
Google File System
@MaanavKhaitan, @liamzebedee

fault tolerant frens



Overview

Google File System is a horizontally scalable distributed file system designed 
by Google in the early 2000’s.



Readings

https://static.googleusercontent.com/media/research.google.com/en//archiv

e/gfs-sosp2003.pdf 
https://static.googleusercontent.com/media/research.google.com/en//peopl

e/jeff/Stanford-DL-Nov-2010.pdf 

https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
https://static.googleusercontent.com/media/research.google.com/en//people/jeff/Stanford-DL-Nov-2010.pdf
https://static.googleusercontent.com/media/research.google.com/en//people/jeff/Stanford-DL-Nov-2010.pdf


Motivation: Why GFS?

● Context: building Google in early 2000’s. 20PB (by today’s 
standards) web crawl dataset. Can’t store on a single drive. Buy a 
bunch of 1TB disks and wire them up as a storage pool.

● Challenge: how to build something resembling a file system from 
this?

● Objectives:
○ Designed for streaming reads, not random access.
○ Designed to deal with inexpensive hardware which fails often.
○ Designed to have sharding.



Assumptions

● System stores modest number of large files. 
○ Few million files, each typically 100 MB or larger in size.

● Workloads primarily consist of:
○ Large streaming reads, individual operations typically read 

hundreds of KBs, more commonly 1 MB or more. 
○ Large, sequential writes that append data to files.
○ Small random reads typically reads a few KBs at some 

arbitrary offset.
● Concurrent-safe. The system must efficiently implement 

well-defined semantics for multiple clients that concurrently 
append to the same file.

● Bandwidth > Latency. High sustained bandwidth is more important 
than low latency.



How does GFS work?

● Each file is divided into fixed-size “chunks”
● These chunks are distributed across a bunch of chunkservers
● There is one master which stores mappings from:

○ (file → chunk IDs)
○ (chunk ID → chunkservers which store this chunk)



Reading data

1. Client sends request to master

2. Master sends list of chunkservers to client

3. Client sends request to receive data from chunkservers

4. Chunkservers return data back to client 



Writing data

Each chunk is assigned one chunkserver as primary.
The primary chunkserver has a short-lived (60s) lease with the master.
The primary decides writes.

1. Client connects to master, looks up all chunkservers for a chunk.
2. Client pushes data to chunkservers.
3. Client sends WRITE to primary chunkserver.
4. Primary sends WRITE commands to all secondaries.
5. After all secondaries ACK, the primary applies the write and returns 

success to client.
a. If even a single secondary fails, the primary responds with 

ERROR to the client



If this was a blockchain, what is the ordering of writes for each chunk?

the global mutation order is defined: 

1. first by the lease grant order chosen by the master, and 
2. within a lease by the serial numbers assigned by the primary.

eg. 

(lease-1, serial-number=4)
(lease-1, serial-number=5)
(lease-1, serial-number=6)
(lease-2, serial-number=7)
(lease-2, serial-number=8)

Serialisation



Core ideas

● 1 master, 1000s of workers. 

● Entire metadata (file system prefix trie) fits in RAM.

● Chunk replication: Each chunk is stored on multiple chunkservers for redundancy. 

● Separate control flow from data flow.

● Master doesn’t store chunk location mapping on disk; instead it queries the chunkservers 
when the master restarts.

● Master stores an “operation log” on disk (write-ahead log).

● Application-defined replication factor for files.

● Relaxed consistency model.

● Smart client library.



Core ideas

● 1 master, 1000s of workers. 

● Entire metadata (file system prefix trie) fits in RAM.



Core ideas

● Chunk replication: Each chunk is stored on multiple chunkservers. 



Core ideas

● Separate control flow 
from data flow.



Core ideas

● Master doesn’t store chunk location 
mapping on disk; instead it queries the 
chunkservers when the master restarts.

● Master stores an “operation log” on 
disk (write-ahead log).

● Application-defined replication factor 
for files.



Core ideas

● Relaxed consistency model.



● What is the GFS consistency model?
○ A file region is consistent if all clients will always see the same data, regardless of which replicas they read from
○ A region is defined after a file data mutation if it is consistent and clients will see what the mutation writes in its entirety.
○ After a sequence of successful mutations, the mutated file region is guaranteed to be defined and contain the data written by the 

last mutation
○ Scenarios:

■ Non-concurrent. When a mutation succeeds without interference from concurrent writers, the affected region is defined 
(and by implication consistent): all clients will always see what the mutation has written.

■ Concurrent. Concurrent successful mutations leave the region undefined but consistent: all clients see the same data, but 
it may not reflect what any one mutation has written. Typically, it consists of mingled fragments from multiple mutations

■ Failure. A failed mutation makes the region in- consistent (hence also undefined): different clients may see different data 
at different times.

○ After a sequence of successful mutations, the mutated file region is guaranteed to be defined and contain the data written by the 
last mutation.

○ Failure modes:
■ GFS achieves this by (a) applying mutations to a chunk in the same order on all its replicas (Section 3.1), and (b) using 

chunk version numbers to detect any replica that has become stale because it has missed mu- tations while its 
chunkserver was down (Section 4.5). Stale replicas will never be involved in a mutation or given to clients asking the 
master for chunk locations



Core ideas

● Smart client library.

○ Client library isn’t just API wrapper, actually does a lot of work 
behind the scenes.

■ Caches chunkserver locations. 

■ Pushes data to each chunkserver before writing.

■ the master includes the chunk version number when it 
informs clients which chunkserver holds a lease on a 
chunk … the client verifies the version number when it 
performs the operation so that it is always accessing 
up-to-date data



Summary

Google File System is based



Extras



Core ideas


