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ABSTRACT
One of the core problems in large-scale recommendations is to
retrieve top relevant candidates accurately and efficiently, prefer-
ably in sub-linear time. Previous approaches are mostly based on a
two-step procedure: first learn an inner-product model, and then
use some approximate nearest neighbor (ANN) search algorithm to
find top candidates. In this paper, we present Deep Retrieval (DR),
to learn a retrievable structure directly with user-item interaction
data (e.g. clicks) without resorting to the Euclidean space assump-
tion in ANN algorithms. DR’s structure encodes all candidate items
into a discrete latent space. Those latent codes for the candidates
are model parameters and learnt together with other neural net-
work parameters to maximize the same objective function. With
the model learnt, a beam search over the structure is performed
to retrieve the top candidates for reranking. Empirically, we first
demonstrate that DR, with sub-linear computational complexity,
can achieve almost the same accuracy as the brute-force baseline
on two public datasets. Moreover, we show that, in a live produc-
tion recommendation system, a deployed DR approach significantly
outperforms a well-tuned ANN baseline in terms of engagement
metrics. To the best of our knowledge, DR is among the first non-
ANN algorithms successfully deployed at the scale of hundreds of
millions of items for industrial recommendation systems.
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1 INTRODUCTION
Recommendation systems have gained great success in various
commercial applications for decades. The objective of these systems
is to return relevant items from a corpus based on user features and
historical behaviors. One of the early successful techniques is the
collaborative filtering (CF), based on the simple idea that similar
users may prefer similar items. Item-based collaborative filtering
(Item-CF) [26] extends this idea by considering the similarities
between items and items, which lays the foundation for Amazon’s
recommendation system [17].

In the Internet era, the size of users and items on popular content
platforms rapidly grow to tens to hundreds of millions. The scala-
bility, efficiency as well as accuracy, are all challenging problems in
the design of modern recommendation systems. Recently, vector-
based retrieval methods have been widely adopted. The main idea
is to embed users and items in a latent vector space, and use the
inner product of vectors to represent the preference between users
and items. Representative vector embedding methods include ma-
trix factorization (MF) [16, 22], factorization machines (FM) [25],
DeepFM [7], Field-aware FM (FFM) [14], etc. However, when the
number of items is large, the cost of brute-force computation of
the inner products for all items can be prohibitive. Thus, approxi-
mate nearest neighbors (ANN) or maximum inner product search
(MIPS) algorithms are usually used to retrieve top relevant items
when the corpus is too large. Efficient MIPS or ANN algorithms
include tree-based algorithms [11, 23], locality sensitive hashing
(LSH) [27, 28], product quantization (PQ) [6, 13], hierarchical navi-
gable small world graphs (HNSW) [18], etc.

Despite their success in real world applications, vector-based
methods with ANN or MIPS have two main disadvantages: (1)
the inner product structure of user and item embeddings might
not be sufficient to capture the complicated structure of user-item
interactions [10]. (2) ANN or MIPS is designed to approximate the
learnt inner product model, not directly optimized for the user-item
interaction data. As a solution, tree-based models [31–33] have
been proposed to address these issues. One potential issue is of
these methods is that each item is mapped to a leaf node in the tree,
making the tree structure itself difficult to learn. Data available at
the leaf level can be scarce and might not provide enough signal to
learn a good tree structure at a finer level for a recommendation
system with hundreds of millions of items. An efficient and easy-
to-learn retrieval system is still very much needed for large-scale
recommendations.

In this paper, we proposed Deep Retrieval (DR) to learn a retriev-
able structure in an end-to-end manner from data. DR uses a 𝐾 ×𝐷
matrix as shown in Fig. 1a for indexing, motivated by the ideas
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in Chen et al. [1] and Van Den Oord et al. [29], and we have intro-
duced interdependence among the code in different 𝑑 ∈ {1, ..., 𝐷}.
In this structure, we define a path 𝑐 as the forward index traverses
over matrix columns. Each path is of length 𝐷 with index value
range {1, 2, . . . , 𝐾}. There are 𝐾𝐷 possible paths and each path can
be interpreted as a cluster of items. We learn a probability distribu-
tion over the paths given the user inputs, jointly with a mapping
from the items to the paths. In the serving stage, we use beam
search to retrieve the most probable paths and the items associated
with those paths. There are two major characteristics in designing
the DR structure.

(1) DR serves the purpose for “retrieval”, not ranking. Since
there is no “leaf node” in DR’s structure, items within a path
are indistinguishable for retrieval purpose, mitigating the
data scarcity problem for ranking these items. DR can be
easily scaled up to hundreds of millions items.

(2) Each item is designed to be indexed by more than one path,
meaning that two items can share some paths but differ in
other paths. This design can be naturally realized using our
probabilistic formulation of the DR model as we will show
later. This multiple-to-multiple encoding scheme between
items and paths differs significantly with the one-to-one
mapping used in ealier designs of tree-based structures.

In training, the item paths are alsomodel parameters and are learned
together with other neural network parameters of the structure
model using an expectation-maximization (EM) type algorithm [4].

Related Works. Here we briefly review some related works
and discuss their connections to DR. Among numerous large-scale
recommendation algorithms, the closest works to ours are the
tree-based methods, including tree-based deep model (TDM) [32],
JTM [31] , OTM [33] and AttentionXML [30]. Tree-based methods
map each item to a leaf node in a tree-based structure model and
learn an objective function for the tree structure and the model pa-
rameters jointly. As discussed above, learning a good tree structure
for hundreds of millions of items can be difficult.

Another line of research attempts to encode the candidates in a
discrete latent space. Vector Quantised-Variational AutoEncoder(VQ-
VAE) [29] uses a similar 𝐾 × 𝐷 embedding space to encode items,
but focuses more on encoding data such as image or audio, whereas
DR focuses on clustering items based on user-item interactions.
HashRec [15] and Merged-Averaged Classifiers via Hashing [20]
use multi-index hash functions to encode candidate items in large
recommendation systems. Compared to HashRec and MACH, DR
uses a more complicated structure model with dependencies among
layers and a different beam search based inference algorithm.

More complicated structure models have been used in extreme
classification. LTLS [12] and W-LTLS [5] utilize directed acyclic
graphs (DAG) as structure models. Probabilistic classifier chains [3]
are also used as structure models for multi-label classification. We
note that the number of labels in these extreme classification ap-
plications is at most tens of thousands, whereas DR can be applied
to industrial recommendation systems containing hundreds of mil-
lions of items.

Organization. The rest of the paper is organized as follows. In
Section 2, we describe the structure model and its training objective

function in detail. We then introduce a beam search algorithm to
find candidate paths during the inference stage. In Section 3, we
introduce the EM algorithm for training neural network parame-
ters and paths of items jointly. In Section 4, we first demonstrate
the performance of DR on two public datasets: MovieLens-20M1

and Amazon books2. Experiment results show that DR can achieve
almost the brute-force accuracy with sub-linear computational com-
plexity. Moreover, in Section 5, we test the performance of DR on a
live production recommendation system with hundreds of millions
of users and items and show that it significantly outperforms a well-
tuned ANN baseline in terms of engagement metrics in A/B test.
In Section 6, we conclude the paper and discuss several possible
future research directions.

2 DEEP RETRIEVAL: LEARNING A
RETRIEVABLE STRUCTURE FROM DATA

In this section, we introduce DR in detail. First, we establish its
basic probability formulation. We then extend it to a multi-path
mechanism that enables DR to capture multi-aspect properties
of items. We then introduce a penalization design that prevents
collapsing in allocating items to different paths. Next, we describe
a beam search algorithm for retrieval. Finally, we present the multi-
task joint training procedure of DR with a reranking model.

2.1 The DR Model
The basic model. The basic DR model consists of 𝐷 layers,

each with 𝐾 nodes. In each layer, we use a multi-layer perceptron3
(MLP) and 𝐾-class softmax to output a distribution over its 𝐾 nodes.
LetV = {1, . . . ,𝑉 } be the labels of all items and an item-to-path
mapping 𝜋 : V → [𝐾]𝐷 . Here a path is the forward index traverse
over matrix columns as shown in Fig. 1a. For simplicity, we assume
that the mapping 𝜋 is given in this section (We will introduce the
algorithm for learning the mapping 𝜋 later in Section 3.) In addition,
we assume an item can only be mapped to one path for now and
leave the multi-path setting to the next section.

Given a pair of training sample (𝑥,𝑦), which denotes a positive
interaction (click, convert, like, etc.) between a user 𝑥 and an item
𝑦, as well as the path 𝑐 = (𝑐1, 𝑐2, . . . , 𝑐𝐷 ) associated with the item
𝑦, i.e. 𝜋 (𝑦) = 𝑐 , the path probability 𝑝 (𝑐 |𝑥, 𝜃 ) is constructed layer
by layer as follows (see Fig. 1b for a flow chart),

• The first layer takes the user embedding emb(𝑥) as input,
and outputs a probability 𝑝 (𝑐1 |𝑥, 𝜃1) over the 𝐾 nodes of the
first layer, based on parameters 𝜃1 .
• From the second layer onward, we concatenate the user em-
bedding emb(𝑥) and the embeddings of all the previous lay-
ers emb(𝑐𝑑−1) (called path embeddings) as the input of MLP,
which outputs 𝑝 (𝑐𝑑 |𝑥, 𝑐1, . . . , 𝑐𝑑−1, 𝜃𝑑 ) over the 𝐾 nodes of
layer 𝑑 , based on parameters 𝜃𝑑 .

1https://grouplens.org/datasets/movielens
2http://jmcauley.ucsd.edu/data/amazon
3Other complex neural network architectures such as recurrent neural networks can
also be applied here. For simplicity, we only use MLP in our experiments.

https://grouplens.org/datasets/movielens
http://jmcauley.ucsd.edu/data/amazon
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(a) (b)

Figure 1: (a) Consider a structure with width 𝐾 = 100 and depth 𝐷 = 3, and an item encoded by a path of [36, 27, 20]. This path
denotes that the item is assigned to the (1, 36), (2, 27), (3, 20) indices of the 𝐾 × 𝐷 matrix. In the figure, arrows with the same
color form a path. Different paths could intersect with each other by sharing a common index in a layer. (b) Flow diagram of
the process for constructing 𝑝 (𝑐 |𝑥, 𝜃 ), the probability of path 𝑐 = [𝑐1, 𝑐2, 𝑐3] given input 𝑥 .

• The probability of path 𝑐 given user 𝑥 is the product of the
probabilities of all the layers’ outputs:

𝑝 (𝑐 |𝑥, 𝜃 ) =
𝐷∏
𝑑=1

𝑝 (𝑐𝑑 |𝑥, 𝑐1, . . . , 𝑐𝑑−1, 𝜃𝑑 ). (1)

Given a set of 𝑁 training samples {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1, the log likelihood
function of the structure model is

Qstr (𝜃, 𝜋) =
𝑁∑︁
𝑖=1

log 𝑝 (𝜋 (𝑦𝑖 ) |𝑥𝑖 , 𝜃 ) .

The size of the input vector of layer 𝑑 is the embedding size times
𝑑 , and the size of the output vector is 𝐾 . The parameters of layer
𝑑 have a size of Θ(𝐾𝑑). The parameters 𝜃 contain the parameters
𝜃𝑑 ’s in all layers, as well as the path embeddings. The number of
parameters in the entire model has an order of Θ(𝐾𝐷2), which is
significantly smaller than the number of possible paths 𝐾𝐷 when
𝐷 ≥ 2.

Multi-path extension. In tree-based deep models [31, 32] as
well as the structure model we introduced above, each item belongs
to only one cluster/path, limiting the capacity of the model for
expressing multi-aspect information in real data. For example, an
item related to kebab could belong to a “food” cluster. An item
related to flowers could belong to a “gift” cluster. However, an
item related to chocolate or cakes could belong to both clusters
in order to be recommended to users interested in either food or
gifts. In real world recommendation systems, a cluster might not
have an explicit meaning such as food or gifts, but this example
motivates us to assign each item to multiple clusters. In DR, we
allow each item 𝑦𝑖 to be assigned to 𝐽 different paths {𝑐𝑖,1, . . . , 𝑐𝑖,𝐽 }.
Let 𝜋 : V → [𝐾]𝐷×𝐽 be the mapping from items to multiple paths.

The multi-path structure objective is straightforwardly defined as

Qstr (𝜃, 𝜋) =
𝑁∑︁
𝑖=1

log ©­«
𝐽∑︁
𝑗=1

𝑝 (𝑐𝑖, 𝑗 = 𝜋 𝑗 (𝑦𝑖 ) |𝑥𝑖 , 𝜃 )
ª®¬ ,

where the probability belonging to multiple paths is the summation
of the probabilities belonging to individual paths.

Penalization on size of paths. Directly optimizing Qstr (𝜃, 𝜋)
w.r.t. the item-to-path mapping 𝜋 could fail to allocate different
items into different paths (we did observe this in practice). In an
extreme case, we could allocate all items into a single path and the
probability of seeing this single path given any user 𝑥 is 1 as in
Eq. 1. This is because there is only one available path to choose
from. However, this will not help on retrieving the top candidates
since there is no differentiation among the items. We must regulate
the possible distribution of 𝜋 to ensure diversity. We introduce the
following penalized likelihood function,

Qpen (𝜃, 𝜋) = Qstr (𝜃, 𝜋) − 𝛼 ·
∑︁

𝑐∈[𝐾 ]𝐷
𝑓 ( |𝑐 |),

where 𝛼 is the penalty factor, |𝑐 | denotes the number of items
allocated in path 𝑐 and 𝑓 is an increasing and convex function. A
quadratic function 𝑓 ( |𝑐 |) = |𝑐 |2/2 controls the average size of paths,
and higher order polynomials penalize more on larger paths. In our
experiments, we use 𝑓 ( |𝑐 |) = |𝑐 |4/4.

2.2 Beam Search for Inference
In the inference stage, we want to retrieve items from the DRmodel,
given user embeddings as input. To this end, we use the beam search
algorithm [24] to retrieve most probable paths. In each layer, the
algorithm selects top 𝐵 nodes from all the successors of the selected
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nodes from the previous layer. Finally it returns 𝐵 top paths in the
final layer. When 𝐵 = 1, this becomes the greedy search. In each
layer, choosing top 𝐵 from 𝐾 × 𝐵 candidates has a time complexity
of𝑂 (𝐾𝐵 log𝐵). The total complexity is𝑂 (𝐷𝐾𝐵 log𝐵), which is sub-
linear with respect to the total number of items 𝑉 . We summarize
the procedure in Algorithm 1.

Input: user 𝑥 , model parameter 𝜃 , beam size 𝐵.
Let 𝐶1 = {𝑐1,1, . . . , 𝑐1,𝐵} be top 𝐵 entries of
{𝑝 (𝑐1 |𝑥, 𝜃 ) : 𝑐1 ∈ {1, . . . , 𝐾}}.

for 𝑑 = 2 to 𝐷 do
Let 𝐶𝑑 = {(𝑐1,1, . . . , 𝑐𝑑,1), . . . , (𝑐1,𝐵, . . . , 𝑐𝑑,𝐵)} be the top
𝐵 entries of the set of all successors of 𝐶𝑑−1 defined as
follows.
𝑝 (𝑐1, . . . , 𝑐𝑑−1 |𝑥, 𝜃 )𝑝 (𝑐𝑑 |𝑥, 𝑐1, . . . , 𝑐𝑑−1, 𝜃 ), where
(𝑐1, . . . , 𝑐𝑑−1) ∈ 𝐶𝑑 , 𝑐𝑑 ∈ {1, . . . , 𝐾}.

end
Output: 𝐶𝐷 , a set of 𝐵 paths.

Algorithm 1: Beam search algorithm

2.3 Multi-task Learning and Reranking with
Softmax Models

The number of items returned by DR beam search is much smaller
than the total number of items, but often not small enough to serve
the user request, so we need to rank those retrieved items. However,
since each path in DR can contain more than one item, it is not easy
to differentiate these items using DR alone. We choose to tackle
this by jointly training a DR model with a reranker:

Qsoftmax =

𝑁∑︁
𝑖=1

log 𝑝softmax (𝑦 = 𝑦𝑖 |𝑥𝑖 ),

where 𝑝 (𝑦 = 𝑦𝑖 |𝑥𝑖 ) is a softmax model with output size 𝑉 . This is
trained with the sampled softmax algorithm. The final objective
is given by Q = Qpen + Qsoftmax. After performing a beam search
to retrieval a set of candidate items, we rerank those candidates
to obtain the final top candidates. Here we use a simple softmax
model, but we can certainly replace it by a more complex one for
better ranking performance.

3 LEARNINGWITH THE EM ALGORITHM
In the previous section, we introduced the structure model in DR
and its objective to be optimized. The objective is continuous with
respect to the neural network parameters 𝜃 , which can be optimized
by any gradient-based optimizer. However, the objective involving
the item-to-path mapping 𝜋 is discrete and can not be optimized
by a gradient-based optimizer. As this mapping acts as the “latent
clustering” of items, this motivates us to use an EM-style algorithm
to optimize the mapping and other parameters jointly.

In general, the EM-style algorithm for DR is summarized as
follows. We start with initializing mapping 𝜋 and other parameters
randomly. Then at the 𝑡 th epoch,

(1) E-step: for a fixed mapping 𝜋 (𝑡−1) , optimize parameter 𝜃
using a gradient-based optimizer to maximize the structure
objective Qpen (𝜃, 𝜋 (𝑡−1) ).

(2) M-step: update mapping 𝜋 (𝑡 ) to maximize the same structure
objective Qpen (𝜃, 𝜋).

Since the E-step is similar to any standard stochastic optimization,
we will focus on the M-step here. For simplicity, we first consider
the objective Qstr without the penalization. Given a user-item train-
ing pair (𝑥𝑖 , 𝑦𝑖 ), let the set of paths associated with the item be
{𝜋1 (𝑦𝑖 ), . . . , 𝜋 𝐽 (𝑦𝑖 )}. For a fixed 𝜃 , we can rewrite Qstr (𝜃, 𝜋) as

Qstr (𝜃, 𝜋) =
𝑁∑︁
𝑖=1

log ©­«
𝐽∑︁
𝑗=1

𝑝 (𝜋 𝑗 (𝑦𝑖 ) |𝑥𝑖 , 𝜃 )
ª®¬

=

𝑉∑︁
𝑣=1

©­«
∑︁
𝑖:𝑦𝑖=𝑣

log ©­«
𝐽∑︁
𝑗=1

𝑝 (𝜋 𝑗 (𝑣) |𝑥𝑖 , 𝜃 )
ª®¬ª®¬ , (2)

where the outer summation is over all items 𝑣 ∈ V and the inner
summation is over all appearances of item 𝑣 in the training set.
We now consider maximizing the objective function over all pos-
sible mappings 𝜋 . However, for an item 𝑣 , there are 𝐾𝐷 number
of possible paths so we could not enumerate it over all 𝜋 𝑗 (𝑣)’s.
We make the follow approximation to further simplify the prob-
lem since Eq. 2 is not easily solvable. We use an upper bound∑𝑁
𝑖=1 log 𝑝𝑖 ≤ 𝑁 (log

∑𝑁
𝑖=1 𝑝𝑖 − log𝑁 ) to obtain 4

Qstr (𝜃, 𝜋) ≤ Qstr (𝜃, 𝜋)

=

𝑉∑︁
𝑣=1

©­«𝑁𝑣 log ©­«
𝐽∑︁
𝑗=1

∑︁
𝑖:𝑦𝑖=𝑣

𝑝 (𝜋 𝑗 (𝑣) |𝑥𝑖 , 𝜃 )
ª®¬ − log𝑁𝑣ª®¬ ,

where 𝑁𝑣 =
∑𝑁
𝑖=1 I[𝑖 : 𝑦𝑖 = 𝑣] denotes the number of occurrences

of 𝑣 in the training set which is independent of the mapping. We
define the following score function,

𝑠 [𝑣, 𝑐] ≜
∑︁
𝑖:𝑦𝑖=𝑣

𝑝 (𝑐 |𝑥𝑖 , 𝜃 ) .

Intuitively, 𝑠 [𝑣, 𝑐] can be understood as the accumulated importance
score of allocating item 𝑣 to path 𝑐 . In practice, it is impossible to
retain all scores as the possible number of paths 𝑐 is exponentially
large, so we only retain a subset of 𝑆 paths with largest scores
through beam search and set the rest of the scores as 0.

Remarkon estimating 𝑠 [𝑣, 𝑐]with streaming training. Given
the huge amount of continuously arriving data in real produc-
tion recommendation systems, we typically have to use streaming
training—processing the data only once ordered by their times-
tamps. So we choose to estimate scores 𝑠 [𝑣, 𝑐] in a streaming fashion
inspired by the approach in Metwally et al. [21]. The basic idea is
to keep tracking a list of top 𝑆 important paths. For item 𝑣 , suppose
we have recorded score list 𝑠 [𝑣, 𝑐1:𝑆 ]. After we obtain a new list of
scores, 𝑠 ′[𝑣, 𝑐 ′1:𝑆 ], from a new training instance containing 𝑣 , we
update the score list 𝑠 [𝑣, 𝑐1:𝑆 ] as follows,

(1) Let min_score = min𝑖 𝑠 [𝑣, 𝑐𝑖 ].
(2) Create a union set set 𝐴 = 𝑐1:𝑆

⋃
𝑐 ′1:𝑆 .

(3) For each 𝑐 ∈ 𝐴:
(a) If 𝑐 ∈ 𝑐1:𝑆 and 𝑐 ∈ 𝑐 ′1:𝑆 , set 𝑠 [𝑣, 𝑐] ← 𝜂 𝑠 [𝑣, 𝑐] + 𝑠 ′[𝑣, 𝑐].

4Theoretically, maximizing an upper bound approximation to the true objective, as we
do here, does not provide guarantees to the quality of the solution. This is different
from the common practice of maximizing a lower bound. Nevertheless, we observed
decent performance of our proposed method in practice.
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Figure 2: Illustration of the score updating process. 𝑚𝑖𝑛(𝑠)
is used to increase the exploration of new paths in training.
Blocks with the same colors indicate the same paths.

(b) If 𝑐 ∉ 𝑐1:𝑆 and 𝑐 ∈ 𝑐 ′1:𝑆 , set 𝑠 [𝑣, 𝑐] ← 𝜂 min_score+𝑠 ′[𝑣, 𝑐].
(c) If 𝑐 ∈ 𝑐1:𝑆 and 𝑐 ∉ 𝑐 ′1:𝑆 , set 𝑠 [𝑣, 𝑐] ← 𝜂 𝑠 [𝑣, 𝑐].

(4) Choose 𝑆 largest values of 𝑠 [𝑣, 𝑐] from 𝑐 ∈ 𝐴 to form the new
score vector 𝑠 [𝑣, 𝑐1:𝑆 ].

Here 𝜂 is a decay factor to account for the streaming estimation
and we use 𝜂 = 0.999 in our experiments. As shown in Fig. 2, if the
path (in red) appears both in the recorded list and the new list, we
update the score by a discounted rolling sum. If the path (in green)
appears only in the recorded list but not in the new list, we simply
discount the score. If the path (in blue) appears only in the new list
but not in the recorded list, we use min_score instead of 0 as its
score in the recorded list. This method increases the likelihood of
exploring new paths in the streaming fashion, and we found it is
important for the approach to work well.

Solving the M-step using coordinate descent. Given score 𝑠 [𝑣, 𝑐]
estimated, now we consider the objective Qpen with penalization.
This leads to the following surrogate function in the M-Step,

arg max
{𝜋 𝑗 (𝑣) }𝐽𝑗=1

𝑉∑︁
𝑣=1

©­«𝑁𝑣 log ©­«
𝐽∑︁
𝑗=1

𝑠 [𝑣, 𝜋 𝑗 (𝑣)]
ª®¬ − log𝑁𝑣ª®¬

−𝛼 ·
∑︁

𝑐∈[𝐾 ]𝐷
𝑓 ( |𝑐 |).

Notice that there is no closed-form solution for this maximization
problem. Hence, we utilize the coordinate descent algorithm, by
optimizing over the path assignments for item 𝑣 while fixing the
assignments of all other items. Notice that the term − log𝑁𝑣 is
irrelevant to 𝜋 𝑗 (𝑣) and hence can be dropped. The partial objective
function related to item 𝑣 can be simplified as

arg max
{𝜋 𝑗 (𝑣) }𝐽𝑗=1

𝑁𝑣 log
©­«
𝐽∑︁
𝑗=1

𝑠 [𝑣, 𝜋 𝑗 (𝑣)]
ª®¬ − 𝛼

𝐽∑︁
𝑗=1

𝑓 ( |𝜋 𝑗 (𝑣) |).

Now we choose the path assignments {𝜋1 (𝑣), . . . , 𝜋 𝑗 (𝑣)} step by
step. At step 𝑖 , the incremental gain of the objective function by
choosing 𝑐 = 𝜋𝑖 (𝑣) is given as follows:

𝑁𝑣
©­«log(

𝑖−1∑︁
𝑗=1

𝑠 [𝑣, 𝜋 𝑗 (𝑣)] + 𝑠 [𝑣, 𝑐]) − log(
𝑖−1∑︁
𝑗=1

𝑠 [𝑣, 𝜋 𝑗 (𝑣)])
ª®¬

−𝛼 (𝑓 ( |𝑐 | + 1) − 𝑓 ( |𝑐 |)) .

By keeping track of the partial sum
∑𝑖−1
𝑗=1 𝑠 [𝑣, 𝜋 𝑗 (𝑣)] and the size of

paths |𝑐 |, we greedily choose the path with the largest incremental
gain. The details of the coordinate descent algorithm is given in
Algorithm 2. In practice, three to five iterations are enough to ensure
the algorithm converges. The time complexity grows linearly with
vocabulary size 𝑉 , multiplicity of paths 𝐽 as well as number of
candidate paths 𝑆 .

4 EXPERIMENTS ON PUBLIC DATASETS
In this section, we study the performance of DR on two public rec-
ommendation datasets: MovieLens-20M [8] and Amazon books [9,
19]. We compare the performance of DR with brute-force algorithm,
as well as several other recommendation baselines including tree-
based models TDM [32] and JTM [31]. At the end of this section,
we investigate the role of important hyperparameters in DR.

4.1 Datasets and Metrics
MovieLens-20M. This dataset contains rating and free-text tag-
ging activities from a movie recommendation service called Movie-
Lens. We use the 20M subset which were created by the behaviors
of 138,493 users between 1995 and 2015. Each user-movie interac-
tion contains a used-id, a movie-id, a rating between 1.0 to 5.0, as
well as a timestamp.

In order to make a fair comparison, we exactly follow the same
data pre-processing procedure as TDM. We only keep records with
rating higher or equal to 4.0, and only keep users with at least ten
reviews. After pre-processing, the dataset contains 129,797 users,
20,709 movies and 9,939,873 interactions. Thenwe randomly sample
1,000 users and corresponding records to construct the validation
set, another 1,000 users to construct the test set, and other users to
construct the training set. For each user, the first half of the reviews
according to the timestamp are used as historical behavior features
and the latter half are used as ground truths to be predicted.

Amazon books. This dataset contains user reviews of books
from Amazon, where each user-book interaction contains a user-id,
an item-id, and the corresponding timestamp. Similar to MovieLens-
20M, we follow the same pre-processing procedure as JTM. The
dataset contains 294,739 users, 1,477,922 items and 8,654,619 interac-
tions. Please note that Amazon books dataset has much more items
but sparser interactions than MovieLens-20M.We randomly sample
5,000 users and corresponding records as the test set, another 5,000
users as the validation set and other users as the training set. The
construction procedures of behavior features and ground truths are
the same as in MovieLens-20M.

Metrics. We use precision, recall and F-measure as metrics to
evaluate the performance for each algorithm. The metrics are com-
puted for each user individually, and averaged without weight
across users, following the same setting as both TDM and JTM. We
compute the metrics by retrieving top 10 and 200 items for each
user in MovieLens-20M and Amazon books respectively.

Model and training. Since the dataset is split in a way such
that the users in the training set, validation set and test set are
disjoint, we drop the user-id and only use the behavior sequence
as input for DR. The behavior sequence is truncated to length of 69
if it is longer than 69, and filled with a placeholder symbol if it is
shorter than 69. A recurrent neural network with GRU is utilized to
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Input: Score functions log 𝑠 [𝑣, 𝑐]. Number of iterations 𝑇 .
Initialization: Set |𝑐 | = 0 for all paths 𝑐 .
for 𝑡 = 1 to 𝑇 do

for all items 𝑣 do
Initialize the partial sum, sum← 0.
for 𝑗 = 1 to 𝐽 do

if 𝑡 > 1 then
|𝜋 (𝑡−1)
𝑗
(𝑣) | ← |𝜋 (𝑡−1)

𝑗
(𝑣) | − 1. (Reset path size for assignments from last

iteration).
end
for all candidate paths 𝑐 of item 𝑣 such that 𝑐 ∉ {𝜋 (𝑡 )

𝑙
(𝑣)} 𝑗−1

𝑙=1 do
Compute incremental gain of objective function

Δ𝑠 [𝑣, 𝑐] = 𝑁𝑣 (log(𝑠 [𝑣, 𝑐] + sum) − log(sum)) − 𝛼 (𝑓 ( |𝑐 | + 1) − 𝑓 ( |𝑐 |)) .
end
𝜋
(𝑡 )
𝑗
(𝑣) ← argmax𝑐 Δ𝑠 [𝑣, 𝑐].

sum← sum + 𝑠 [𝑣, 𝜋 (𝑡 )
𝑗
(𝑣)] (Update partial sum).

|𝜋 (𝑡 )
𝑗
(𝑣) | ← |𝜋 (𝑡 )

𝑗
(𝑣) | + 1 (Update path size).

end
end

end
Output: path assignments {𝜋 (𝑇 )

𝑗
(𝑣)}𝐽

𝑗=1.

Algorithm 2: Coordinate descent algorithm for penalized path assignment.

Table 1: Comparison of precision@10, recall@10 and F-
measure@10 for DR, brute-force retrieval and other recom-
mendation algorithms on MovieLens-20M.

Algorithm Precision@10 Recall@10 F-measure@10
Item-CF 8.25% 5.66% 5.29%

YouTube DNN 11.87% 8.71% 7.96%
TDM (best) 14.06% 10.55% 9.49%

DR 20.58 ± 0.47% 10.89 ± 0.32% 12.32 ± 0.36%
Brute-force 20.70 ± 0.16% 10.96 ± 0.32% 12.38 ± 0.32%

project the behavior sequence onto a fixed dimension embedding as
the input of DR. We adopt the multi-task learning framework, and
rerank the items in the recalled paths by a softmax reranker. We
train the embeddings of DR and softmax jointly for the initial two
epochs, freeze the embeddings of softmax and train the embeddings
of DR for two more epochs. The reason is to prevent overfitting
of the softmax model. In the inference stage, the number of items
retrieved from beam search is not fixed due to the differences of
path sizes, but the variance is not large. Empirically we control the
beam size such that the number of items from beam search is 5 to
10 times the number of finally retrieved items.

4.2 Empirical Results
We compare the performance of DR with the following algorithms:
Item-CF [26], YouTube product DNN [2], TDM and JTM.We directly
use the numbers of Item-CF, Youtube DNN, TDM and JTM from
TDM and JTM papers for fair comparison. Among the different
variants of TDM presented, we pick the one with best performance.

Table 2: Comparison of precision@200, recall@200 and F-
measure@200 for DR, brute-force retrieval and other recom-
mendation algorithms on Amazon Books.

Algorithm Precision@200 Recall@200 F-measure@200
Item-CF 0.52% 8.18% 0.92%

YouTube DNN 0.53% 8.26% 0.93%
TDM (best) 0.56% 8.57% 0.98%

JTM 0.79% 12.45% 1.38%
DR 0.95 ± 0.01% 13.74 ± 0.14% 1.63 ± 0.02%

Brute-force 0.95 ± 0.01% 13.75 ± 0.10% 1.63 ± 0.02%

Table 3: Comparison of inference time for DR and brute-
force retrieval on Amazon Books.

Deep Retrieval 0.266 ms per instance
Brute-force 1.064 ms per instance

The result of JTM is only available for Amazon books. We also
compare DR with brute-force retrieval algorithm, which directly
computes the inner-product of user embedding and all the item
embeddings learnt in the softmaxmodel and returns the top𝐾 items.
The brute-force algorithm is usually computationally prohibitive
in practical large recommendation systems, but can be used as an
upper bound for small dataset for inner-product based models.

Table 1 shows the performance of DR compared to other al-
gorithms and brute-force for MovieLens-20M. Table 2 shows the
results for Amazon books. For DR and brute-force, we indepen-
dently train the same model for 5 times and compute the mean and
standard deviation of each metric. Results are as follows.
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Table 4: Comparison of performance for different model
depth 𝐷 on Amazon Books.

(𝐾, 𝐷) Precision @ 200 Recall @ 200 F-measure @ 200
(100, 2) 0.93% 13.34% 1.59%
(100, 3) 0.95% 13.74% 1.63%
(100, 4) 0.95% 13.67% 1.63%
(1000, 2) 0.95% 13.68% 1.62%

Table 5: Relationship between the size of the path withmost
items (top path size) and penalty factor 𝛼 .

Penalty factor 𝛼 3e-9 3e-8 3e-7 3e-6
Top path size 1948 ± 30 956 ± 29 459 ± 13 242 ± 1

• DR performs better than other methods including tree-based
retrieval algorithms such as TDM and JTM.
• The performance of DR is very close to or on par with the
performance of brute-force method, which can be thought as
an upper bound of the performance of vector-based methods
such as Deep FM and HNSW. However, the inference speed
of DR is 4 times faster than brute-force in Amazon books
dataset (see Table 3).

4.3 Sensitivity of Hyperparameters
DR introduces some key hyperparameters which may affect the
performance dramatically, including the width of the structure
model 𝐾 , depth of model 𝐷 , number of multiple paths 𝐽 , beam
size 𝐵 and penalty factor 𝛼 . In the MovieLens-20M experiment, we
choose 𝐾 = 50, 𝐷 = 3, 𝐵 = 25, 𝐽 = 3 and 𝛼 = 3 × 10−5. In the
Amazon books experiment, we choose 𝐾 = 100, 𝐷 = 3, 𝐵 = 50,
𝐽 = 3 and 𝛼 = 3 × 10−7. Using the Amazon books dataset, we
show the role of these hyperparameters and see how they may
affect the performance. We present how the recall@200 change as
these hyperparameters change in Fig. 3. We keep the value of other
hyperparameters unchanged when varying one hyperparameter.
Precision@200 and F-measure@200 follow similar trends are shown
in Fig. 4 and Fig. 5.

• Width of model 𝐾 controls the overall capacity of the
model. If 𝐾 is small, the number of clusters is small for all
the items; if 𝐾 is big, the time complexity of training and
inference stages grow linearly with 𝐾 . Moreover, large 𝐾
may increase the possibility of overfitting. An appropriate
𝐾 should be chosen depending on the size of the corpus.
• Depth ofmodel𝐷 . Using𝐷 = 1 is obviously not a good idea
since it fails to capture dependency among layers. In Table 4,
we investigate the result for 𝐷 = 2, 3 and 4 for Amazon
books dataset and conclude that (1) using 𝐷 = 2 with the
same 𝐾 would hurt performance; (2) using 𝐷 = 4 with the
same 𝐾 would not help. (3) Models with the same number
of possible paths (𝐾 = 1000, 𝐷 = 2 and 𝐾 = 100, 𝐷 = 3) have
similar performance. However the number of parameters
is of order 𝐾𝐷2, so a deeper model can achieve the same
performance with fewer parameters. As a trade-off between

model performance and memory usage, we choose 𝐷 = 3 in
all experiments.
• Number of paths 𝐽 enables the model to express multi-
aspect information of candidate items. The performance is
the worst when 𝐽 = 1, and keeps increasing as 𝐽 increases.
Large 𝐽 may not affect the performance, but the time com-
plexity for training grows linearly with 𝐽 . In practice, choos-
ing 𝐽 between 3 and 5 is recommended.
• Beam size 𝐵 controls the number of candidate paths to be
recalled. Larger 𝐵 leads a better performance as well as heav-
ier computation in the inference stage. Notice that greedy
search is a special case when 𝐵 = 1, whose performance is
worse than beam search with larger 𝐵.
• Penalty factor 𝛼 controls the number of items in each path.
The best performance is achieved when 𝛼 falls in a certain
range. From table 5, we conclude that smaller 𝛼 leads to a
larger path size hence heavier computation in the reranking
stage. Beam size 𝐵 and penalty factor 𝛼 should be appropri-
ately chosen as a trade off between model performance and
inference speed.

Overall, we can see that DR is fairly stable to hyperparameters
since there is a wide range of hyperparameters which leads to
near-optimal performances.

5 LIVE EXPERIMENTS
In this section, we show how DR works in real production systems.
To the best of our knowledge, DR is among the first non-ANN
algorithms successfully deployed at the scale of hundreds ofmillions
of items for industrial recommendation systems.

While the results on public datasets in the last section shed light
upon the basic behavior of the DR models, it is more important
to understand if it could improve user experiences for real recom-
mendation systems in industrial environments. These systems are
much more complicated and difficult to improve due to sheer vol-
ume of the data (user-generated contents, UGC) and their dynamic
nature—there are new items uploaded almost every second.

Since the number of items in our system is usually in the order of
hundreds of millions, making the full-scale fine ranking a difficult
task. Thus, an industrial-scale recommendation system usually con-
sists of several stages as shown in the YouTube recommendation
paper [2]. At minimal, the system has two stages: candidate genera-
tion and fine-ranking. Here fine-ranking stage usually uses a more
complex model with additional features that are computationally
intractable in the candidate generation stage. Thus fine ranking
usually handles only hundreds of items for each user request. DR
works as the one of candidate generation components. Fig. 6 shows
the illustrative diagram of this process. In practice, multiple can-
didate generation sources are used at the same time to produce a
diverse set of candidates for the fine-ranking stage.

Our experimental platform is one of the largest in the industry
with hundreds of millions of users and items. In our system, items
are short videos. For this particular DR experiment, the labels are
generated to indicate whether a user has finished watching the
video or not. The baseline candidate generation method used Field-
aware Factorization Machine (FFM) [14] to learn the user and item
embeddings and followed by HNSW [18] for approximate nearest



, , Gao and Fan, et al.

15 25 50 100 200 500
K

12.00

12.25

12.50

12.75

13.00

13.25

13.50

13.75

14.00

re
ca

ll(
%

)

recall vs. K
recall

1 2 3 4 5
num_path

12.00

12.25

12.50

12.75

13.00

13.25

13.50

13.75

14.00

re
ca

ll(
%

)

recall vs. num_path
recall

5 10 20 35 50
beam size

12.00

12.25

12.50

12.75

13.00

13.25

13.50

13.75

14.00

re
ca

ll(
%

)

recall vs. beam_size
recall

3e-11 3e-10 3e-09 3e-08 3e-07 3e-06 3e-05
pen_factor

12.00

12.25

12.50

12.75

13.00

13.25

13.50

13.75

14.00

re
ca

ll(
%

)

recall vs. pen_factor
recall

Figure 3: Relationship between recall@200 in Amazon Books experiment and model width 𝐾 , number of paths 𝐽 , beam size 𝐵
and penalty factor 𝛼 , respectively.
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Figure 4: Relationship between precision@200 in Amazon Books experiment and model width 𝐾 , number of paths 𝐽 , beam
size 𝐵 and penalty factor 𝛼 , respectively.
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Figure 5: Relationship between F-measure@200 in Amazon Books experiment and model width 𝐾 , number of paths 𝐽 , beam
size 𝐵 and penalty factor 𝛼 , respectively.
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Figure 6: An illustrative diagram to show how to use DR in
an industrial recommendation system.

neighbor search. This baseline was extensively tuned to maximize
the user experiences on the platform. Slightly different from the use
of softmax for reranking on public datasets for DR, the re-ranking

model we use here is a logistic regression model. Previous attempts
of using softmax in the production did not result in meaningful
improvements. The reranking model architecture is the same for
both HNSW and DR.

We report the performance of DR in AB test in Table 6. DR
enjoys a significant gain in key metrics, including video finish
rate, app view time and second day retention, over the baseline
model. All improvements are statistically significant. This is likely
because the end-to-end training of DR aligns the learning of the user
embeddings and the retrievable structure under the same objective
function directly from user-item interactions. So the clustering of
DR contains more user-behavior information of candidate items.
We also found that DR is more friendly to less popular videos or less
popular creators, and the AB test shows that much more of such
videos are recommended to the end users. This is beneficial to the
platform’s creator ecosystem. We believe the reason is as follows.
Within each path in the DR structure, items are indistinguishable
and this allows the less popular items to be retrieved as long as they
share some similar behaviors with popular ones. Last but not least,
DR is naturally suitable for streaming training, and the time to build
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Table 6: Live experiment results on different engagement
metrics.

Metric Relative improvement of DR
Video finish rate +3.0%
App view time +0.87%

Second day retention +0.036%

the structure for retrieval is much less than HNSW since there is no
computation of any user or item embeddings involved in DR’s M-
step. It takes about 10minutes to process the total itemswith amulti-
thread CPU implementation. In industrial recommendation systems
like ours, these improvements are substantial. This experiment
shows the advantage of DR in large-scale recommendation systems.

6 CONCLUSION AND DISCUSSION
In this paper, we have proposed Deep Retrieval, an end-to-end learn-
able structure model for large-scale recommendation systems. DR
uses an EM-style algorithm to learn the model parameters and paths
of items jointly. Experiments have shown that DR performs well
compared with brute-force baselines in two public recommendation
datasets as well as live production environments with hundreds of
millions of users and items. There are several future research direc-
tions based on the current model design. Firstly, the structure model
defines the probability distribution on paths only based on user
side information. A useful idea would be how to incorporate item
side information more directly into the DR model. Secondly, in the
structure model, we only make use of positive interactions such as
click, convert or like between user and item. Negative interactions
such as non-click, dislike or unfollow should also be considered in
future work to improve the model performance. Finally, we cur-
rently use a simple dot-product type of models as a reranker and
we plan to use a more complex model in the future.
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