunks, as well as their versions (see
Section 4.5), are all uniquely and eternally identified by the
logical times at which they were created.

Since the operation log is critical, we must store it reli-
ably and not make changes visible to clients until metadata
changes are made persistent. Otherwise, we effectively lose
the whole file system or recent client operations even if the
chunks themselves survive. Therefore, we replicate it on
multiple remote machines and respond to a client opera-
tion only after flushing the corresponding log record to disk
both locally and remotely. The master batches several log
records together before flushing thereby reducing the impact
of flushing and replication on overall system throughput.



Core ideas

e Relaxed consistency model.




e  What is the GFS consistency model?
Afile region is consistent if all clients will always see the same data, regardless of which replicas they read from
Aregion is defined after a file data mutation if it is consistent and clients will see what the mutation writes in its entirety.
After a sequence of successful mutations, the mutated file region is guaranteed to be defined and contain the data written by the
last mutation

o Scenarios:

| Non-concurrent. When a mutation succeeds without interference from concurrent writers, the affected region is defined
(and by implication consistent): all clients will always see what the mutation has written.

] Concurrent. Concurrent successful mutations leave the region undefined but consistent: all clients see the same data, but
it may not reflect what any one mutation has written. Typically, it consists of mingled fragments from multiple mutations

] Failure. A failed mutation makes the region in- consistent (hence also undefined): different clients may see different data
at different times.

o After a sequence of successful mutations, the mutated file region is guaranteed to be defined and contain the data written by the
last mutation.
o Failure modes:

[ GFS achieves this by (a) applying mutations to a chunk in the same order on all its replicas (Section 3.1), and (b) using
chunk version numbers to detect any replica that has become stale because it has missed mu- tations while its
chunkserver was down (Section 4.5). Stale replicas will never be involved in a mutation or given to clients asking the
master for chunk locations



Core ideas

Smart client library.

©)

Client library isn't just APl wrapper, actually does a lot of work
behind the scenes.

m Caches chunkserver locations.
m Pushes data to each chunkserver before writing.

m the master includes the chunk version number when it
informs clients which chunkserver holds a lease on a
chunk ... the client verifies the version number when it
performs the operation so that it is always accessing
up-to-date data



Summary

Google File System is based

A bborud on Sept 1, 2022 | next [-]
The exciting thing about GFS wasn't even the technology. It was the discovery you made as a new engineer starting at Google (in the 2000s) that from your workstation
(and from any job you ran on Borg) you had access to this enormous amount of data stored on GFS across different data centers.
This is the thing that people keep missing. The technology was only the enabler. What made the difference was to have thousands of developers with wide access to the
biggest data lake in the world.

Almost nobody gets that when trying to make data lakes, or whatever they are called now, in the corporate world. They focus on vendors and technologies and whatnot.
Then ignore that what makes data valuable is access to it by people who don't even know yet what they might do with it.



Extras



Core ideas

Pattern: Multiple Smaller Units per Machine

» Have each machine manage many smaller units of work/data
—typical: ~10-100 units/machine
— allows fine grained load balancing (shed or add one unit)
—fast recovery from failure (N machines each pick up 1 unit)

* Examples:

—map and reduce tasks, GFS chunks, Bigtable tablets, query
serving system index shards

Machine



