 LECTURES ON
GAS THEORY

Ludwig Boltzmann



Pune Mathematical Phydics



LECTURES ON GAS THEORY

Ludwig Boltzmann
Translated by Stephen G. Brush

DOVER PUBLICATIONS, INC.
NEW YORK






LECTURES ON GAS THEORY



Copyright

Copyright © 1964 by The Regents of the University of California.
All rights reserve.

Bibliographical Note

This Dover edition, first published in 1995, is an unabridged, unaltered republication of the English
translation originally published by the University of California Press, Berkeley, 1964. The original
work, in German, was published in two parts by J. A. Barth, Leipzig, Germany, 1896 (Part I) and 1898
(Part IT), under the title Vorlesungen iiber Gastheorie.

The Dover edition is published by special arrangement with the University of California Press, 2120
Berkeley Way, Berkeley, California 94720.

This translation was originally “published with the assistance of a grant from the National Science
Foundation.”

Library of Congress Cataloging-in-Publication Data

Boltzmann, Ludwig, 1844-1906.
[Vorlesungen iiber Gastheorie. English]
Lectures on gas theory / Ludwig Boltzmann ; translated by Stephen G. Brush. — Dover ed.
p.cm.
Originally published: Berkeley : University of California Press, 1964.
Includes bibliographical references and index.
ISBN 0-486-68455-5
1. Kinetic theory of gases. I. Title.
QC175.B7213 1995
533°.7—dc20
94-41221
CIP

Manufactured in the United States by Courier Corporation

68455503
www.doverpublications.com



CONTENTS

Translator’s Introduction X

PARTI 1

THEORY OF GASES WITH MONATOMIC MOLECULES, WHOSE DIMENSIONS ARE NEGLIGIBLE COMPARED TO
THE MEAN FREE PATH.

Foreword 2
Introduction 3
1. Mechanical analogy for the behavior of a gas 3
2. Calculation of the pressure of a gas 7
CHAPTER I 14
THE MOLECULES ARE ELASTIC SPHERES. EXTEBNAL FORCES AND VISIBLE MASS MOTION ARE ABSENT.
3. Maxwell’s proof of the velocity distribution law; frequency of collisions 14
4. Continuation; values of the variables after the collision; collisions of the opposite kind 19
5. Proof that Maxwell’s velocity distribution is the only possible one 25
6. Mathematical meaning of the quantity H 29
7. The Boyle-Charles-Avogadro law. Expression for the heat supplied 34
8.  Specific heat. Physical meaning of the quantity H. 40
9.  Number of collisions 47
10. Mean free path 54
11. Basic equation for the transport of any quantity by the molecular motion 57
12.  Electrical conduction and viscosity of the gas 61
13.  Heat conduction and diffusion of the gas 67
14.  Two kinds of approximations; diffusion of two different gases 72
CHAPTERII 82
THE MOLECULES ARE CENTERS OF FORCE. CONSIDERATION OF EXTERNAL FORCES AND VISIBLE MOTIONS
OF THE GAS.
15. Development of partial differential equations for f and F. 82
16. Continuation. Discussion of the effects of collisions 85
17. Time-derivatives of sums over all molecules in a region 93
18.  More general proof of the entropy theorem. Treatment of the equations corresponding to the 101
stationary state
19.  Aerostatics. Entropy of a heavy gas whose motion does not violate Equations (147) 110
20.  General form of the hydrodynamic equations 116
CHAPTER III 132
THE MOLECULES REPEL EACH OTHER WITH A FORCE INVERSELY PROPORTIONAL TO THE FIFTH POWER OF
THEIR DISTANCE.
21. Integration of the terms resulting from collisions 132
22. Relaxation time. Hydrodynamic equations corrected for viscosity. Calculation of B using 142
spherical functions
23. Heat conduction. Second method of approximate calculations 155
24.  Entropy for the case when Equations (147) are not satisfied. Diffusion 173

"Pune Mathematical Physics



PARTII 192
VAN DER WAALS' THEORY; GASES WITH COMPOUND MOLECULES; GAS DISSOCIATION; CONCLUDING

REMARKS.
Foreword 192
CHAPTERI 194
FOUNDATIONS OF VAN DER WAALS’ THEORY.
1. General viewpoint of van der Waals 194
2. External and internal pressure 195
3. Number of collisions against the wall 196
4. Relation between molecular extension and collision number 197
5. Determination of the impulse imparted to the molecules 199
6. Limits of validity of the approximations made in §4 201
7. Determination of internal pressure 202
8. Anideal gas as a thermometric substance 204
9. Temperature-pressure coefficient. Determination of the constants of van der Waals” equation 205
10.  Absolute temperature. Compression coefficient 206
11. Critical temperature, critical pressure, and critical volume 208
12.  Geometric discussion of the isotherms 211
13.  Special cases 214
CHAPTERII 218
PHYSICAL DISCUSSION OF THE VAN DER WAALS’ THEORY.
14.  Stable and unstable states 218
15.  Undercooling. Delayed evaporation 219
16. Stable coexistence of both phases 221
17.  Geometric representation of the states in which two phases coexist 223
18.  Definition of the concepts gas, vapor, and liquid 225
19.  Arbitrariness of the definitions of the preceding section 226
20. Isopycnic changes of state 227
21. Calorimetry of a substance following van der Waals’ law 228
22.  Size of the molecule . 231
23. Relations to capillarity 232
24.  Work of separation of the molecules 235
CHAPTERIII 239
PRINCIPLES OF GENERAL MECHANICS NEEDED FOR GAS THEORY.
25.  Conception of the molecule as a mechanical system characterized by generalized coordinates 239
26. Liouville’s theorem 241
27.  On the introduction of new variables in a product of differentials 246
28.  Application to the formulas of §26 250
29.  Second proof of Liouville’s theorem 253
30. Jacobi’s theorem of the last multiplier 257
31. Introduction of the energy differential 261
32.  Ergoden 264
33.  Concept of the momentoid 267
34. Expression for the probability; average values 271
35. General relationship to temperature equilibrium 278

"Pune Mathematical Physics



36.
37
38.

39.
40.
41.
42.
43.
44.
45.
46.
47.

48.
49.
50.
Sl
52
53;
54.
55.
56.
57.
58.
39.
60.
61.

62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.

CHAPTER IV
GASES WITH COMPOUND MOLECULES.

Special treatment of compound molecules

Application of Kirchhoff’s method to gases with compound molecules

On the possibility that the states of a very large number of molecules can actually lie within very
narrow limits

Treatment of collisions of two molecules

Proof that the distribution of states assumed in §37 will not be changed by collisions
Generalizations

Mean value of the kinetic energy corresponding to a momentoid

The ratio of specific heats, &

Value of & for special cases

Comparison with experiment

Other mean values

Treatment of directly interacting molecules

CHAPTER V
DERIVATION OF VAN DER WAALS' EQUATION BY MEANS OF THE VIRIAL CONCEPT.

Specification of the point at which van der Waals’ mode of reasoning requires improvement
More general concept of the virial

Virial of the external pressure acting on a gas

Probability of finding the centers of two molecules at a given distance

Contribution to the virial resulting from the finite extension of the molecules

Virial of the van der Waals cohesion force

Alternatives to van der Waals’ formulas

Virial for any arbitrary law of repulsion of the molecules

The principle of Lorentz’s method

Number of collisions

More exact value of the mean free path. Calculation of W’ according to Lorentz’s method
More exact calculation of the space available for the center of a molecule

Calculation of the pressure of the saturated vapor from the laws of probability

Calculation of the entropy of a gas satisfying van der Waals’ assumptions, using the calculus of
probabilities

CHAPTER VI
THEORY OF DISSOCIATION.

Mechanical picture of the chemical affinity of monovalent similar atoms
Probability of chemical binding of an atom with a similar one
Dependence of the degree of dissociation on pressure

Dependence of the degree of dissociation on temperature

Numerical calculations

Mechanical picture of the affinity of two dissimilar monovalent atoms
Dissociation of a molecule into two heterogeneous atoms

Dissociation of hydrogen iodide gas

Dissociation of water vapor

General theory of dissociation

Relation of this theory to that of Gibbs

The sensitive region is uniformly distributed around the entire atom

"Pune Mathematical Plhyslcs

283

283
284
286

287
290
292
294
296
298
299
300
302

306

306
306
308
310
313
316
317
319
321
323
326
327
329
332

339

339
341
344
347
350
354
356
358
360
363
367
368



SUPPLEMENTS TO THE LAWS OF THERMAL EQUILIBRIUM IN GASES WITH COMPOUND MOLECULES.

CHAPTER VII

74.  Definition of the quantity H, which measures the probabilities of states
75.  Change of the quantity H through intramolecular motion

76. Characterization of the first special case considered

77. Form of Liouville’s theorem in the special case considered

78.  Change of the quantity H as a consequence of collisions

79. Most general characterization of the collision of two molecules

80. Application of Liouville’s theorem to collisions of the most general kind
81. Method of calculation with finite differences

82. Integral expression for the most general change of H by collisions

83. Detailed specification of the case now to be considered

84.  Solution of the equation valid for each collision

85.  Only the atoms of a single type collide with each other

86. Determination of the probability of a particular kind of central motion
87.  Characterization of our assumption about the initial state

88.  On the return of a system to a former state

89. Relation to the second law of thermodynamics

90. Application to the universe

91.  Application of the probability calculus in molecular physics

92. Derivation of thermal equilibrium by reversal of the time direction
93.  Proof for a cyclic series of a finite number of states

Bibliography

Index

"Pune WMathematical Plyiics

372

372
373
375
377
379
381
382
385
389
391
391
393
394
399
400
401
402
403
404
407

410

433



TRANSLATOR’S INTRODUCTION

Gas Theory

Boltzmann’s Lectures on Gas Theory is an acknowledged masterpiece of theoretical
physics; aside from its historical importance, it still has considerable scientific value today.
It contains a comprehensive exposition of the kinetic theory of gases by a scientist who
devoted a large part of his own career to it, and brought it very nearly to completion as a
fundamental part of modern physics. The many physicists who are already familiar with
Gastheorie in the original German edition (1896—1898) will not need this Introduction to
remind them of its stature. But perhaps some scientists who scarcely have time to keep up
with the latest publications in their subject may want to know why they should bother to
read a book published more than 60 years ago; and a brief account of the place of the book
in the development of modern physics may be of interest.

Ludwig Boltzmann (1844-1906) played a leading role in the nineteenth-century
movement toward reducing the phenomena of heat, light, electricity, and magnetism to
“matter and motion” —in other words, to atomic models based on Newtonian mechanics.
His own greatest contribution was to show how that mechanics, which had previously been
regarded as deterministic and reversible in time, could be used to describe irreversible
phenomena in the real world on a statistical basis. His original papers on the statistical
interpretation of thermodynamics, the H-theorem, transport theory, thermal equilibrium, the
equation of state of gases, and similar subjects, occupy about 2,000 pages in the
proceedings of the Vienna Academy and other societies. While some of his discoveries
attracted considerable attention and controversy in his own time, not even the handful of
experts on kinetic theory could claim to have read everything he wrote. Realizing that few
scientists of later generations were likely to study his long original memoirs in detail,
Boltzmann decided to publish his lectures, in which the most important parts of the theory,
including his own contributions, were carefully explained. In addition, he included his
mature reflections and speculations on such questions as the nature of irreversibility and the
justification for using statistical methods in physics. His Vorlesungen iiber Gastheorie was
in fact the standard reference work for advanced researchers, as well as a popular textbook
for students,* for the first quarter of the present century, and is frequently cited even now.
A recent example is the following statement by Mark Kac:{ “Boltzmann summarized most
(but not all) of his work in a two volume treatise Vorlesungen iiber Gastheorie. This is one
of the greatest books in the history of exact sciences and the reader is strongly advised to
consult it. It is tough going but the rewards are great.”

The modern reader will rightly assume that some parts of Boltzmann’s theory must have
been rendered obsolete by later discoveries. In particular, we know that one cannot expect
to develop an adequate theory of atomic phenomena without using quantum mechanics.
However, it turns out that almost all the properties of gases at ordinary temperatures and
densities can be described by the classical theory developed in the nineteenth century, and
for this reason there has been a considerable revival of interest in classical kinetic theory
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during the last few years, in connection with rarified gas dynamics, plasma physics, and
neutron transport theory. The reason why the classical theory works is that, while the
internal structure of molecules must be described by quantum mechanics, the interaction
between two molecules can be fairly well described by a classical model which ignores this
structure and simply uses a postulated force law whose parameters can be chosen to fit
experimental data. Aside from phenomena at very high densities or very low temperatures,
the only property that the classical theory fails to account for is the ratio of specific heats.
However, this failure was already well known at the time Boltzmann wrote this book, and
he is therefore quite cautious on this point. He simply concludes that for some unknown
reason all the possible internal motions of a molecule do not have an equal share in the total
energy, and takes this into account as an empirical fact.

As for various questions of a more fundamental nature, such as the relation between
entropy and the direction of time, quantum theory has thrown new light on these problems
but has not solved them. Boltzmann’s remarks are therefore still of interest. Thus Hans
Reichenbach proposes to define the direction of increasing time as the direction in which
entropy increases, so that in a universe in which entropy fluctuates,

we cannot speak of a direction of time as a whole; only certain sections of time have directions, and
these directions are not the same. The first to have the courage to draw this conclusion was Ludwig
Boltzmann [Gas Theory, Part 11, §90]. His conception of alternating time directions represents one of
the keenest insights into the problem of time. Philosophers have attempted to derive the properties of
time from reason; but none of their conceptions compares with this result that a physicist derived from
reasoning about the implications of mathematical physics. As in so many other respects, the superiority
of a philosophy based on the results of science has become manifest . .. .*

The only respects in which the book may be considered out of date are, first, the
emphasis on the inverse fifth-power repulsive force model for calculating transport
properties, and, second, the molecular model used to explain dissociation phenomena. The
reason for choosing the inverse fifth-power force law was that Maxwell (1866)F had
discovered that the calculation of transport properties is particularly simple for this case,
because the collision integrals do not depend on the relative velocity of the colliding
molecules, so that one does not need to know the velocity distribution. Maxwell and
Boltzmann therefore believed that it would be more worthwhile to develop an exact theory
for this model, rather than attempt to work out a more complicated approximate theory for
other force laws. However, it was later shown by Chapman and Enskog (1916-1917) that
the important phenomenon of thermal diffusion does not occur for this particular force law,
and a quantitative treatment of the general case does require a determination of the velocity
distribution in a nonequilibrium state, although it is still not necessary to use the quantum
theory. Boltzmann’s model for dissociation, employing molecules with small “sensitive
regions’” on parts of their surfaces, is an interesting historical curiosity, but the need for such
ad hoc assumptions to explain the directional character of chemical bonds has been
eliminated by quantum mechanics.

History of the kinetic theory
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The development of the kinetic theory of gases has been discussed at length elsewhere*
so only a brief summary will be given here.

The modern concept of air as a fluid exerting mechanical pressure on surfaces in contact
with it goes back to the early seventeenth century, when Torricelli, Pascal, and Boyle first
established the physical nature of the air. By a combination of experiments and theoretical
reasoning they persuaded other scientists that the earth is surrounded by a “sea” of air that
exerts pressure in much the same way that water does, and that air pressure is responsible
for many of the phenomena previously attributed to “nature’s abhorrence of a vacuum.”
We may view this development of the concept of air pressure as part of the change in
scientific attitudes which led to the mechanico-corpuscular view of nature, associated with
the names of Galileo, Boyle, Newton, and others. Instead of postulating “occult forces” or
teleological principles to explain natural phenomena, scientists started to look for
explanations based simply on matter and motion.

Robert Boyle is generally credited with the discovery that the pressure exerted by a gas
is inversely proportional to the volume of the space in which it is confined. From Boyle’s
point of view that discovery by itself was relatively insignificant, and though he had
provided the experimental evidence for it he readily admitted that he had not found any
general quantitative relation between pressure and volume before Richard Towneley
suggested the hypothesis that pressure is inversely proportional to volume. Robert Hooke
also provided further experimental confirmation of the hypothesis. It was long known as
“Mariotte’s law” on the Continent, but there are good reasons for believing that Mariotte
was familiar with Boyle’s work even though he does not mention it, so that he does not
even deserve the credit for independent (much less simultaneous) discovery: see any good
book on history of science for details on this point.

The generalization that pressure is proportional to absolute temperature at constant
volume was stated by Amontons and Charles, but it remained for Gay-Lussac to establish it
firmly by experiments at the beginning of the nineteenth century.

Boyle’s researches were carried out to illustrate not just a quantitative relation between
pressure and volume, but rather the qualitative fact that air has elasticity (“spring”) and can
exert a mechanical pressure strong enough to support 34 feet of water in a pump, or 30
inches of mercury in a barometer. His achievement was to introduce a new dimension—
pressure—into physics; he could well afford to be generous about giving others the credit
for perceiving the numerical relations between this dimension and others. He also proposed
a theoretical explanation for the elasticity of air—he likened it to “a heap of little bodies,
lying one upon another” and the elasticity of the whole was simply due to the elasticity of
the parts. The atoms were said to behave like springs which resist compression. To a
modern scientist this explanation does not seem very satisfactory, for it does no more than
attribute to atoms the observable properties of macroscopic objects. It is interesting to note
that Boyle also tried the “crucial experiment” which was to help overthrow his own theory
in favor of the kinetic theory two centuries later, though he did not realize its significance:
he placed a pendulum in an evacuated chamber and discovered, to his surprise, that the
presence or absence of air makes hardly any difference to the period of the swings or the
time needed for the pendulum to come to rest. In 1859, Maxwell deduced from the kinetic
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theory that the viscosity of a gas should be independent of its density—a property which
would be very hard to explain on the basis of Boyle’s theory.

Newton discusses very briefly in his Philosophiae Naturalis Principia Mathematica
(1687) the consequences of various hypotheses about the forces between atoms for the
relation between pressure and volume. One particular hypothesis, a repulsive force
inversely proportional to distance, leads to Boyle’s law. It seems plausible that Newton was
trying to put Boyle’s theory in mathematical language and that he thought of the repulsive
forces as being due to the action of the atomic springs in contact with each other, but there
seems to be no direct evidence for this. Neither Boyle nor Newton asserted that the
hypothesis of repulsive forces between atoms is really responsible for gas pressure; both
were willing to leave the question open. Boyle mentions Descartes’ theory of vortices, for
example, which is somewhat closer in spirit to the kinetic theory since it relies more heavily
on the rapid motion of the parts of the atom as a cause for repulsion. Incidentally, it is
important to realize that there is more to the kinetic theory than just the statement that heat is
atomic motion. That statement was frequently made, especially in the seventeenth century,
but usually by scientists who did not make the important additional assumption that in gases
the atoms move freely most of the time. It was quite possible to accept the “heat is motion”
idea and still reject the kinetic theory of gases—as did Humphry Davy early in the
nineteenth century.

Despite the tentative way in which it was originally proposed, the Boyle-Newton theory
of gases was apparently accepted by most scientists until about the middle of the nineteenth
century, when the kinetic theory finally managed to overcome Newton’s authority. Thus a
theory which was decidedly a step forward from older ideas nevertheless was able to retard
further progress for a considerable time.

It is difficult to understand the relative lack of progress in gas physics during the
eighteenth century as compared to the seventeenth. Several brilliant mathematicians refined
and clarified Newton’s principles of mechanics and applied them to the analysis of the
motions of celestial bodies and of continuous solids and fluids, but there was little interest
in the properties of systems of freely moving atoms. The atoms in a gas were still conceived
as being suspended in the ether, although they could vibrate or rotate enough to keep other
atoms from coming too close. This model was rather awkward to formulate mathematically,
as may be seen from an unsuccessful attempt by Leonhard Euler (1727).

One contribution from this period has been generally recognized as the first kinetic
theory of gases. This is Daniel Bernoulli’s derivation of the gas laws from a “billiard ball”
model—much like the one still used in elementary textbooks today—in 1738. His kinetic
theory is only a small part of a treatise on hydrodynamics, a subject to which he made
important contributions. From the viewpoint of the historical development of the kinetic
theory, his formulation and successful applications of the principle of conservation of
mechanical energy were really more important than the fact that he actually proposed a
kinetic theory himself. Bernoulli’s kinetic theory, while in accord with modern ideas, was a
century ahead of its time, for scientists were not yet ready to accept the physical description
of a gas that it employed. Heat was still generally regarded as a substance, even though it
was also recognized that heat might have some relationship to atomic motions; Bernoulli’s

Pune Mathematical Plhyilcs



assumption that heat is nothing but atomic motion was unacceptable, especially to scientists
who were interested in the phenomena of radiant heat. The assumption that atoms could
move freely through space until they collided like billiard balls was probably regarded as
too drastic an approximation, since it neglected the drag of the ether and oversimplified the
interaction between atoms.

Late in the eighteenth century, Lavoisier and Laplace developed a systematic theory of
chemical and thermal phenomena based on the assumption that heat is a substance, called
“caloric.” Laplace and Poisson later worked out a quantitative theory of gases, in which the
repulsion between atoms was attributed to the action of “atmospheres” of caloric
surrounding the atoms; they were able to explain such phenomena as adiabatic compression
and the velocity of sound, as well as the ideal gas laws.

The caloric theory was being brought to its final stage of perfection by Laplace,
Poisson, Carnot and Clapeyron at about the same time that John Herapath (1790-1868)
proposed his kinetic theory (1820, 1821). Herapath attempted to explain not only the
properties of gases but also gravity, changes of state, and many other phenomena. His
memoir was rejected by the Royal Society, mainly because Humphry Davy (then its
president) thought Herapath’s theory was too speculative, even though Davy himself had
advocated the view that heat is molecular motion. Herapath published several papers on his
theory, but did not succeed in converting other scientists to his views. Another British
scientist, J. J. Waterston (1811-1883), submitted a memoir on the kinetic theory to the
Royal Society in 1845; it was not only rejected, but remained buried in the Society’s
archives until 1891 when it was discovered by Lord Rayleigh.

During the period 1840-1855, the equivalence of heat, work, and other forms of energy
was established experimentally by Joule, and the general principle of conservation of
energy was formulated by Mayer and others. Joule himself revived Herapath’s kinetic
theory (1848) but did not make any further developments or applications of it aside from
calculating the velocity of a hydrogen molecule. Kronig independently proposed a simple
kinetic theory in 1856, and soon afterwards Rudolf Clausius (1822—1888) and James Clerk
Maxwell (1831-1879) started to make substantial progress towards the modern theory.
Clausius introduced the idea of the “mean free path” of a molecule between successive
collisions (1858), and Maxwell, Clausius, O. E. Meyer (1834-1915), and P. G. Tait
(1831-1901) developed the theory of diffusion, viscosity, and heat conduction on this
basis. One of the most surprising results—whose confirmation by experiment helped to
establish the kinetic theory—was Maxwell’s prediction (1859) that the viscosity of a gas
should be independent of density and should increase with temperature. The mean free path
method is still the easiest way to understand transport phenomena, but it does not yield
accurate numerical results and, as mentioned above, it failed to predict thermal diffusion.

The foundations of the modern theory of transport were laid by Maxwell in his great
memoir of 1866; it is essentially this method which Boltzmann used to make his
discoveries, and which he presents in this book. Maxwell proceeds by writing down
general equations for the rate of change of any quantity (such as molecular velocity) at any
point in space and time resulting from molecular motions and collisions. These
“microscopic” equations are then compared with the corresponding ‘“‘macroscopic”
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equations (for example, the Navier-Stokes equations of hydrodynamics) and the
coefficients of viscosity, etc., are thus related to certain characteristic functions of molecular
collisions. Boltzmann’s transport equation, derived in 1872, is a special case of Maxwell’s
general equation in which the quantity of interest is the number of molecules having a
certain velocity—in other words, the velocity distribution function. As soon as this function
has been found, all the transport coefficients can also be computed. Much of modern
research in statistical mechanics is based on attempts to solve either the Boltzmann equation
or similar equations for other kinds of distribution functions. In a sense there are two
alternative ways of developing transport theory: one based on solutions of Maxwell’s
equations, and the other on the solution of Boltzmann’s equation, and these two approaches
were followed by Chapman (1916) and Enskog (1917) respectively, the final results being
essentially identical. However, Boltzmann was able to deduce immediately a very
important result from his equation, which was not at all obvious from Maxwell’s original
formulation: a quantity called H, which can be identified with the negative of the entropy,
must always decrease or remain constant, if one assumes that the velocity distributions of
two colliding molecules are uncorrelated. The molecular interpretation of the law of
increasing entropy is thus intimately related to the assumption of molecular chaos and the
relation between entropy and probability. H remains constant only when the gas attains a
special velocity distribution which had previously been deduced by Maxwell (1859) in a
less convincing manner.

There is apparently a contradiction between the law of increasing entropy and the
principles of Newtonian mechanics since the latter do not recognize any difference between
past and future times. If one sequence of molecular motions corresponds to increasing
entropy, one should obtain a sequence corresponding to decreasing entropy by simply
reversing all the velocities. This is the so-called reversibility paradox (Umkehreinwand)
which was advanced as an objection to Boltzmann’s theory by Loschmidt (1876, 1877)
and others. Another difficulty is the fact that a conservative dynamical system in a finite
space will always return infinitely often to a state close to any arbitrary initial state; hence
the entropy cannot continually increase but must go through cyclic variations. This is the
recurrence paradox (Wiederkehreinwand) based on a theorem of Poincaré (1890) and used
against the kinetic theory by Zermelo (1896). Some scientists held that if there is any
contradiction between macroscopic thermodynamics and the kinetic theory, the latter
should be rejected since it is based on a hypothetical atomic model, whereas
thermodynamics is firmly grounded on empirical observations. Boltzmann’s reply to these
objections is given in this book.

Another broad field of theoretical research was opened up by J. D. van der Waals
(1837-1923), who published his celebrated investigation of the continuity of the liquid and
gaseous states in 1873. Although van der Waals’ equation of state was supposedly deduced
from the virial theorem of Clausius (1870), and was therefore considered an application of
the kinetic theory, its derivation relied partly on concepts of the older Laplace-Poisson
theory of capillarity, in which molecular motions were ignored. Nevertheless the van der
Waals equation of state gives an excellent qualitative description of condensation and
critical phenomena, and Boltzmann devotes a substantial portion of Part I of these lectures
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to an exposition of van der Waals’ theory. He also describes his calculation of the next
correction term to the equation of state of hard spheres—i.e., what we now call the third
virial coefficient.

The failure of the kinetic theory to give a satisfactory explanation of the specific heats of
polyatomic gases—and spectroscopic evidence that even monatomic gas molecules must
have internal degrees of freedom which apparently do not have their proper share of energy
as required by the equipartition theorem —stimulated several theoretical studies of
mechanical models later in the nineteenth century. These studies were directed toward
attempting to prove rigorously the necessary and sufficient conditions for equipartition. It
was generally agreed that a sufficient condition would be that the system passes eventually
through every point on the “energy surface” in phase space before returning to its starting
point; in other words, no matter what might be the initial velocities and positions of the
particles, they would eventually take on all possible values consistent with their fixed total
energy. This statement is now known as the ‘“ergodic” hypothesis, and it is frequently
asserted that Maxwell and Boltzmann believed that real physical systems have this
property. If the hypothesis were true for a system, then it would be legitimate to replace a
time-average over the trajectory of a single system (which is what one can actually observe)
by a “phase” or ‘“ensemble” average over many replicas of the same system with all
possible sets of positions and velocities consistent with a specified energy. From a
mathematical point of view, the existence of an ergodic system would imply that an n-
dimensional manifold (the energy surface in phase space) can be mapped continuously onto
a one-dimensional manifold (the range of the time variable) so that every point in the
former corresponds to at least one point in the latter.

While Boltzmann did make certain statements in some of his papers (1871, 1884, 1887)
to the effect that a mechanical system might exhibit such behavior—the Lissajous figure
with incommensurable periods was one alleged example—there is no foundation for the
belief that Boltzmann thought real systems are ergodic. Moreover, Boltzmann did not
clearly distinguish between the “ergodic hypothesis” (which we now know to be false) and
the so-called “quasi-ergodic hypothesis,” that the trajectory of a system may pass arbitrarily
close to every point on the energy surface. The latter hypothesis does indeed provide a
reasonable basis for statistical mechanics, even though it has not yet been proved that it is
valid for real physical systems. To anyone acquainted with the modern mathematical theory
of sets of points and infinite classes, the distinction between the two hypotheses is obvious,
but we must remember that Boltzmann did not accept this theory, although he may have
been aware of it (the fundamental papers of Georg Cantor were published during the same
period that Boltzmann was publishing his papers on gas theory, some of them in the same
journal). On the contrary, Boltzmann often stated that infinitesimal or infinite numbers have
no meaning except as limits of finite numbers, and for this reason he gave alternative
derivations of some of his theorems using sums of discrete quantities instead of integrals.
To say that a trajectory passes through every point in a region would (to him) be
meaningless unless one meant by this that the trajectory passes arbitrarily close to every
point, and in at least one paper Boltzmann uses the two statements interchangeably.*

Part of the confusion regarding Boltzmann’s views is due to the fact that the Ehrenfests,
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in their classic encyclopedia article (1911), and later writers following their terminology,
took Boltzmann’s word “ergodic” and used it to refer to a single mechanical system whose
trajectory passes through every point on the energy surface, whereas Boltzmann himself
had used the word in a completely different sense, to mean an aggregate or ensemble of
systems whose positions and velocities are distributed over all possible sets of values on the
energy surface. The Ehrenfests recognized this distinction, and used the term ‘“ergodic
distribution” for the latter concept, but since then Gibbs’ terminology has come into general
use, and we now use the phrase “microcanonical ensemble” for what Boltzmann called an
Ergode. (Boltzmann’s justification for using Ergoden in gas theory is given in Part II, §35,
and in other remarks scattered through the rest of this book.)

The statistical mechanics of J. Willard Gibbs (1839-1903) represents the next level of
abstraction and refinement of gas theory, following directly on Boltzmann’s introduction of
Ergoden, and relying heavily on the methods of analytical mechanics which Boltzmann
applied to gas theory (see Part II, Chapter III). Instead of considering an ensemble of
systems with different initial positions and velocities but the same total energy, Gibbs
proposed to consider the more general case of a “canonical ensemble” of systems having all
possible energies, the number of systems having energy E being proportional to e PE
(where f = U/kT). Gibbs also introduced the “grand canonical ensemble” in which the
number of particles in each system may vary, the number of systems with N particles being
proportional to ¢ *V, where u (called the “chemical potential”) is chosen to give the desired
density. These generalized ensembles are easier to deal with mathematically, and enable
one to treat systems in contact with a heat reservoir at constant temperature, or systems in
which chemical reactions may take place.

There is not space here to describe the modifications of statistical mechanics by quantum
mechanics, associated with the names of Planck, Einstein, Bose, Fermi, and Dirac. It may
however be worth mentioning that Planck’s discovery of the quantum laws of radiation
owed much to Boltzmann’s statistical theory of entropy. At the same time it must be
remembered that during the years preceding the introduction of the quantum theory, the
inadequacies of classical mechanics had become increasingly more evident, as theoretical
physicists tried in vain to construct satisfactory classical models of atoms and of the ether.
There was also a growing reaction against “‘scientific materialism,” and a movement to
replace atomic theories by purely descriptive theories based only on macroscopic
observables. The most famous leader of this movement was Ernst Mach (1838-1916),
whose criticism of mechanics prepared the way for Einstein’s theory of relativity. In a
series of articles and books, beginning with a critical study of the law of conservation of
energy (1872), Mach attacked the use of atomic models in physics, and asserted that the
basic purpose of science is to achieve “economy of thought” in describing natural
phenomena, not to explain them in terms of hypothetical concepts such as atoms or ether.
Gustav Kirchhoff (1824—1887) expressed similar views in his lectures on mechanics (1874)
but did not develop them as fully, and indeed in his lectures on heat (published
posthumously in 1894) he included a section on kinetic theory. One of the striking features
of Boltzmann’s Gas Theory is the large number of references to Kirchhoff’s exposition.

The school of Energetics included many members of the positivist movement, in
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particular Wilhelm Ostwald (1853-1932), Georg Helm (1851-1923), Pierre Duhem
(1861-1916) and others. The Energetists proposed to develop thermodynamics, and the
theory of energy transformations in general, on a purely macroscopic basis without any
reference to atomic theories. Their attacks on the kinetic theory were particularly strong
during the period when Boltzmann was writing this book, and this circumstance helps to
explain its polemical flavor. There are many passages justifying various assumptions,
defending the theory against possible criticisms, and attacking rival theories. Boltzmann
knew he could not get away with vague ‘“heuristic”’ arguments or appeals to authority, since
many of his readers would not be convinced. (It might well be argued that a text written in
such a style is really more effective—provided that it contains no serious errors—than a
modern text expounding a noncontroversial theory which the student is not encouraged to
doubt.)

According to Lenin* the arguments of Mach and other “idealistic” (in the philosophical
sense) scientists subverted many Marxist philosophers, who accepted them as the latest
results of science. Lenin quotes with approval the views of Boltzmann, who, while “afraid
to call himself a materialist” nevertheless had a theory of knowledge which was “essentially
materialistic.” Consequently Boltzmann now has the dubious distinction of being a hero of
scientific materialism in the eyes of the Marxists.*

As the leader of the atomist school in the 1890’s, Boltzmann frequently had to engage in
debate with the Energetists. One such debate took place at the meeting of the
Naturforschergesellschaft at Liibeck in 1895. As Arnold Sommerfeld recalls it, T

The champion for Energetics was Helm; behind him stood Ostwald, and behind both of them the
philosophy of Ernst Mach (who was not present in person). The opponent was Boltzmann, seconded by
Felix Klein. The battle between Boltzmann and Ostwald was much like the duel of a bull and a supple
bullfighter. However, this time the bull defeated the toreador in spite of all his agility. The arguments of
Boltzmann struck through. We young mathematicians were all on Boltzmann’s side; it was at once
obvious to us that it was impossible that from a single energy equation could follow the equations of
motion of even one mass point, to say nothing of those for a system of an arbitrary number of degrees of
freedom. On Ostwald’s behalf, however, I must mention his remark on Boltzmann in his book Grosse
Mdnner (Leipzig, 1909, p. 405): there he calls Boltzmann “the man who excelled all of us in acumen and
clarity in his science.”

What did Boltzmann really think about the existence of atoms? One commentatori has
asserted that “even the most convinced adherents of this [kinetic] theory, such as
Boltzmann, ascribe to it merely the value of a mechanical model which imitates certain
properties of gases and can afford the experimenter certain useful indications, and are very
far from believing bodies to be in reality composed of small particles . . . ” Indeed, a
curious feature of Boltzmann’s attitude toward the molecular model of gases is his attempt
to justify the use of asymptotic limits in which the number of molecules in a volume
becomes infinite, while their size becomes infinitesimal. He is perfectly aware of the fact
that one can deduce finite numerical values for these molecular parameters from experiment
by using gas theory (Part I, §12; Part II, §22); and he refers to Maxwell’s theory of rarefied
gas phenomena (radiometer effect, etc.) as a triumph of molecular theories over the
phenomenological approach (Part I, §1). Yet his desire to obtain a more intuitively clear
(anschaulich) presentation of his theory impels him to assume that each infinitesimal
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volume element in the gas contains a very large number of molecules (Part I, §6) and, in
attempting to justify this assumption, he goes so far as to say that it is futile to expect to
observe fluctuations from the asymptotic laws resulting from the fact that there may be only
a finite number of atoms in a small space (Part II, §38). This statement was of course
contradicted only a few years later by experiments on Brownian motion and Millikan’s oil-
drop experiment.

We cannot give here a comprehensive analysis of Boltzmann’s views on the philosophy
of science, but must refer to his extensive writings and the studies by Broda and Dugas
cited in the Bibliography. The following quotation is chosen only because it was originally
published in English (in a letter to Nature, February 28, 1895) so that there is no danger of
distorting Boltzmann’s meaning by translation (assuming of course that he is expressing his
own views accurately in English) :

I propose to answer two questions:—

(1) Is the Theory of Gases a true physical theory as valuable as any other physical theory?

(2) What can we demand from any physical theory?

(The first question I answer in the affirmative, but the second belongs not so much to ordinary
physics (let us call it orthophysics) as to what we call in Germany metaphysics. For a long time the
celebrated theory of Boscovich was the ideal of physicists. According to his theory, bodies as well as the
ether are aggregates of material points, acting together with forces, which are simple functions of their
distances. If this theory were to hold good for all phenomena, we should be still a long way off what
Faust’s famulus hoped to attain, viz., to know everything. But the difficulty of enumerating all the
material points of the universe, and of determining the law of mutual force for each pair, would be only
a quantitative one; nature would be a difficult problem, but not a mystery for the human mind.

When Lord Salisbury says that nature is a mystery [Presidential Address to the British Association
meeting at Oxford, 1894], he means, it seems to me, that this simple conception of Boscovich is refuted
almost in every branch of science, the Theory of Gases not excepted. The assumption that the gas-
molecules are aggregates of material points, in the sense of Boscovich, does not agree with the facts. But
what else are they? And what is the ether through which they move? Let us again hear Lord Salisbury.
He says:

“What the atom of each element is, whether it is a movement, or a thing, or a vortex, or a point
having inertia, all these questions are surrounded by profound darkness. I dare not use any less pedantic
word than entity to designate the ether, for it would be a great exaggeration of our knowledge if I were
to speak of it as a body, or even as a substance.”

If this be so—and hardly any physicist will contradict this—then neither the Theory of Gases nor any
other physical theory can be quite a congruent account of facts, and I cannot hope with Mr. Burbury, that
Mr. Bryan will be able to deduce all the phenomena of spectroscopy from the electromagnetic theory of
light. Certainly, therefore, Hertz is right when he says: “The rigour of science requires, that we
distinguish well the undraped figure of nature itself from the gay-coloured vesture with which we clothe
it at our pleasure.” [Untersuchungen iiber die Ausbreitung der elektrischen Kraft, p. 31. Leipzig, Barth,
1892], But I think the predilection for nudity would be carried too far if we were to forego every
hypothesis. Only we must not demand too much from hypotheses.

It is curious to see that in Germany, where till lately the theory of action at a distance was much more
cultivated than in Newton’s native land itself, where Maxwell’s theory of electricity was not accepted,
because it does not start from quite a precise hypothesis, at present every special theory is old-fashioned,
while in England interest in the Theory of Gases is still active; vide, among others, the excellent papers
of Mr. Tait, of whose ingenious results I cannot speak too highly, though I have been forced to oppose
them in certain points.

Every hypothesis must derive indubitable results from mechanically well-defined assumptions by
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mathematically correct methods. If the results agree with a large series of facts, we must be content, even
if the true nature of facts is not revealed in every respect. No one hypothesis has hitherto attained this
last end, the Theory of Gases not excepted. But this theory agrees in so many respects with the facts, that
we can hardly doubt that in gases certain entities, the number and size of which can roughly be
determined, fly about pell-mell. Can it be seriously expected that they will behave exactly as aggregates
of Newtonian centres of force, or as the rigid bodies of our Mechanics? And how awkward is the human
mind in divining the nature of things, when forsaken by the analogy of what we see and touch directly?

Nevertheless, Boltzmann’s pessimism about the future of the kinetic theory, indicated in his
Foreword to Part II, deepened in the following years, and led to fits of severe depression,
culminating in his suicide in 1906. This suicide must be ranked as one of the great tragedies
in the history of science, made all the more ironic by the fact that the scientific world made
a complete turnabout in the next few years and accepted the existence of atoms, following
Perrin’s experiments on Brownian motion and an accumulation of other evidence. By 1909
even Ostwald himself had been converted, as he admits in the Foreword to the fourth
edition of his textbook on chemistry. Atomism had triumphed, though only at the cost of
denying to atoms almost all the properties with which they had originally been endowed.

* In his endeavors to satisfy the demands of all his readers, Boltzmann has not forgotten even the
faculty adviser of graduate students in physics. At the end of Part II, §86, he mentions a class of
problems that would be suitable for doctoral dissertations!

T M. Kac, Probability and Related Topics in Physical Sciences (New York: Interscience, 1959), p.
261. Reprinted by permission.

* H. Reichenbach, The Direction of Time (Berkeley and Los Angeles: University of California Press,
1956), p. 128.

1 References for this and other works cited here will be found in the Bibliography at the end of this
volume.

* See the papers by S. G. Brush and E. Mendoza listed in the Bibliography; also D. ter Haar,
Elements of Statistical Mechanics (New York: Rinehart, 1954), Appendix I (H-theorem and ergodic
theorem), and Rev. Mod. Phys. 27, 289 (1955) (recent developments). A series of selected annotated
reprints of the most important original papers on the kinetic theory is to be published by Pergamon
Press.

* Boltzmann, Sitzungsber. math.-phys. Classe K. Bay. Akad. Wiss., Miinchen [“Mun. Ber.”’] 22, 329
(1892); the statement referred to is on p. 157 of the English translation in Phil. Mag. [5] 35 (1893).

* Materialism and Empirio-Criticism I1zdanie “Zveno,” Moscow, 1909.

* See, e.g., the article by Bogolyubov and Sanochkin, Usp. Fiz. Nauk 61, 7 (1957), and Davydov’s
introduction to the Russian translation of Gas Theory.

T A. Sommerfeld, Wiener Chem. Zeitung 47, 25 (1944); see also G. Jaffé, J. Chem. Educ. 29, 230
(1952).

1 A. Aliotta, La Reazione idealistica contro la scienza (Palermo : Casa Editrice “Optima,” 1912);
quoted from p. 375 of the English translation by Agnes McCaskill (London, 1914).
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PART I

Theory of gases with monatomic molecules, whose dimensions
are negligible compared to the mean free path.

NOTE ON LITERATURE CITATIONS

All the numbered footnotes correspond to Boltzmann’s notes in the original text, but the
numbers start with 1 in each section rather than each page, and the form of citation of some
journals has been changed for the sake of consistency with modern style. Footnotes
indicated by asterisks, daggers, etc., have been added by the translator. More complete
information including titles of articles cited will be found in the Bibliography at the end of
the book.

NOTE ON GOTHIC LETTERS

To forestall possible difficulties in recognition, here are the alphabetical equivalents:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
YPCODEFOHIIRIMNOPLRGTIUBWX 93

abedefghijklmnopqrstuvwxyz
abcbefoghijflmnopgrédtuvivyry;
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FOREWORD TO PART 1

“Alles Vergingliche
Ist nur ein Gleichniss!”*

I have often before come close to writing a textbook on gas theory. I remember especially
the enthusiastic request of Professor Wroblewski at the Vienna World’s Fair in 1873. When
I showed little inclination to write a textbook, since I did not know how soon my eyes
would fail me, he answered dryly: “All the more reason to hurry up!” At present, when I
no longer have this reason, the time seems less appropriate for such a textbook than it was
then. For, first, gas theory has gone out of fashion in Germany, as it were; second, the
second edition of O. E. Meyer’s well-known text has appeared, and Kirchhoff has devoted
a longer section of his lectures on the theory of heat to gas theory.i Yet Meyer’s book,
though acknowledged to be excellent for chemists and students of physical chemistry, has a
completely different purpose. Kirchhoff’s work shows the touch of a master in the selection
and presentation of its topics, but it is only a posthumously published set of lecture notes on
the theory of heat, which treats gas theory as an appendix, not a comprehensive textbook.
Indeed, I freely confess that the interest, on the one hand, which Kirchhoff showed in gas
theory, and on the other hand the many gaps in his presentation because of its brevity, have
encouraged me to publish the present work, which likewise originated from lectures at the
universities of Munich and Vienna.

In this book I have tried above all to make clearly comprehensible the path-breaking
works of Clausius and Maxwell. The reader may not think badly of me for finding also a
place for my own contributions. These were cited respectfully in Kirchhoff’s lectures and
in Poincaré’s Thermodynamique* at the end, but were not utilized where they would have
been relevant. From this I concluded that a brief presentation, as easily understood as
possible, of some of the principal results of my efforts might not be superfluous. Of great
influence on the content and presentation was what I have learned at the unforgettable
meeting of the British Association in Oxford and the subsequent letters of numerous
English scientists, some private and some published in Nature.7

I intend to follow Part I by a second part, where I will treat the van der Waals theory,
gases with polyatomic molecules, and dissociation. An explicit proof of Equation (110a)—
which is only indicated briefly in §16, in order to avoid repetition—will also be included.

Unfortunately it was often impossible to avoid the use of long formulas to express
complicated trains of thought, and I can well imagine that to many who do not read over
the whole work, the results will perhaps not seem to justify the effort expended. Aside from
many results of pure mathematics which, though likewise apparently fruitless at first, later
become useful in practical science as soon as our mental horizon has been broadened, even
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the complicated formulas of Maxwell’s theory of electromagnetism were often considered
useless before Hertz’s experiments. I hope this will not also be the general opinion
concerning gas theory!

Vienna, September, 1895

Ludwig Boltzmann

INTRODUCTION

§1. Mechanical analogy for the behavior of a gas.

Clausius has made a sharp distinction between the general theory of heat, based
essentially on the two fundamental principles of thermodynamics, and the special theory of
heat, which starts out by making a definite assumption—that heat is molecular motion—
and then attempts to construct a more precise description of the nature of this motion.

The general theory of heat also requires hypotheses which go beyond the bare facts of
nature. Nevertheless, it is obviously less dependent on special assumptions than the special
theory, and it is desirable and necessary to be able to separate its exposition from that of the
special theory, and to show that it is independent of the subjective assumptions of the latter.
Clausius has already done this very clearly, and indeed has based the division of his book*
into two parts on just this principle, and it would be useless to repeat his procedure.

Recently, the mutual relations of these two branches of the theory of heat have changed
somewhat. Through the exploitation of some very interesting analogies and differences,
which the properties of energy exhibit in various phenomena of physics, there has arisen
the so-called Energetics, which is unfavorable to the view that heat is molecular motion.
This view is in fact unnecessary for the general theory of heat and, as is well known, was
not held by Robert Mayer. The further development of Energetics is certainly very
important for science ; however, up to now its concepts are still rather unclear, and its
theorems not very precisely expressed, so that it cannot replace the older theory of heat in
dealing with new special cases where the results are not already known.

Likewise in the theory of electricity, the older mechanical explanations of phenomena
by action at a distance, customarily employed especially in Germany, have suffered a
shipwreck. Indeed, Maxwell speaks with the greatest respect of Wilhelm Weber’s theory,
which by determining the conversion factor of electrostatic and electromagnetic units and
by discovering the relation of that factor to the velocity of light has laid the first stone in the
structure of the electromagnetic theory of light; yet one accedes to the contention that
Weber’s mechanical hypothesis about the action of electrical force is harmful to the
progress of science.

In England, views on the nature of heat and on atomistics have remained relatively
unchanged. But on the continent, where earlier the assumption of central forces, useful in
astronomy, had been generalized to an epistemological demand, and for this reason
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Maxwell’s electrical theory did not receive much notice for a decade and a half (only this
generalization was obnoxious), the provisional character of all hypotheses has now been
generalized, and it has been concluded that the assumption that heat is motion of the
smallest particles of matter will eventually be proved false and discarded.

It must however be remembered that any similarity between the kinetic theory and the
doctrine of central forces is purely coincidental. Gas theory has in fact a particular kinship
with Maxwell’s theory of electricity; the visible motion of a gas, viscosity, and heat, are
conceived as phenomena that are essentially different in stationary or almost stationary
states, while in certain transitional cases (very rapid sound waves with evolution of heat ;
viscosity or heat conduction in very dilute gases') a sharp distinction is no longer possible
between visible and thermal motion (cf. §24). Likewise in Maxwell’s theory of electricity,
in borderline cases the distinction between electrostatic and electrodynamic forces, etc., can
no longer be maintained. It is just in this transition region that Maxwell’s electrical theory
has yielded new facts; likewise the gas theory has led to completely new laws in these
transition regions, which appear to reduce to the usual hydrodynamic equations, corrected
for viscosity and heat conduction, as purely approximate formulae (cf. §23). The
completely new laws were indicated for the first time in Maxwell’s 16-year-old paper, “On
stresses in rarefied gases.”* The phenomena which the theories based on older
hydrodynamic experience can never describe are those connected with radiometer action.
Researches under many different conditions, and quantitative observations, have definitely
proved that the stimulus and explanation for this previously unknown realm of
experimental investigation could only have come from the theory of gases; likewise, the
tremendous fertility of Maxwell’s theory of electricity for experimental investigations for
more than twenty years has seldom been pointed out.

Although in the following exposition any qualitative difference between heat and
mechanical energy will be excluded, in the treatment of collisions of molecules the old
distinction between potential and kinetic energy will be retained. This does not basically
affect the nature of the subject. The assumptions about the interaction of molecules during a
collision have a provisory character, and will certainly be replaced by others. I have also
studied a gas theory in which, instead of forces acting during collisions, one merely has
conditional equations in the sense of the posthumous mechanics of Hertz,* which are more
general than those of elastic collisions; I have abandoned this theory, however, since I only
had to make more new arbitrary assumptions.

Experience teaches that one will be led to new discoveries almost exclusively by means
of special mechanical models. Maxwell himself recognized the defect of Weber’s electrical
theory at first glance; on the other hand, he pursued zealously the theory of gases and the
method of mechanical analogies, which goes beyond that which he calls the method of
purely mathematical formulae.

As long as a clearer and better representation is not available, we shall still need to go
beyond the general theory of heat, and without impugning its importance, cultivate the old
hypotheses of the special theory of heat. Indeed, since the history of science shows how
often epistemological generalizations have turned out to be false, may it not turn out that the
present “modern” distaste for special representations, as well as the distinction between
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qualitatively different forms of energy, will have been a retrogression? Who sees the
future? Let us have free scope for all directions of research; away with all dogmatism,
either atomistic or antiatomistic! In describing the theory of gases as a mechanical analogy,
we have already indicated, by the choice of this word, how far removed we are from that
viewpoint which would see in visible matter the true properties of the smallest particles of
the body.

We shall first take the modern viewpoint of pure description, and accept the known
differential equations for the internal motions of solid and fluid bodies. From these it
follows in many cases, for example collisions of two solid bodies, motion of fluids in
closed vessels, etc., that as soon as the form of the body deviates the least bit from a simple
geometrical figure, waves must arise, which cross each other ever more randomly, so that
the kinetic energy of the original visible motion must finally be dissolved into invisible
wave motion. This mathematical consequence of the equations describing the phenomena
leads (to a certain extent by itself) to the hypothesis that all vibrations of the smallest
particles, into which the ever diminishing waves must finally be transformed, must be
identical with the heat that we observe to be produced, and that heat generally is a motion
in small—to us, invisible— regions.

Whence comes the ancient view, that the body does not fill space continuously in the
mathematical sense, but rather it consists of discrete molecules, unobservable because of
their small size. For this view there are philosophical reasons. An actual continuum must
consist of an infinite number of parts; but an infinite number is undefinable. Furthermore, in
assuming a continuum one must take the partial differential equations for the properties
themselves as initially given. However, it is desirable to distinguish the partial differential
equations, which can be subjected to empirical tests, from their mechanical foundations (as
Hertz emphasized in particular for the theory of electricity). Thus the mechanical
foundations of the partial differential equations, when based on the coming and going of
smaller particles, with restricted average values, gain greatly in plausibility; and up to now
no other mechanical explanation of natural phenomena except atomism has been
successful.

A real discontinuity of bodies is moreover established by numerous, and moreover
quantitatively agreeing, facts. Atomism is especially indispensable for the clarification of
the facts of chemistry and crystallography. The mechanical analogy between the facts of
any science and the symmetry relations of discrete particles pertains to those most essential
features which will outlast all our changing ideas about them, even though the latter may
themselves be regarded as established facts. Thus already today the hypothesis that the stars
are huge bodies millions of miles away is similarly viewed only as a mechanical analogy
for the representation of the action of the sun and the faint visual perceptions arising from
the other heavenly bodies, which could also be criticized on the grounds that it replaces the
world of our sense perceptions by a world of imaginary objects, and that anyone could just
as well replace this imaginary world by another one without changing the observable facts.

I hope to prove in the following that the mechanical analogy between the facts on which
the second law of thermodynamics is based, and the statistical laws of motion of gas
molecules, is also more than a mere superficial resemblance.

SPuh.e Mathematical Phydics



The question of the utility of atomistic representations is of course completely unaffected
by the fact, emphasized by Kirchhoff,* that our theories have the same relation to nature as
signs to significates, for example as letters to sounds, or notes to tones. It is likewise
unaffected by the question of whether it is not more useful to call theories simply
descriptions, in order to remind ourselves of their relation to nature. The question is really
whether bare differential equations or atomistic ideas will eventually be established as
complete descriptions of phenomena.

Once one concedes that the appearance of a continuum is more clearly understood by
assuming the presence of a large number of adjacent discrete particles, assumed to obey the
laws of mechanics, then he is led to the further assumption that heat is a permanent motion
of molecules. Then these must be held in their relative positions by forces, whose origin
one can imagine if he wishes. But all forces that act on the visible body but not equally on
all the molecules must produce motion of the molecules relative to each other, and because
of the indestructibility of kinetic energy these motions cannot stop but must continue
indefinitely.

In fact, experience teaches that as soon as the force acts equally on all parts of a body—
as for example in so-called free fall—all the kinetic energy becomes visible. In all other
cases, we have a loss of visible kinetic energy, and hence creation of heat. The view offers
itself that there is a resulting motion of molecules among themselves, which we cannot see
because we do not see individual molecules, but which however is transmitted to our
nerves by contact, and thus creates the sensation of heat. It always moves from bodies
whose molecules move rapidly to those whose molecules move more slowly, and because
of the indestructibility of kinetic energy it behaves like a substance, as long as it is not
transformed into visible kinetic energy or work.

We do not know the nature of the force that holds the molecules of a solid body in their
relative positions, whether it is action at a distance or is transmitted through a medium, and
we do not know how it is affected by thermal motion. Since it resists compression as much
as it resists dilatation, we can obviously get a rather rough picture by assuming that in a
solid body each molecule has a rest position. If it approaches a neighboring molecule it is
repelled by it, but if it moves farther away there is an attraction. Consequently, thermal
motion first sets a molecule into pendulum-like oscillations in straight or elliptical paths
around its rest position A (in the symbolic Fig. 1, the centers of gravity of the molecules are
indicated). If it moves to A’, the neighboring molecules B and C repel it, while D and E
attract it and hence bring it back to its original rest position. If each molecule vibrates
around a fixed rest position, the body will have a fixed form; it is in the solid state of
aggregation. The only consequence of the thermal motion is that the rest positions of the
molecules will be somewhat pushed apart, and the body will expand somewhat. However,
when the thermal motion becomes more rapid, one gets to the point where a molecule can
squeeze between its two neighbors and move from A to A" (Fig. 1). It will no longer then
be pulled back to its old rest position, but it can instead remain where it is. When this
happens to many molecules, they will crawl among each other like earthworms, and the
body is molten. Although one may find this description rather crude and childish, it may be
modified later and the apparent repulsive force may turn out to be a direct consequence of
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the motion. In any case, one will allow that when the motions of the molecules increase
beyond a definite limit, individual molecules on the surface of the body can be torn off and
must fly out freely into space; the body evaporates. If it is in an enclosed vessel, then this
will be filled with freely moving molecules, and these can occasionally penetrate into the
body again; as soon as the number of recondensing molecules is, on the average, equal to
the number of evaporating ones, one says that the vessel is saturated with the vapor of the
body in question.

-
D B
. . .
A A A
E «C
[ ]
Fic. 1

A sufficiently large enclosed space, in which only such freely moving molecules are
found, provides a picture of a gas. If no external forces act on the molecules, these move
most of the time like bullets shot from guns in straight lines with constant velocity. Only
when a molecule passes very near to another one, or to the wall of the vessel, does it
deviate from its rectilinear path. The pressure of the gas is interpreted as the action of these
molecules against the wall of the container.

§2. Calculation of the pressure of a gas.

We shall now undertake a more detailed consideration of such a gas. Since we assume
that the molecules obey the general laws of mechanics, then in collisions of the molecules
with each other and with the wall, the principle of conservation of kinetic energy, and of
motion of the center of gravity, must be satisfied. We can make as varying pictures of the
internal properties of the molecules as we like; as long as these two principles are satisfied,
we shall obtain a system which shows a definite mechanical analogy with the actual gas.
The simplest such picture is one in which the molecules are completely elastic, negligibly
deformable spheres, and the wall of the container is a completely smooth and elastic
surface. However, when it is convenient we can assume a different law of force. Such a
law, provided it is in agreement with the general mechanical principles, will be no more
and no less justified than the original assumption of elastic spheres.

We imagine a container of volume Q of any arbitrary shape, filled with a gas, against
whose walls the gas molecules are reflected exactly like completely elastic spheres. Let a
part of the wall of the container, AB, have surface area ¢p. We place perpendicular to i,
running from inside to outside, the positive axis of abscissas. The pressure on AB will
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clearly not be changed if we imagine behind this surface element a right cylinder on the
base AB, in which the surface element AB is like a piston which can be displaced parallel
to itself. This piston will then be pushed into the cylinder by the molecular impacts. If a
force P acts from the outside in the negative direction, then its intensity can be chosen so
that the molecular impacts are kept in equilibrium, and the piston makes no visible motion
in either direction.

During any instant of time dt, there may be several molecules colliding with the piston
AB ; the first exerts a force gy, the second a force ¢,, etc., in the positive abscissa direction,
on the piston. Denoting by M the mass of the piston, and by U the velocity in the positive
direction, then one has for the time element dt the equation

dU
M'J="P+Q1+fh+'”

If one multiplies by df and integrates over an arbitrary time ¢, then :

i
MU, -Uy) = - Pt + Ef gdt.
0

If P is to be equal to the pressure of the gas, then the piston must not show any noticeable
motion, aside from invisible fluctuations. In the above formula, U is the value of its
velocity in the abscissa direction at the initial time, and U is its value after an interval of
time ¢. Both quantities will be very small; indeed, one can easily choose the time ¢ such that
U, =U,, since the piston must periodically assume the same velocity during its various
small fluctuations. In any case, U; — U, cannot continually increase with increasing time,
and therefore with increasing time the quotient (U; — U)/t must approach the limit zero.
Whence follows:

1 i
(1) P=“{anqdf»

The pressure is therefore the mean value of the sum of all the small pressures that the
individual colliding molecules exert on the piston at different times. We shall now calculate
[gdt for any one collision which the piston experiences during the time ¢ with a molecule.
Let the mass of the molecule be m, and let the component of its velocity in the abscissa
direction be u. The collision begins at time #; and ends at time ;+7; before time #; and after
time #{+7, the molecule exerts essentially no force on the piston. Then
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{ t1+r
f qdt = f qdt
0 I

During the time of the collision, however, the force which the molecule exerts on the piston
is equal and opposite to the force which the piston exerts on the molecule:

dii
H=_q.

dt

We denote by £ the velocity component of the colliding molecule before the collision in
the direction of the positive abscissa axis, and by —£ the same component after the collision,
and we obtain :

ti+r
qdt = 2mé,

t

Since the same is true for all other colliding molecules, it follows from Equation (1) that:

2
(2) P = ? Zm‘c‘:

where the sum is to be extended over all molecules that strike the piston between the
instants 0 and ¢. Only those which are in collision with the piston at the instants 0 and ¢ are
thereby omitted, which is permissible when the total time interval 7 is very large compared
to the duration of an individual collision.

We shall see (§3) that even when only a single gas is present in the container, all the
molecules can be no means have the same velocity. In order to preserve the greatest
generality, we assume that in the container there are different kinds of molecules, which
however are all reflected like elastic spheres from the walls. 71 molecules will have mass
my and velocity ¢; with components £, 71, ; in the codrdinate directions. They should be
uniformly distributed, on the average, throughout the interior volume Q of the container, so
that there are n in unit volume. Further, there are n,Q) molecules distributed similarly,
having another velocity ¢, with components &,, 75, {, and perhaps also a different mass
m,. The quantities n3, c3, &3, 13, (3, m3, etc., up ton;, ¢;, &, n;, (;, m; have similar
meanings. The state of the gas in the container should remain stationary during the time ¢,
so that when during a time T some of the n; €2 molecules cease to have velocity components
&1, 1, (; as aresult of collisions with other molecules or with the wall, an equal number of
molecules on the average will acquire the same velocity components during the same time.

We must first calculate how many of our n;€2 molecules strike the piston in the time
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interval ¢, on the average. During a short time dt, all 7€ molecules travel the distance ¢ d?
in a direction such that their projections on the codrdinate axes are £,dt, ndt, and (;dt. If
&1 1s negative, then the molecule considered cannot collide with the piston. If it is positive,
we construct in the container an oblique cylinder, whose base is the piston AB, and whose
side is equal to and in the same direction as the path c;dr. Then those, and only those, of
our n1£2 molecules which at the beginning of the interval dt are in this cylinder—whose
number we shall denote by dv—will collide with the piston during time df. The n{Q
molecules are on the average uniformly distributed in the entire container, and this uniform
distribution extends even up to the wall, since molecules reflected from the wall move
backwards as if it did not exist and there was instead another gas with the same properties
beyond it. Then n{€ is to dv as Q is to the volume of the oblique cylinder;2 the latter,
however, is equal to @&, dt, whence it follows that :

(3) dy = n1<pfldt.

Since now the state in the container remains stationary, during any arbitrary time ¢, ny @&t
of ourn;Q molecules collide with the piston. They all have massm; and velocity
component £ in the abscissa direction before the collision, and contribute to the sum Y.mé&
in Equation (2) the term:

2
Sam lmlflz

and since this is true for all molecules, we obtain

P
— =2 ) mmi(+8)?,
¢

where the sum is to be extended over all molecules in the container whose velocity
components in the abscissa direction are positive. P/¢g = p is the pressure corresponding to
unit surface. The formula will also be valid when ¢ is infinitesimal, so that the container
wall need not be flat anywhere. Under the assumption (whose validity will be shown later,
in §19) that in a stationary gas there is no preferred direction in space for the direction of
motion of a molecule, there must be equally many molecules of each kind in the positive as

in the negative abscissa direction, so that Zm hnhEhE summed over all molecules with

negative &, is as large as the sum over molecules with positive &, and thus one gets

hs=i

@ p= Y nmidi,

h=1

where the summation is now over all molecules in the container, and therefore over all
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valuesof Afromh=1to h=1i.
When any quantity g has the value g; for n; molecules, the value g, for n, molecules,
etc., and the value g; for n; molecules, then we shall denote the expression:

he=i

E Nagn
he=1

n

by g and call it the mean value of g. Note that

he=i

n=2nh

h=1

is the total number of all the molecules. Then we can write

(5) p = nmg

If all molecules have the same mass, then

p = nmé§,
Since the gas has the same properties in all directions, we have 52 = = 4‘2 Since
furthermore, for each molecule, 2 = §2+172+{2, then also E — E!.I_.rl.ﬂ -(-2 and
E_z - %E Hence we obtain

(6) p = dnme?;

where nm is the total mass contained in unit volume of the gas, 1.e., the density p of the gas;
one has therefore

2 Yol
(7) p = 3pC
Since p and p can be determined experimentally, one can calculate E-i One finds that at

0°C, 4/ ¢2 1s 461 m/sec for oxygen; for nitrogen it is 492 m/sec; for hydrogen it is 1,844

m/sec. It is this velocity whose square is equal to the mean square velocity of the molecule;
it is also the velocity with which all molecules must move in order to produce in the gas the
prevailing pressure, when all molecules have equal velocities and move equally often in all
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directions in space, or when one third of the molecules move back and forth in a direction
perpendicular to the surface considered, the other two thirds moving in parallel directions.
On the other hand, 4 /2 is of the same order of magnitude as the mean velocity of a

molecule, but differs from it by a numerical factor (cf. §7).

When other gases are present in the container, let n’, n”, etc. be the number of molecules
in unit volume, m', m", etc. the masses of each molecule for the different gases, and p', p”,
etc. their partial densities—i.e., the density which each gas would have if it were alone in
the container. It is then evident from Equations (4) and (5) that

8 p= %(n,m,c—,i + n'me" - - ) = %(prgﬁ + " )

is the total pressure of the gas mixture; it is also equal to the sum of the partial pressures,
i.e., the pressure which each gas would exert if it were alone in the container.

The force that two molecules exert on each other during a collision can be completely
arbitrary, provided only that the sphere of action is small compared to the mean free path.
On the other hand, it will be assumed that the molecules are reflected at the walls like
elastic spheres. We shall make ourselves independent of the latter restrictive assumption in
§20. A second general derivation of the equations of this section from the virial theorem
will be given in Part II, §50.

* Goethe, Faust, Part 2, Act V, final “Chorus Mysticus.” At least seven different English translations
of this couplet have been published; roughly, it means that all transitory (i.e., earthly) things are only
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Boltzmann’s philosophy of science (see Translator’s Introduction).
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CHAPTER1

The molecules are elastic spheres. External forces and visible mass
motion are absent.

§3. Maxwell’s proof of the velocity distribution law; frequency of collisions.

We shall suppose for a moment that in the container there is a single gas composed of
completely identical molecules. The molecules will also from now on—unless we specify
otherwise—be assumed to behave like completely elastic spheres when they collide with
each other. Even if all the molecules initially had the same velocity, there would soon occur
collisions in which the velocity of one colliding molecule is nearly in the direction of the
line of centers, but that of the other is nearly perpendicular to it. The first molecule would
thereby end up with nearly zero velocity, while the velocity of the second would become
\/ﬁ times as large. In the course of further collisions it would soon happen, if the number

of molecules were large enough, that all possible velocities would occur, from zero up to a
velocity much larger than the original common velocity of all the molecules; it is then a
question of calculating the law of distribution of velocities among the molecules in the final
state thus reached, or, as one says more briefly, to find the velocity distribution law. In
order to find it, we shall consider a more general case. We assume that we have two kinds
of molecules in the container. Each molecule of the first kind has mass m, and each of the
second has mass m. The velocity distribution which prevails at any arbitrary time ¢ will be
represented by drawing as many straight lines (starting from the origin of codrdinates) as
there are m-molecules in unit volume. Each line will be the same in length and direction as
the velocity of the corresponding molecule. Its endpoint will be called the velocity point of
the corresponding molecule. Now at time ¢ let

) f(& n, ¢, )dédnds = fdo

be the number of m-molecules whose velocity components in the three codrdinate
directions lie between the limits

(10) §and £ + df, nand 4 + dn, { and { + df

and for which the velocity points thus lie in the parallelepiped having at one corner the
coordinates &, 1, ¢ and having edges of length dé&, dn, d( parallel to the codrdinate axes. We
shall always call this the parallelepiped dw. We shall also use the abbreviations dw for the
product dédnd(, and f for €, n, ¢, 1). If dw were a volume element of any other shape,
though still infinitesimal, the number of m-molecules whose velocity points lie inside dw
would still be equal to
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(11) f(E: M ) t)dw,

as one can see by dividing the volume element dw into even smaller parallelepipeds. If the
function f'is known for one value of ¢, then the velocity distribution for the m-molecules is
determined at time #. Similarly we can represent the velocity of each m-molecule by a
velocity point, and denote by

(12) F(t, m, by t)dEdndy = Fidw,

the number of molecules whose velocity components lie between any other limits

(13) & and & + dty, mi and ny + dyy, £and ¢+ dfy

and for which therefore the velocity points lie in a similar parallelepiped dw;. Likewise we
write dw; for d€ydnd(; and Fy for F(&1, iy, (1, t). Moreover, we shall completely exclude
any external forces, and assume that the walls are completely smooth and elastic. Then the
molecules reflected from the wall will move as if they came from a gas which is the mirror
image of our gas, and which is thus completely equivalent to it; the container wall is
thought of as a reflecting surface. According to these assumptions, the same conditions will
prevail everywhere inside the container, and if the number of molecules in a volume
element whose velocity components lie between the limits (10) is initially the same
everywhere in the gas, then this will also be true for all subsequent times. If we assume this,
then it follows that the number of m-molecules inside any volume ® that satisfy the
conditions (10) is proportional to the volume ¢ and is therefore equal to

(14) 8fdo;
likewise the number of m-molecules in the volume ¢ that satisfy the conditions (13) is:

(14&) @Fﬂiwl.

From these assumptions it follows that the molecules that leave any space as a result of their
progressive motion will on the average be replaced by an equal number of molecules from
the neighboring space or by reflection at the walls of the container, so that the velocity
distribution is changed only by collisions, and not by the progressive motion of the
molecules. We shall make ourselves independent of these restrictive conditions (made now
to simplify the calculation) in §§15-18, where we shall take account of the effect of gravity
and other external forces.

We next consider only the collisions of an m-molecule with an m-molecule and indeed
we shall single out, from all those collisions that can occur during the interval dt, only those
for which the following three conditions are satisfied:

1. The velocity components of the m-molecule lie between the limits (10) before the
collision, hence its velocity point lies in the parallelepiped dw.

Pune WMathematical Phyisics



2. The velocity components of the m-molecule lie between the limits (13) before the
collision, hence its velocity point lies in the parallelepiped dw;. All m-molecules for which
the first condition is fulfilled will be called “m-molecules of the specified kind,” and
similarly we speak of “mj-molecules of the specified kind.”

3. We construct a sphere of unit radius, whose center is at the origin of codrdinates, and
on it a surface element dA. The line of centers of the colliding molecules drawn from m to
m; must, at the moment of collision, be parallel to a line drawn from the origin to some
point of the surface element d4. The aggregate of these lines constitutes the cone dA.

(15) Direction mm; in the cone d\.

All collisions that take place in such a way that these three conditions are fulfilled will
be called “collisions of the specified kind” and we have the problem of determining the
number dv of collisions of the specified kind that take place during a time interval df in unit
volume. We shall represent these collisions in Figure 2. Let O be the origin of codrdinates,
C and C; the velocity points of the two molecules before the collision, so that the lines OC
and OC; represent these velocities in magnitude and direction, before the collision. The
point C must lie inside the parallelepiped dw, and the point C; inside the parallelepiped
dw;. (The two parallelepipeds are not shown in the figure.) Let OK be a line of unit length
which has the same direction as the line of centers of the two molecules at the instant of the
collision, drawn from m to m;. The point K must therefore lie inside the surface element
dA, which is also not shown in the figure. The line C|C = g represents in magnitude and
direction the relative velocity of the m-molecule with respect to the m-molecule before the
collision, since its projections on the codrdinate axes are equal to £ — &;, 1 — 5y, and ¢ - (j,
respectively. The frequency of collisions obviously depends only on the relative velocity.
Hence if we wish to find the number of collisions of the specified kind, we can imagine
that the specified m-molecule is at rest, while the m-molecule moves with velocity g. We
imagine further that a sphere of radius o (the sphere o) is rigidly attached to each of the
latter molecules, so that the center of the sphere always coincides with the center of the
molecule, o should be equal to the sum of the radii of the two molecules. Each time that the
surface of such a sphere touches the center of an m-molecule, a collision takes place. We
now draw from the center of each sphere o a cone, similar and similarly situated to the
cone di. A surface element of area 02dA is thereby cut out from the surface of each of
these spheres. Since all the spheres are rigidly attached to the corresponding molecules, all
these surface elements move a distance gdt relative to the specified m-molecule. A
collision of the specified kind occurs whenever one of these surface elements touches the

center of a specified m{-molecule, which is of course possible only if the angle  between
the directions of the lines C|C and OK is acute. Each of these surface elements traverses by
its relative motion toward the m-molecule an oblique cylinder of base o?d4 and height g
cos Jdt. Since there are fdwm molecules of the specified kind in unit volume, all the
oblique cylinders traversed in this manner by all the surface elements have total volume
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')
C, Gy

Fi1G. 2.

(16) é = fdwo?q cos ddMdt.

All centers of mj-molecules of the specified kind lying inside the volume @ will touch
during the interval dt one surface element o2d. and hence the number dv of collisions of
the specified kind which occur in the volume element during time dt is equal to the number
Zg of centers of mj-molecules of the specified kind that are in the volume ® at the
beginning of dt. But according to Equation (14a) this is

(17) Zq: = (I)Fldwl.

In this formula there is contained a special assumption, as Burbury1 has clearly
emphasized. From the standpoint of mechanics, any arrangement of molecules in the
container is possible; in such an arrangement, the variables determining the motion of the
molecules may have different average values in one part of the space filled by the gas than
in another, where for example the density or mean velocity of a molecule may be larger in
one half of the container than in the other, or more generally some finite part of the gas has
different properties than another. Such a distribution will be called molar-ordered [molar-
geordnete]. Equations (14) and (14a) pertain to the case of a molar-disordered distribution.
If the arrangement of the molecules also exhibits no regularities that vary from one finite
region to another—if it is thus molar-disordered—then nevertheless groups of two or a
small number of molecules can exhibit definite regularities. A distribution that exhibits
regularities of this kind will be called molecular-ordered. We have a molecular-ordered
distribution if—to select only two examples from the infinite manifold of possible cases—
each molecule is moving toward its nearest neighbor, or again if each molecule whose
velocity lies between certain limits has ten much slower molecules as nearest neighbors.
When these special groupings are not limited to particular places in the container but rather
are found on the average equally often throughout the entire container, then the distribution
would be called molar-disordered. Equations (14) and (14a) would then always be valid for
individual molecules, but Equation (17) would not be valid, since the nearness of the m-
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molecule would be influenced by the probability that the m{-molecule lies in the space .
The presence of the m-molecule in the space @ cannot therefore be considered in the
probability calculation as an event independent of the nearness of the m-molecule. The
validity of Equation (17) and the two similar equations for collisions of m- or m-molecules
with each other can therefore be considered as defining the meaning of the expression: the
distribution of states is molecular-disordered.

If the mean free path in a gas is large compared to the mean distance of two neighboring
molecules, then in a short time, completely different molecules than before will be nearest
neighbors to each other. A molecular-ordered but molar-disordered distribution will most
probably be transformed into a molecular-disordered one in a short time. Each molecule
flies from one collision to another one so far away that one can consider the occurrence of
another molecule, at the place where it collides the second time, with a definite state of
motion, as being an event completely independent (for statistical calculations) of the place
from which the first molecule came (and similarly for the state of motion of the first
molecule). However, if we choose the initial configuration on the basis of a previous
calculation of the path of each molecule, so as to violate intentionally the laws of
probability, then of course we can construct a persistent regularity or an almost molecular-
disordered distribution which will become molecular-ordered at a particular time.
Kirchhoff? also makes the assumption that the state is molecular-disordered in his definition
of the probability concept.

That it is necessary to the rigor of the proof to specify this assumption in advance was
first noticed in the discussion of my so-called H-theorem or minimum theorem. However, it
would be a great error to believe that this assumption is necessary only for the proof of this
theorem. Because of the impossibility of calculating the positions of all the molecules at
each time, as the astronomer calculates the positions of all the planets, it would be
impossible without this assumption to prove the theorems of gas theory. The assumption is
made in the calculation of the viscosity, heat conductivity, etc. Also, the proof that the
Maxwell velocity distribution law is a possible one—i.e., that once established it persists for
an infinite time—is not possible without this assumption. For one cannot prove that the
distribution always remains molecular-disordered. In fact, when Maxwell’s state has arisen
from some other state, the exact recurrence of that other state will take place after a
sufficiently long time (cf. the second half of §6). Thus one can have a state arbitrarily close
to the Max-wellian state which finally is transformed into a completely different one. It is
not a defect that the minimum theorem is tied to the assumption of disorder, rather it is a
merit that this theorem has clarified our ideas so that one recognizes the necessity of this
assumption.

We shall now explicitly make the assumption that the motion is molar- and molecular-
disordered, and also remains so during all subsequent time. Equation (17) is then valid, and
we obtain

(18) dv = Zy = OF dw; = fdwF dwie’g cos dd\dt.

This is the number of collisions of the specified kind in unit volume in time d¢, which was
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to be calculated. We ignore the grazing collisions, whose number is in any case a higher-
order infinitesimal, so that in each collision at least one velocity component of each
molecule changes by a finite amount. In each collision of the specified kind, the number
fdw of m-molecules whose velocity components lie between the limits (10), which we call
m-molecules of the specified kind, and also the number F'jdw; of m|-molecules of the
specified kind, both decrease by one. In order to find the total decrease |dv suffered by fdw
during dt as a result of all collisions of m-molecules with m-molecules (without restriction
on the magnitude and direction of the line of centers), we must consider &, 5, (, dw and dt
as constant in Equation (18) and integrate dw; and dA over all possible values—i.e., we
integrate dw; over all space, and d/A over all surface elements for which the angle & is
acute. We shall denote the result of this integration by [dv.

The decrease dn which the number fdw experiences as a result of the corresponding
collisions of m-molecules with each other is obviously given by a completely analogous
formula; we simply denote by &, 1, (; the velocity components of another m-molecule
before the collision. All other quantities have the same meaning, except that one replaces
my by m and the function F’ by the function f, and o by the diameter s of an m-molecule.
When we have instead of dv the expression

(19) dn = ffidwdw,;s?g cos dddt,

where f] is an abbreviation for &} 7y, (;, t). To obtain f dn—i-e., the total decrease of

fdw resulting from collisions of the m-molecules with each other during d—one must
obviously consider &, 7, (, dw, and dt as constant and integrate dw; and dA over all possible
values. The total decrease of fdw during dr is therefore equal to f dv+ f dn. If the state

is to be stationary, this must be exactly equal to the number of m-molecules whose
velocities at the beginning of dt do not fulfill the conditions (10) but which during this time
interval are changed by collisions in such a way that they now satisfy them—they obtain by
collision a velocity lying between the limits (10). In other words, f dv+ f dn must be

equal to the total increase of fdw resulting from collisions.

§4. Continuation; values of the variables after the collision; collisions of the
opposite kind.*

To find this increase, we shall next seek the velocities of the two molecules after a
collision of the specified kind. Before the collision one of the colliding molecules, whose
mass is m, has velocity components &, 7, ¢; the other, of mass m, has components &;, 7y,

(1. The line of centers drawn from m to m; forms at the instant of collision an angle & with

the relative velocity of the molecule m with respect to m. If the angle € between the plane
of these two lines and any other given plane—for example, that of the two velocities before
the collision—is given, then the collision is completely specified. The velocity components
£,n',(,and E{] ﬂi: g‘{ of the two molecules after the collision can thus be expressed as
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explicit functions of the 8 variables &, n, ¢, &1, 11, (1, J, €

{EI = \bl(é: m g-r &, m, §'1! ﬂ! E)
(20) 7?’ = \LE('EJ yr g‘p Ely N1, g‘la ﬂ: 6)*

We prefer however the geometric construction to the algebraic development of the
functions (20), and we return to Figure 2, p. 39. We divide the segment CC at the point §
into two parts, such that

C]S:CS = m.mi.

Then the line OS represents the velocity of the common center of mass of the two
molecules; for one sees that its three projections on the codrdinate axes have the values:

(21) mé + miéy my +mmy mE + mafy
m+m m+m  m+m

But these are in fact just the velocity components of the common center of mass. Just as we
have shown that C;C is the relative velocity of the m-molecule with respect to my, it
follows also that SC and SC are the relative velocities of the two molecules with respect to
the common center of mass before the collision. The components of these relative velocities
perpendicular to the line of centers OK will not be changed by the collision. The
components in the direction OK are p and p; before the collision, and p’ and pl" after the

collision. Then according to the principle of conservation of the motion of the center of
mass:

mp + mpy =mp’ +mpi =0,

and according to the principle of conservation of kinetic energy:

mp® + mipit = mp'? + myp >,

Whence it follows that

p' =p, pl = Py

or

p'=—=9p, p =—p
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and one sees at once that, since the molecules must separate from each other after the
collision, only the latter solution is correct, and that hence the two components of relative
velocity with respect to the center of mass, which fall in the direction K;K5IlOK, will
simply be reversed by the collision.

From this one obtains the following construction of the lines OC" and ()('{/, which
represent the velocities of the two molecules after the collision in magnitude and direction.
One draws through § the line K;K5; then one draws in the plane of the lines K{K, and
C,C, the two lines SC' and SC,’, which are equal in length to the lines SC and SC, and
are equally inclined on the other side from K{K,. The two endpoints C" and le of the

latter two lines are at the same time the endpoints of the required lines OC’ and ()('{. We

can also call them the velocity points of the two molecules after the collision. The
projections of OC' and (J('{ on the three codrdinate axes are thus the velocity

™Y / ’ / .
componentsf s s g' ; 51 , M, !"'1 of the two molecules after the collision.

These geometrical constructions completely replace the alternative algebraic development
of the functions (20). The points 1" i . and C’ obviously fall on a straight line. This

line (Y l’ (!’ represents the relative velocity of the molecule m with respect to the molecule

m after the collision, and one sees from the figure that its length is equal to C{C, whereas
the angle it forms with the line OK is 180° — (.

Up to now we have considered only one of the specified collisions, and we have
constructed the velocities after the collision for it. We now consider all the specified
collisions, and ask between which limits the values of the variables after the collision lie,
for all these collisions—i.e., for all collisions such that the conditions (10), (13), and (15)
are fulfilled before the collision. Since we assume the time duration of the collision to be
infinitesimal, the direction of the line of centers is the same at the end of the collision as at
the beginning, and it is only a question of finding the limits between which the velocity

components E’, 1}’, ff, El’r Thf, ;1’ are found after the collision. Had we

calculated the function (20), then we would have considered ¢ and € as constants and &, 7,
(, &, m, ( as independent variables, and we would have to express
dE' dn' dt’ dE{ dn{ di,’ interms of d¢ dy d¢ dé; dny d¢; by means of the
well-known Jacobian functional determinant. However, we prefer the geometric
construction, and we must therefore answer the question: what volume element would be
described by the points C’ and ( 1’ when, without changing the direction of the line OK,
we let the points C and C describe the volume elements dw and dw, ? First, let the position
of the point C as well as the direction of the line OK remain fixed, and let C; sweep out the
entire parallelepiped dw;. From the complete symmetry of the figure, it follows directly that
C 1’ describes a congruent parallelepiped which is the mirror image of dw;. Likewise if the
point C; is fixed and the point C sweeps out the parallelepiped dw, then the point C’
sweeps out a parallelepiped congruent to dw. For all collisions that we earlier called
collisions of the specified kind, the velocity point of the m-molecule lies in the
parallelepiped dw' after the collision, and that of the m;-molecule in dw;, and it is always
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true that of (" wl’ =dwdw % The same result would also be obtained by explicit

calculation of the functions (20) and construction of the functional determinant!
of oy off
Z F— —
9 dn d51

We shall now consider another class of collisions of an m-molecule with an m-
molecule, which will be called the “collisions of the inverse kind.” They are characterized
by the following conditions:

1. The velocity point of the m-molecule lies in the volume elementd«w' before the
collision; the number of m-molecules in the volume element for which this condition is
satisfied is, by analogy with Equation (9), fd«', where f' is the value of the function f
obtained by replacing &, , ( by &, ', ('—i.e., it is the quantity &', 1', (' ?).

2. The velocity point of the m-molecule lies in the volume element d n’.l.'lj" before the

collision. The number of m{-molecules in unit volume for which this condition is satisfied

is FI’ dmf, where Ff is an abbreviation for F(El” -,“'" , ;'i' } j).

3. The line of centers of the two molecules at the instant of the collision, drawn from m
to m, is parallel to some line drawn from the origin of codrdinates within the cone dA. (In
those integrals that refer to the collision of identical molecules, there will of course occur in
place of the molecule of mass m simply an m-molecule whose velocity components are
£1>1- 1)

Figure 3 represents the same collision as Figure 2, the lines having been kept fixed as far
as possible. Figure 4 represents the opposite collision. The arrow directed toward the center
of the molecule always represents its velocity before the collision, while that directed away
from the collision represents its velocity after the collision. In all collisions of the opposite
kind, the relative velocity of the m-molecule with respect to that of the m-molecule before
the collision is represented by the line Cl-’ (" in Figure 2. Its magnitude is thus equal

again to g, and it forms the angle & with the line of centers drawn from m to m, since we

have likewise reversed the direction of the line of centers. The angle # must of course be
acute if the collision is to be possible. The number of inverse collisions in unit volume
during dt is, by analogy with Equation (18), given by
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FiG. 3.
(22) dv' = f'F{ dw'dwi o% cos dd\di.

We have called these collisions those of the opposite kind, since they follow exactly the
opposite course as those originally specified, so that the velocities of the two molecules
after the collision lie between the same limits, (10) and (13), as those before the collision
for the originally specified collisions.

FiG. 4.

An opposite collision increases both fdw and Fydw; by one. In order to find the total
increase of fdw resulting from all collisions of m-molecules with m-molecules, during time

dt, one must first express s"’ n", i""l El’ : nf , f’l’ in terms of &, 5, ¢, €1, 1y, (1, S, and

e. Since dw’dwf = dwdw;> We have:
(23) dv' = f'F{ dwdw,a’g cos dd\dL.

We leave the letters f, Ff and dA in the equation, remembering however that one must
consider their arguments E;, ’?f: 5""] El’ : n , !‘;'1’ to be functions of &, 1, ¢, &1, 1y, (1,

&, € and also d4 through the differentials of the latter angles. As is well known, one can
show that dA = sin dddde (cf. beginning of §9). In the differential expression (23), one
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now considers &, 1, (, dw and dt constant and integrates over all possible values of dw; and
d4. Thereby all collisions will be included that can take place between an m-molecule and
an mj-molecule, such that the former has velocity components within the limits (10) before
the collision, but without any other restrictions. The result of this integration, fdv', thus
gives us the increase of fdw resulting from all collisions of m-molecules with m{-molecules
during dt. Similarly, this quantity increases by f adn’ as a result of collisions of m-

molecules with each other, where

(24) dn' = f'f{ dwdw,s%g cos dd\dt

Hereflf is again wused as an abbreviation for F(EI’, "?1’, ;1,; f}-

EII "'?’: r: El; 3 ij y _('1" are here functions of &, », ¢, &1, 11, (;, & and €, inasmuch
as the former represent the velocity components after a collision, and are determined by the
initial conditions (10), (13), and (15), in which however both molecules have mass m.

If we subtract from the total increase of fdw the total decrease, we obtain the net change

d
Y o,
dt

which the quantity fdw experiences during time dt. Thus:

d
-d—idtdu=fdp’—fdv+fdn’—fdn.

In the integrals [dv and Jdv' the integration variables are identical, and likewise in the

integrals f dn and f dn’.

If we combine these integrals and divide the whole equation by dw - dt, then it follows
from Equations (18), (19), (23), and (24) that:

of

(25) a J (f'F{ = fF\)a% cos dwd\ +

+ f (f'f{ = ff1)s% cos dduwdA.

The integration is to be extended over all possible dw; and dA. Likewise, one obtains for
the function F the equation
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oF, .
(26) E;h B f(fpl — fF1)a%g cos ddwd\ +

~ + [ (F'F{ — FFy)sig cos 9dwd.

Here s, is the diameter of an m-molecule; in Equation (26), £&;, 1y, and (; are arbitrary and
should be considered constant in the integral, while &, 5, and ¢ are to be integrated over all
: : . L ™ ’ ! ! .
their possible values. In the first integral, £° = q - ¢ ; £ , M1, "y are the velocity

components after a collision of the specified kind in the case that one of the colliding
molecules has mass m, and the other has mass m; while in the second integral they refer to
the case that both molecules have mass m;. 0F/dt, F, and F' are abbreviations for 0F (&,
ms- Cl’ t)/a[, F(:f, n, C’ t)’ and F(f’ ’7” C’ t)'

If the state is to be stationary, then the quantities df/dot and dF /0t must vanish for all
values of the variables. This certainly occurs when in all the integrals the integrand
vanishes for all values of the variable of integration—when one therefore has for all
possible collisions of the m-molecules with each other, the m-molecules with each other,
and of m-molecules with m-molecules, the three equations

(27) =111, FFy = F'F{, fF, = ['Fy.

Since the probability of the originally specified collision is given by Equation (18), and that
of the opposite one by Equation (23), the general validity of the third of Equations (27) is
equivalent to the statement that, however dw, dw;, and d4; may be chosen, the originally
specified (or briefly, “direct”) collision is as probable as the opposite one. In other words, it
is equally probable that two molecules should separate from each other in a certain way as
that they should collide in the opposite way. The same follows from the two other parts of
the system of Equations (27) for the collisions of m-molecules with each other and of m -
molecules with each other. However, one sees at once that a distribution of states must
remain stationary when it is equally probable that two molecules separate from each other
after a collision and that they collide with each other in the opposite way.

§5. Proof that Maxwell’s velocity distribution is the only possible one.

We shall deal later with the solution of Equations (27), which presents no particular
difficulty. It leads necessarily to the well-known Maxwell velocity distribution law. For this
case the two quantities df/dr and dF/dt vanish, since the integrands of all the integrals
vanish identically. It still remains to be shown that the Maxwell velocity distribution, once
established, is not altered by further collisions. It has still not been proved that Equations
(25) and (26) cannot be satisfied by other functions that do not make the integrands vanish
for all values of the variables of integration. One may give such possibilities as little weight
as he wishes; I find myself inclined to dispose of them by a special proof. Since this proof
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has, as will appear, a not uninteresting connection with the entropy principle, I will
reproduce it in the form given by H. A. Lorentz.*

We consider the same gas mixture as before, and retain the earlier notation.
Furthermore, we denote by /f and [F the natural logarithms of the functions f and F. The
result obtained on substituting in If for &, 7, ¢ the velocity components of a particular gas
molecule of mass m at time ¢, we call the value of the logarithmic function corresponding to
the molecule considered at the time considered. Similarly, we obtain the value of the
logarithm function corresponding to any m-molecule at any time when we substitute in
[F| the velocity components &7, 11, (; of that molecule at that time. We shall now calculate
the sum H of all values of the logarithm functions corresponding at a particular time to all
m-molecules and m-molecules contained in a volume element. At time ¢, there are in the
volume element fdw m-molecules of the specified kind, i.e., m-molecules whose velocity
components lie between the limits (10). These clearly contribute a term f - If - dw to the sum
H. If we construct the analogous expression for the m{-molecules and integrate over all
possible values of the variables, then it follows that:

(28) H= ff'lf'dw'l'fFrlFl'dWL

We now seek the change experienced by H during a very small time dt. This will be due to
two causes:

1. Each m-molecule of the specified kind provides at time 7 the term /f in the expression
(28). After time dt, the function f'experiences the increment

)
T
dt

Hence If experiences the increment :

and each m-molecule of the specified kind provides in the expression (28) the term

If+— —dt.
f+f at

All m-molecules of the specified kind provide together the contribution
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l-l-la—fdt d
f o fdw.

in (28). Applying the same arguments to all other m-molecules and m;-molecules, one
finds for the total increment of H, resulting from the variation of the quantities /f and [F
under the integral signs in Equation (28), the value :

of oF,
— didw + f — ditdw.
ot ot

But this is nothing more than the variation of the total number of molecules in unit volume,
which must be equal to zero, since neither the size of the container nor the uniform
distribution of molecules should undergo any change.

2. The collisions change not only I/f and /F' but also fdw and Fjdw;—i.e., the number of
molecules of the specified kind changes a little. The variation dH of H due to this second
cause will, according to the above, be equal to the total variation of H during dt. In order to
find it, we again denote by dv the number of collisions of the specified kind in unit volume
during dt. Each such collision decreases both fdw and F'jdw; by one.

Since each m-molecule contributes the addend /[f to (28), and each m-molecule
contributes /F'}, the total decrease of H resulting from these collisions will be

(Zf + IF 1) dv

Each of these collisions increases f'dw' by one, and consequently H is increased by If dv.
Finally, each of these collisions increases '/ dm{ by one, and consequently H is

increased by z F 1’ d p. The total increase of H during time dt is therefore :
i +1F = If = IF)dy
= (ff +1F = If — IF,)fFdudoro’y cos ddNdt.
(cf. Eq. [18]).

If we keep dt constant in this expression and integrate over all the other variables (where
of course f"’ n"’ g"] Ef : -,r“" : _('1" are to be considered as functions of &, , ¢, &,

11, (1) then we obtain the total increase dyH that H experiences as a result of all collisions
of m-molecules with m-molecules. We write this symbolically in the form

(3la) diHl = dtf (if' + IF{ — If — IF})fFy-da-dwio’g cos dd.

We can also calculate the same quantity by considering inverse collisions, of which
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there are dv' in the time interval dt. These collisions will decrease both fdw' and F'[ ¢l ¢y 1"

by one, and increase both fdw and F';dw; by one. Consequently the inverse collisions will
increase H by

(Uf +1Fy = 1Uf = IF{)dy
= (If + IF, ~ If' = IF{)f'F{ dwdw,a%q cos ddNdt

(cf. Eq. [23]).
If we keep dt constant and integrate over all the other variables, and average the result
with (31a), we then obtain for d; H the value

* dt
(32) 1d1H = Ef [l(fﬂ) - l(fFl)]'

k [fF, = f'F{ |dodwo’q cos dd).

This is the total increment experienced by H during dt as a result of all collisions of m-
molecules with m-molecules. The incrementd,H of the same quantity resulting from
collisions of the m-molecules with each other will clearly be found in a completely similar
way. We simply have to replace m; and F' by m and f, and o by s. However, one must
remember that when the two colliding molecules are identical, each collision will be
counted twice in the expressions for the integrals, so that the final result must be divided by
two. (The same thing happens in the calculation of the self-potential and self-induction
coefficients.) Hence we find

Il
i = f 1) - 1)

|ff1 = ['f{ |dwde;sty cos dd,

where f] and f 1" have the same meaning as before. If we calculate in the same way the

increment of H resulting from collisions of m;-molecules with each other, then we obtain
for the total increment dH during time dt:
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[dH !
— ==L | [If'F{)=1fF)][fF{ —fF:]o% cos ddwdwd\

)4 - | L) =1 LS = f)st cos ddwdud)

r‘.
—3 | [F'F{)=1(FF,)||[F'F{ = FF,]s% cosddwdwd).

i

Since the logarithm function always increases when its argument increases, we see that
in each of the three integrals the first factor in brackets has the same sign as the second.

Since, moreover, g is essentially positive, and the angle & is always acute, all the quantities
in the integrand are essentially positive, and vanish only for glancing collisions or for
collisions with zero relative velocity. The above three integrals are therefore composed
purely of essentially positive terms, and the quantity that we have called H can therefore
only decrease; at most it can be constant, but this is only possible when all terms of all three
integrals vanish, i.e., when for all collisions Equations (27) are satisfied. Since H cannot
change with time in the stationary state, we have shown that for the stationary state
Equations (27) must be satisfied for all collisions. The only assumption made here is that
the velocity distribution is molecular-disordered at the beginning, and remains so. With this
assumption, one can prove that H can only decrease, and also that the velocity distribution
must approach that of Maxwell.

§6. Mathematical meaning of the quantity H.

We shall postpone, for the moment, the solution of Equations (27), and insert a few
remarks on the meaning of the quantity called H. This meaning is twofold. The first is
mathematical, the second physical. We shall discuss the first only in a simple case, a single
gas in a container of unit volume. Naturally we shall be able to simplify the conclusions by
using this assumption, though we must also relinquish a simultaneous proof of Avogadro’s
law.

First we make a few preliminary remarks about the principles of the calculus of
probabilities. From an urn, in which many black and an equal number of white but
otherwise identical spheres are placed, let 20 purely random drawings be made. The case
that only black balls are drawn is not a hair less probable than the case that on the first draw
one gets a black sphere, on the second a white, on the third a black, etc. The fact that one is
more likely to get 10 black spheres and 10 white spheres in 20 drawings than one is to get
20 black spheres is due to the fact that the former event can come about in many more
ways than the latter. The relative probability of the former event as compared to the latter is
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the number 20!/10!10!, which indicates how many permutations one can make of the terms
in the series of 10 white and 10 black spheres, treating the different white spheres as
identical, and the different black spheres as identical. Each one of these permutations
represents an event that has the same probability as the event of all black spheres. If there
were in the urn a large number of otherwise identical spheres, of which a certain number
are white, an equal number black, an equal number blue, an equal number red, and so
forth, then the probability of drawing a white spheres, b black spheres, ¢ blue spheres, etc.,
is

(@+bd+c---)!

alble! - - -

times as large as the probability of drawing spheres of only one color.

Just as in this simple example, the event that all molecules in a gas have exactly the
same velocity in the same direction is not a hair less probable than the event that each
molecule has exactly the velocity and direction of motion that it actually has at a particular
instant in the gas. But if we compare the first event with the event that the Maxwell velocity
distribution holds in the gas, we find there are very many more equiprobable configurations
to be counted as belonging to the latter.

In order to express the relative probabilities of these two events in terms of a
permutation number, we proceed as follows : for all collisions in which the velocity point
of one molecule is in some infinitesimal volume element before the collision, we saw that it
will be in a volume element of exactly the same size after the collision (assuming that the
other variables characterizing the collision are kept constant). We divide the total space into
many (() equal-sized volume elements w (cells), so that the presence of the velocity point of
a molecule in each such volume element is to be considered an event equiprobable with its
presence in each other volume element—just as previously we considered the drawing of a
black or white or blue sphere to be equally probable. Instead of a, the number of drawings
of white spheres, we now have the number n{w of molecules whose velocity points lie in
the first of our volume elements; instead of b, we have the number n,w of molecules whose
velocity points lie in the second volume element w, and so forth. Instead of Equation (34)
we have

(34)

n!

(35) I =

(m1w) ' (ngw) ! (ngw)! -+ - -

for the relative probability that the velocity points of 7y w molecules lie in the first volume
element, and so forth. Then n = (n+ny+n3+- - - ) w is the total number of all molecules in
the gas. For example, the event that all molecules have equal and equally directed velocities
corresponds to having all velocity points lying in the same cell. Here we would have Z =
n!/n! = 1; no other permutations are possible. It is already very much more probable that
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half the molecules have one particular velocity and direction, and the other half have
another velocity and direction, than that all have the same velocity and direction. Then half
the velocity points would be in one cell and half in another, so that

n!
/= ete.
n n
— | —|!

2/ \2

Since now the number of molecules is extraordinarily large, ny,, n,,, etc., can be
treated as very large numbers.
We shall use the approximation formula

D
p! = /2pr LA
e

where e is the base of natural logarithms and p is an arbitrarily large number. !
Denoting by [ the natural logarithm, we see that:

[(nw)!] = (mw + Hing + me(le — 1) + (o + 27).

Omitting % compared to the very large number n; w and forming the similar expressions

for (nyw)!, (n3w)!, etc., one obtains :
ZZ = — m(ﬂllﬂl +ﬂgl’ng e ) + O,

where

¢ = 1) - nllo - 1) = — (ko + 27)

lo|=-r

has the same value for all velocity distributions and is therefore to be considered a constant.
Then we ask for the relative probability of the distribution of different velocity points of our
molecules in our cells, where of course the cell divisions, the size of a cell w, the number of
cells ¢ and the total number of molecules n and their total kinetic energy are to be
considered constant. The most probable distribution of velocity points of the molecules in
our cells will be the one for which /Z is a maximum; hence the expression

W['ﬂdﬂl -|— nzlnz + U ]
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will be a maximum. If we write dédnd( for w and (€, n, () forn;, n,, etc., and then
transform the sum into an integral, we get

w(ndng + nalng + -+ - ) = [ (& n, O)If(E, n, {)dEdnds .

This expression is completely identical to the expression into which the quantity H
given by Equation (28) for a single gas transforms, however. The theorem of the previous
section, which states that H decreases through collisions, says simply that through collisions
the velocity distribution of the gas molecules comes closer and closer to the most probable
one, as soon as the state is molecular-disordered, and thus the calculus of probabilities is
introduced. I must content myself here with this brief illustration, and refer the reader
elsewhere? for more details.

In connection with the foregoing, one should mention the following point, already made
long ago by Loschmidt.* Let a gas be enclosed by absolutely smooth, elastic walls. Initially
there is an unlikely but molecular-disordered state—for example, all molecules have the
same velocity c. After a certain time, the Maxwell velocity distribution will nearly be
established. We now imagine that at time ¢, the direction of the velocity of each molecule is
reversed, without changing its magnitude. The gas will now go through the same sequence
of states backwards. We have therefore the case that a more probable distribution evolves
through collisions into a less probable one, and that the quantity H increases as a result of
collisions. This in no way contradicts what was proved in §5; the assumption made there
that the state distribution is molecular-disordered is not fulfilled here, since after exact
reversal of all velocities each molecule does not collide with others according to the laws of
probability, but rather it must collide in the previously calculated manner. In the example
cited, in which we assumed the mass of all molecules equal, all molecules at the beginning
had the same velocity c. After a time in which each molecule has experienced on the
average one collision, many molecules will have a velocity y. However, ignoring the few
molecules that have experienced several collisions, all these molecules come from a
collision in which the other molecule left with a velocity -\/2(;1_ i If we now reverse

all velocities, then nearly all molecules whose velocity is v will collide only with molecules
whose velocity is \/2{:‘1_ %, SO that the characteristics of a molecular-ordered

distribution are present.

The fact that H now increases does not contradict the laws of probability either; for
these only predict the unlikeliness, not the impossibility, of an increase in H. Indeed, on the
contrary it follows explicitly that each distribution of states, even if very unlikely, has a
probability different from zero, though very small. Similarly, when one has a Maxwell
distribution, the case that one molecule has the velocity that it actually has at that time,
likewise for the second, third, and other molecules, is not in the least more probable than
the case that all molecules have the same velocity.

It would clearly be a gross error to conclude that any motion whereby H decreases is
equiprobable with one in which the velocities are reversed and H increases. Consider any
motion for which H decreases from time #; to time #;. When one reverses all the velocities
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at time f;, he would by no means arrive at a motion for which H must increase; on the
contrary, H would probably still decrease. It is only when one reverses the velocities at time
t; that he obtains a motion for which H must increase during the time interval #; — ), and
even then H would probably decrease again after that, so that motions for which H
continually remains very near to its minimum value are by far the most probable. Motions
for which it increases to a considerably larger value, or sinks from a large value to its
minimum value, are equally improbable; one knows however that H has many larger
values during a definite time interval, so it must decrease with high probability.’

Planck has attempted to base a proof that the Maxwell velocity distribution is the only
possible stationary one on this reversibility principle.* From Hamilton’s principle he has
not yet proved, to my knowledge, that through the reversal each stationary state distribution
must transform into another one. One can still show the following: when, after a state
distribution A (which is stationary to an arbitrary degree of approximation) has lasted for an
arbitrarily long time, one suddenly reverses all the velocities, then he obtains a motion B
which again remains stationary (with the same degree of approximation) just as long. We
saw that a molecular-disordered distribution, after reversal of all velocities, can transform
into a molecular-ordered one; one can therefore believe that the motion B will be
molecular-ordered. Now for certain forms of containers there are certainly possible
molecular-ordered motions that remain stationary for arbitrarily long times. It appears
however that these could be destroyed at any time by an arbitrarily small change in the
form of the container. We assume that the state distribution B cannot remain molecular-
ordered during its entire duration. Moreover, for the state distribution A, we assume that
each velocity is equiprobable with the opposite velocity. The state distribution B must be
identical with A, since by virtue of the second assumption the magnitude and direction of
each velocity in B has the same probability as in A, and by virtue of the first assumption the
collisions follow the laws of probability. In B, however, each inverse collision must occur
as often as the corresponding direct collision in A, since the two move in opposite
directions. Hence in B, each inverse collision must be just as probable as the corresponding
direct one in A. But since both distributions are identical, it follows that in each of them,
each direct collision has the same probability as the corresponding inverse one, whence
follow Equations (27), whose necessary consequence is the Maxwell distribution.

When one may not assume a priori that each velocity has the same probability as the
opposite one—for example, when gravity acts—Planck’s proof appears to be inapplicable,
but the minimum theorem remains valid.*

A remark is necessary here. The quantities previously denoted by dw = dédnd( and now
by w are volume elements, and hence really only differentials. The number n of molecules
in unit volume is indeed a very large number, but it is still finite. (When we choose the
cubic centimeter as volume element, then for air under ordinary conditions this number is a
few trillion.) It may therefore be surprising that we treat the expressions nw, n,w, and f{&,
1, , )dédnd( as very large numbers. One could also carry out the same calculations on the
assumption that these are fractions; they would then simply represent probabilities. But an
actual number of objects is a more perspicuous concept than a mere probability, and the
considerations just carried out would have required complicated digressions and
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explanations since one cannot speak of the permutation number of a fraction. Such
thoughts remind us, however, that we could have chosen the volume element as large as
we pleased. We could have assumed so many equivalent gases to be present in the volume
element that even when w is chosen very small, the velocity points of many molecules
would still always lie in it. The order of magnitude of the volume chosen as volume
element is completely independent of the order of magnitude of the volume elements w and
dédndc.

Even more dubious is the assumption we shall make later, that not only the number of
molecules in the volume element whose velocity points lie in a differential volume, but also
the number of molecules whose centers are in such a volume element, is infinitely large.
The latter assumption is no longer justified as soon as one has to deal with phenomena in
which finite differences in the properties of the gas are encountered in distances that are not
large compared to the mean free path (shock waves of 1/100 mm thickness, radiometer
phenomena, gas viscosity in a Sprengel vacuum, etc.). All other phenomena take place in
such large spaces that one can construct a volume element for which the visible motion of
the gas can be taken as a differential, yet which still contains a large number of molecules.
This neglect of small terms whose order of magnitude is completely independent of the
order of magnitude of the terms occurring in the final result must be carefully distinguished
from the omission of terms that are of the same order of magnitude as those from which the
final result is derived (cf. beginning of §14). While the latter omission causes an error in the
result, the former is simply a necessary consequence of the atomistic conception, which
characterizes the meaning of the result obtained, and is the more permissible, the smaller the
dimension of the molecule compared to that of the visible bodies. In fact from the
standpoint of atomistics, the differential equations of the doctrines of elasticity and
hydrodynamics are not exactly valid, but rather they are themselves approximation
formulae which become more nearly exact as the space in which the visible motions occur
becomes large compared to the dimensions of molecules. Likewise, the distribution law for
molecular velocities is not precisely correct as long as the number of molecules is not
mathematically infinite. The disadvantage of giving up the supposedly exact validity of the
hydrodynamic differential equations is however compensated by the advantage of greater
perspicuousness.

§7. The Boyle-Charles-Avogadro law. Expression for the heat supplied.

We now proceed to the solution of Equations (27). These are only a special case of
Equations (147) which we shall treat in §18. From these equations it follows, as we shall
prove explicitly there, that the functions fand F must be independent of the direction of the
velocity, and can only depend on its magnitude. We could already give this proof in the
same way here for a special case. In order not to repeat ourselves, we shall assume without
proof that neither the form of the container nor any special circumstance influences the
distribution of states. Since then all directions in space are equivalent, the functions f and F
must be independent of direction, and can be functions only of the magnitudes of the
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relevant velocities ¢ and ¢y. If we setf = e#me?) and F= E'i*{mlcfj, then the last of

Equations (27) becomes
2 2 ;2 - 2 2 ’,2
o(me) + ®(macy) = o(me’ ) + d(me +mae; — me”).

Here the two quantities mec? and mlcf are clearly completely independent of each

other, and also the third quantity me'? can take all values from zero to m;;?-i— qu'?’

independently of the first two. Denoting these three quantities by x, y, andz, and
differentiating the last equation with respect to x, then with respect to y, and finally with
respect to z, we obtain :

¢) =¥@+y-2
P(y) =¥ +y -2
0=4¢(@)=2a+y-2),

I

whence it follows that

¢'(x) = () = ¢'(2).

Since the first of these expressions does not contain y or z’ and the second and third
must be equal to it, the second may not contain y and the third may not contain z. They do
not contain any other variables; hence they must be constant; since they are equal to each
other, the derivatives of the two functions ¢ and ® must be equal to the same consta<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>