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TRANSLATOR’S INTRODUCTION

Gas Theory

Boltzmann’s Lectures on Gas Theory is an acknowledged masterpiece of theoretical
physics; aside from its historical importance, it still has considerable scientific value today.
It contains a comprehensive exposition of the kinetic theory of gases by a scientist who
devoted a large part of his own career to it, and brought it very nearly to completion as a
fundamental part of modern physics. The many physicists who are already familiar with
Gastheorie in the original German edition (1896–1898) will not need this Introduction to
remind them of its stature. But perhaps some scientists who scarcely have time to keep up
with the latest publications in their subject may want to know why they should bother to
read a book published more than 60 years ago; and a brief account of the place of the book
in the development of modern physics may be of interest.

Ludwig Boltzmann (1844–1906) played a leading role in the nineteenth-century
movement toward reducing the phenomena of heat, light, electricity, and magnetism to
“matter and motion” —in other words, to atomic models based on Newtonian mechanics.
His own greatest contribution was to show how that mechanics, which had previously been
regarded as deterministic and reversible in time, could be used to describe irreversible
phenomena in the real world on a statistical basis. His original papers on the statistical
interpretation of thermodynamics, the H-theorem, transport theory, thermal equilibrium, the
equation of state of gases, and similar subjects, occupy about 2,000 pages in the
proceedings of the Vienna Academy and other societies. While some of his discoveries
attracted considerable attention and controversy in his own time, not even the handful of
experts on kinetic theory could claim to have read everything he wrote. Realizing that few
scientists of later generations were likely to study his long original memoirs in detail,
Boltzmann decided to publish his lectures, in which the most important parts of the theory,
including his own contributions, were carefully explained. In addition, he included his
mature reflections and speculations on such questions as the nature of irreversibility and the
justification for using statistical methods in physics. His Vorlesungen über Gastheorie was
in fact the standard reference work for advanced researchers, as well as a popular textbook
for students,* for the first quarter of the present century, and is frequently cited even now.
A recent example is the following statement by Mark Kac:† “Boltzmann summarized most
(but not all) of his work in a two volume treatise Vorlesungen über Gastheorie. This is one
of the greatest books in the history of exact sciences and the reader is strongly advised to
consult it. It is tough going but the rewards are great.”

The modern reader will rightly assume that some parts of Boltzmann’s theory must have
been rendered obsolete by later discoveries. In particular, we know that one cannot expect
to develop an adequate theory of atomic phenomena without using quantum mechanics.
However, it turns out that almost all the properties of gases at ordinary temperatures and
densities can be described by the classical theory developed in the nineteenth century, and
for this reason there has been a considerable revival of interest in classical kinetic theory
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during the last few years, in connection with rarified gas dynamics, plasma physics, and
neutron transport theory. The reason why the classical theory works is that, while the
internal structure of molecules must be described by quantum mechanics, the interaction
between two molecules can be fairly well described by a classical model which ignores this
structure and simply uses a postulated force law whose parameters can be chosen to fit
experimental data. Aside from phenomena at very high densities or very low temperatures,
the only property that the classical theory fails to account for is the ratio of specific heats.
However, this failure was already well known at the time Boltzmann wrote this book, and
he is therefore quite cautious on this point. He simply concludes that for some unknown
reason all the possible internal motions of a molecule do not have an equal share in the total
energy, and takes this into account as an empirical fact.

As for various questions of a more fundamental nature, such as the relation between
entropy and the direction of time, quantum theory has thrown new light on these problems
but has not solved them. Boltzmann’s remarks are therefore still of interest. Thus Hans
Reichenbach proposes to define the direction of increasing time as the direction in which
entropy increases, so that in a universe in which entropy fluctuates,

we cannot speak of a direction of time as a whole; only certain sections of time have directions, and
these directions are not the same. The first to have the courage to draw this conclusion was Ludwig
Boltzmann [Gas Theory, Part II, §90]. His conception of alternating time directions represents one of
the keenest insights into the problem of time. Philosophers have attempted to derive the properties of
time from reason; but none of their conceptions compares with this result that a physicist derived from
reasoning about the implications of mathematical physics. As in so many other respects, the superiority
of a philosophy based on the results of science has become manifest . . . .*

The only respects in which the book may be considered out of date are, first, the
emphasis on the inverse fifth-power repulsive force model for calculating transport
properties, and, second, the molecular model used to explain dissociation phenomena. The
reason for choosing the inverse fifth-power force law was that Maxwell (1866)† had
discovered that the calculation of transport properties is particularly simple for this case,
because the collision integrals do not depend on the relative velocity of the colliding
molecules, so that one does not need to know the velocity distribution. Maxwell and
Boltzmann therefore believed that it would be more worthwhile to develop an exact theory
for this model, rather than attempt to work out a more complicated approximate theory for
other force laws. However, it was later shown by Chapman and Enskog (1916–1917) that
the important phenomenon of thermal diffusion does not occur for this particular force law,
and a quantitative treatment of the general case does require a determination of the velocity
distribution in a nonequilibrium state, although it is still not necessary to use the quantum
theory. Boltzmann’s model for dissociation, employing molecules with small “sensitive
regions” on parts of their surfaces, is an interesting historical curiosity, but the need for such
ad hoc assumptions to explain the directional character of chemical bonds has been
eliminated by quantum mechanics.

History of the kinetic theory
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The development of the kinetic theory of gases has been discussed at length elsewhere*
so only a brief summary will be given here.

The modern concept of air as a fluid exerting mechanical pressure on surfaces in contact
with it goes back to the early seventeenth century, when Torricelli, Pascal, and Boyle first
established the physical nature of the air. By a combination of experiments and theoretical
reasoning they persuaded other scientists that the earth is surrounded by a “sea” of air that
exerts pressure in much the same way that water does, and that air pressure is responsible
for many of the phenomena previously attributed to “nature’s abhorrence of a vacuum.”
We may view this development of the concept of air pressure as part of the change in
scientific attitudes which led to the mechanico-corpuscular view of nature, associated with
the names of Galileo, Boyle, Newton, and others. Instead of postulating “occult forces” or
teleological principles to explain natural phenomena, scientists started to look for
explanations based simply on matter and motion.

Robert Boyle is generally credited with the discovery that the pressure exerted by a gas
is inversely proportional to the volume of the space in which it is confined. From Boyle’s
point of view that discovery by itself was relatively insignificant, and though he had
provided the experimental evidence for it he readily admitted that he had not found any
general quantitative relation between pressure and volume before Richard Towneley
suggested the hypothesis that pressure is inversely proportional to volume. Robert Hooke
also provided further experimental confirmation of the hypothesis. It was long known as
“Mariotte’s law” on the Continent, but there are good reasons for believing that Mariotte
was familiar with Boyle’s work even though he does not mention it, so that he does not
even deserve the credit for independent (much less simultaneous) discovery: see any good
book on history of science for details on this point.

The generalization that pressure is proportional to absolute temperature at constant
volume was stated by Amontons and Charles, but it remained for Gay-Lussac to establish it
firmly by experiments at the beginning of the nineteenth century.

Boyle’s researches were carried out to illustrate not just a quantitative relation between
pressure and volume, but rather the qualitative fact that air has elasticity (“spring”) and can
exert a mechanical pressure strong enough to support 34 feet of water in a pump, or 30
inches of mercury in a barometer. His achievement was to introduce a new dimension—
pressure—into physics; he could well afford to be generous about giving others the credit
for perceiving the numerical relations between this dimension and others. He also proposed
a theoretical explanation for the elasticity of air—he likened it to “a heap of little bodies,
lying one upon another” and the elasticity of the whole was simply due to the elasticity of
the parts. The atoms were said to behave like springs which resist compression. To a
modern scientist this explanation does not seem very satisfactory, for it does no more than
attribute to atoms the observable properties of macroscopic objects. It is interesting to note
that Boyle also tried the “crucial experiment” which was to help overthrow his own theory
in favor of the kinetic theory two centuries later, though he did not realize its significance:
he placed a pendulum in an evacuated chamber and discovered, to his surprise, that the
presence or absence of air makes hardly any difference to the period of the swings or the
time needed for the pendulum to come to rest. In 1859, Maxwell deduced from the kinetic
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theory that the viscosity of a gas should be independent of its density—a property which
would be very hard to explain on the basis of Boyle’s theory.

Newton discusses very briefly in his Philosophiae Naturalis Principia Mathematica
(1687) the consequences of various hypotheses about the forces between atoms for the
relation between pressure and volume. One particular hypothesis, a repulsive force
inversely proportional to distance, leads to Boyle’s law. It seems plausible that Newton was
trying to put Boyle’s theory in mathematical language and that he thought of the repulsive
forces as being due to the action of the atomic springs in contact with each other, but there
seems to be no direct evidence for this. Neither Boyle nor Newton asserted that the
hypothesis of repulsive forces between atoms is really responsible for gas pressure; both
were willing to leave the question open. Boyle mentions Descartes’ theory of vortices, for
example, which is somewhat closer in spirit to the kinetic theory since it relies more heavily
on the rapid motion of the parts of the atom as a cause for repulsion. Incidentally, it is
important to realize that there is more to the kinetic theory than just the statement that heat is
atomic motion. That statement was frequently made, especially in the seventeenth century,
but usually by scientists who did not make the important additional assumption that in gases
the atoms move freely most of the time. It was quite possible to accept the “heat is motion”
idea and still reject the kinetic theory of gases—as did Humphry Davy early in the
nineteenth century.

Despite the tentative way in which it was originally proposed, the Boyle-Newton theory
of gases was apparently accepted by most scientists until about the middle of the nineteenth
century, when the kinetic theory finally managed to overcome Newton’s authority. Thus a
theory which was decidedly a step forward from older ideas nevertheless was able to retard
further progress for a considerable time.

It is difficult to understand the relative lack of progress in gas physics during the
eighteenth century as compared to the seventeenth. Several brilliant mathematicians refined
and clarified Newton’s principles of mechanics and applied them to the analysis of the
motions of celestial bodies and of continuous solids and fluids, but there was little interest
in the properties of systems of freely moving atoms. The atoms in a gas were still conceived
as being suspended in the ether, although they could vibrate or rotate enough to keep other
atoms from coming too close. This model was rather awkward to formulate mathematically,
as may be seen from an unsuccessful attempt by Leonhard Euler (1727).

One contribution from this period has been generally recognized as the first kinetic
theory of gases. This is Daniel Bernoulli’s derivation of the gas laws from a “billiard ball”
model—much like the one still used in elementary textbooks today—in 1738. His kinetic
theory is only a small part of a treatise on hydrodynamics, a subject to which he made
important contributions. From the viewpoint of the historical development of the kinetic
theory, his formulation and successful applications of the principle of conservation of
mechanical energy were really more important than the fact that he actually proposed a
kinetic theory himself. Bernoulli’s kinetic theory, while in accord with modern ideas, was a
century ahead of its time, for scientists were not yet ready to accept the physical description
of a gas that it employed. Heat was still generally regarded as a substance, even though it
was also recognized that heat might have some relationship to atomic motions; Bernoulli’s
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assumption that heat is nothing but atomic motion was unacceptable, especially to scientists
who were interested in the phenomena of radiant heat. The assumption that atoms could
move freely through space until they collided like billiard balls was probably regarded as
too drastic an approximation, since it neglected the drag of the ether and oversimplified the
interaction between atoms.

Late in the eighteenth century, Lavoisier and Laplace developed a systematic theory of
chemical and thermal phenomena based on the assumption that heat is a substance, called
“caloric.” Laplace and Poisson later worked out a quantitative theory of gases, in which the
repulsion between atoms was attributed to the action of “atmospheres” of caloric
surrounding the atoms; they were able to explain such phenomena as adiabatic compression
and the velocity of sound, as well as the ideal gas laws.

The caloric theory was being brought to its final stage of perfection by Laplace,
Poisson, Carnot and Clapeyron at about the same time that John Herapath (1790–1868)
proposed his kinetic theory (1820, 1821). Herapath attempted to explain not only the
properties of gases but also gravity, changes of state, and many other phenomena. His
memoir was rejected by the Royal Society, mainly because Humphry Davy (then its
president) thought Herapath’s theory was too speculative, even though Davy himself had
advocated the view that heat is molecular motion. Herapath published several papers on his
theory, but did not succeed in converting other scientists to his views. Another British
scientist, J. J. Waterston (1811–1883), submitted a memoir on the kinetic theory to the
Royal Society in 1845; it was not only rejected, but remained buried in the Society’s
archives until 1891 when it was discovered by Lord Rayleigh.

During the period 1840–1855, the equivalence of heat, work, and other forms of energy
was established experimentally by Joule, and the general principle of conservation of
energy was formulated by Mayer and others. Joule himself revived Herapath’s kinetic
theory (1848) but did not make any further developments or applications of it aside from
calculating the velocity of a hydrogen molecule. Krönig independently proposed a simple
kinetic theory in 1856, and soon afterwards Rudolf Clausius (1822–1888) and James Clerk
Maxwell (1831–1879) started to make substantial progress towards the modern theory.
Clausius introduced the idea of the “mean free path” of a molecule between successive
collisions (1858), and Maxwell, Clausius, O. E. Meyer (1834–1915), and P. G. Tait
(1831–1901) developed the theory of diffusion, viscosity, and heat conduction on this
basis. One of the most surprising results—whose confirmation by experiment helped to
establish the kinetic theory—was Maxwell’s prediction (1859) that the viscosity of a gas
should be independent of density and should increase with temperature. The mean free path
method is still the easiest way to understand transport phenomena, but it does not yield
accurate numerical results and, as mentioned above, it failed to predict thermal diffusion.

The foundations of the modern theory of transport were laid by Maxwell in his great
memoir of 1866; it is essentially this method which Boltzmann used to make his
discoveries, and which he presents in this book. Maxwell proceeds by writing down
general equations for the rate of change of any quantity (such as molecular velocity) at any
point in space and time resulting from molecular motions and collisions. These
“microscopic” equations are then compared with the corresponding “macroscopic”
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equations (for example, the Navier-Stokes equations of hydrodynamics) and the
coefficients of viscosity, etc., are thus related to certain characteristic functions of molecular
collisions. Boltzmann’s transport equation, derived in 1872, is a special case of Maxwell’s
general equation in which the quantity of interest is the number of molecules having a
certain velocity—in other words, the velocity distribution function. As soon as this function
has been found, all the transport coefficients can also be computed. Much of modern
research in statistical mechanics is based on attempts to solve either the Boltzmann equation
or similar equations for other kinds of distribution functions. In a sense there are two
alternative ways of developing transport theory: one based on solutions of Maxwell’s
equations, and the other on the solution of Boltzmann’s equation, and these two approaches
were followed by Chapman (1916) and Enskog (1917) respectively, the final results being
essentially identical. However, Boltzmann was able to deduce immediately a very
important result from his equation, which was not at all obvious from Maxwell’s original
formulation: a quantity called H, which can be identified with the negative of the entropy,
must always decrease or remain constant, if one assumes that the velocity distributions of
two colliding molecules are uncorrelated. The molecular interpretation of the law of
increasing entropy is thus intimately related to the assumption of molecular chaos and the
relation between entropy and probability. H remains constant only when the gas attains a
special velocity distribution which had previously been deduced by Maxwell (1859) in a
less convincing manner.

There is apparently a contradiction between the law of increasing entropy and the
principles of Newtonian mechanics since the latter do not recognize any difference between
past and future times. If one sequence of molecular motions corresponds to increasing
entropy, one should obtain a sequence corresponding to decreasing entropy by simply
reversing all the velocities. This is the so-called reversibility paradox (Umkehreinwand)
which was advanced as an objection to Boltzmann’s theory by Loschmidt (1876, 1877)
and others. Another difficulty is the fact that a conservative dynamical system in a finite
space will always return infinitely often to a state close to any arbitrary initial state; hence
the entropy cannot continually increase but must go through cyclic variations. This is the
recurrence paradox (Wiederkehreinwand) based on a theorem of Poincaré (1890) and used
against the kinetic theory by Zermelo (1896). Some scientists held that if there is any
contradiction between macroscopic thermodynamics and the kinetic theory, the latter
should be rejected since it is based on a hypothetical atomic model, whereas
thermodynamics is firmly grounded on empirical observations. Boltzmann’s reply to these
objections is given in this book.

Another broad field of theoretical research was opened up by J. D. van der Waals
(1837–1923), who published his celebrated investigation of the continuity of the liquid and
gaseous states in 1873. Although van der Waals’ equation of state was supposedly deduced
from the virial theorem of Clausius (1870), and was therefore considered an application of
the kinetic theory, its derivation relied partly on concepts of the older Laplace-Poisson
theory of capillarity, in which molecular motions were ignored. Nevertheless the van der
Waals equation of state gives an excellent qualitative description of condensation and
critical phenomena, and Boltzmann devotes a substantial portion of Part II of these lectures
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to an exposition of van der Waals’ theory. He also describes his calculation of the next
correction term to the equation of state of hard spheres—i.e., what we now call the third
virial coefficient.

The failure of the kinetic theory to give a satisfactory explanation of the specific heats of
polyatomic gases—and spectroscopic evidence that even monatomic gas molecules must
have internal degrees of freedom which apparently do not have their proper share of energy
as required by the equipartition theorem —stimulated several theoretical studies of
mechanical models later in the nineteenth century. These studies were directed toward
attempting to prove rigorously the necessary and sufficient conditions for equipartition. It
was generally agreed that a sufficient condition would be that the system passes eventually
through every point on the “energy surface” in phase space before returning to its starting
point; in other words, no matter what might be the initial velocities and positions of the
particles, they would eventually take on all possible values consistent with their fixed total
energy. This statement is now known as the “ergodic” hypothesis, and it is frequently
asserted that Maxwell and Boltzmann believed that real physical systems have this
property. If the hypothesis were true for a system, then it would be legitimate to replace a
time-average over the trajectory of a single system (which is what one can actually observe)
by a “phase” or “ensemble” average over many replicas of the same system with all
possible sets of positions and velocities consistent with a specified energy. From a
mathematical point of view, the existence of an ergodic system would imply that an n-
dimensional manifold (the energy surface in phase space) can be mapped continuously onto
a one-dimensional manifold (the range of the time variable) so that every point in the
former corresponds to at least one point in the latter.

While Boltzmann did make certain statements in some of his papers (1871, 1884, 1887)
to the effect that a mechanical system might exhibit such behavior—the Lissajous figure
with incommensurable periods was one alleged example—there is no foundation for the
belief that Boltzmann thought real systems are ergodic. Moreover, Boltzmann did not
clearly distinguish between the “ergodic hypothesis” (which we now know to be false) and
the so-called “quasi-ergodic hypothesis,” that the trajectory of a system may pass arbitrarily
close to every point on the energy surface. The latter hypothesis does indeed provide a
reasonable basis for statistical mechanics, even though it has not yet been proved that it is
valid for real physical systems. To anyone acquainted with the modern mathematical theory
of sets of points and infinite classes, the distinction between the two hypotheses is obvious,
but we must remember that Boltzmann did not accept this theory, although he may have
been aware of it (the fundamental papers of Georg Cantor were published during the same
period that Boltzmann was publishing his papers on gas theory, some of them in the same
journal). On the contrary, Boltzmann often stated that infinitesimal or infinite numbers have
no meaning except as limits of finite numbers, and for this reason he gave alternative
derivations of some of his theorems using sums of discrete quantities instead of integrals.
To say that a trajectory passes through every point in a region would (to him) be
meaningless unless one meant by this that the trajectory passes arbitrarily close to every
point, and in at least one paper Boltzmann uses the two statements interchangeably.*

Part of the confusion regarding Boltzmann’s views is due to the fact that the Ehrenfests,
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in their classic encyclopedia article (1911), and later writers following their terminology,
took Boltzmann’s word “ergodic” and used it to refer to a single mechanical system whose
trajectory passes through every point on the energy surface, whereas Boltzmann himself
had used the word in a completely different sense, to mean an aggregate or ensemble of
systems whose positions and velocities are distributed over all possible sets of values on the
energy surface. The Ehrenfests recognized this distinction, and used the term “ergodic
distribution” for the latter concept, but since then Gibbs’ terminology has come into general
use, and we now use the phrase “microcanonical ensemble” for what Boltzmann called an
Ergode. (Boltzmann’s justification for using Ergoden in gas theory is given in Part II, §35,
and in other remarks scattered through the rest of this book.)

The statistical mechanics of J. Willard Gibbs (1839–1903) represents the next level of
abstraction and refinement of gas theory, following directly on Boltzmann’s introduction of
Ergoden, and relying heavily on the methods of analytical mechanics which Boltzmann
applied to gas theory (see Part II, Chapter III). Instead of considering an ensemble of
systems with different initial positions and velocities but the same total energy, Gibbs
proposed to consider the more general case of a “canonical ensemble” of systems having all
possible energies, the number of systems having energy E being proportional to e–βΕ

(where β = l/kT). Gibbs also introduced the “grand canonical ensemble” in which the
number of particles in each system may vary, the number of systems with N particles being
proportional to e–µΝ, where µ (called the “chemical potential”) is chosen to give the desired
density. These generalized ensembles are easier to deal with mathematically, and enable
one to treat systems in contact with a heat reservoir at constant temperature, or systems in
which chemical reactions may take place.

There is not space here to describe the modifications of statistical mechanics by quantum
mechanics, associated with the names of Planck, Einstein, Bose, Fermi, and Dirac. It may
however be worth mentioning that Planck’s discovery of the quantum laws of radiation
owed much to Boltzmann’s statistical theory of entropy. At the same time it must be
remembered that during the years preceding the introduction of the quantum theory, the
inadequacies of classical mechanics had become increasingly more evident, as theoretical
physicists tried in vain to construct satisfactory classical models of atoms and of the ether.
There was also a growing reaction against “scientific materialism,” and a movement to
replace atomic theories by purely descriptive theories based only on macroscopic
observables. The most famous leader of this movement was Ernst Mach (1838–1916),
whose criticism of mechanics prepared the way for Einstein’s theory of relativity. In a
series of articles and books, beginning with a critical study of the law of conservation of
energy (1872), Mach attacked the use of atomic models in physics, and asserted that the
basic purpose of science is to achieve “economy of thought” in describing natural
phenomena, not to explain them in terms of hypothetical concepts such as atoms or ether.
Gustav Kirchhoff (1824–1887) expressed similar views in his lectures on mechanics (1874)
but did not develop them as fully, and indeed in his lectures on heat (published
posthumously in 1894) he included a section on kinetic theory. One of the striking features
of Boltzmann’s Gas Theory is the large number of references to Kirchhoff’s exposition.

The school of Energetics included many members of the positivist movement, in
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particular Wilhelm Ostwald (1853–1932), Georg Helm (1851–1923), Pierre Duhem
(1861–1916) and others. The Energetists proposed to develop thermodynamics, and the
theory of energy transformations in general, on a purely macroscopic basis without any
reference to atomic theories. Their attacks on the kinetic theory were particularly strong
during the period when Boltzmann was writing this book, and this circumstance helps to
explain its polemical flavor. There are many passages justifying various assumptions,
defending the theory against possible criticisms, and attacking rival theories. Boltzmann
knew he could not get away with vague “heuristic” arguments or appeals to authority, since
many of his readers would not be convinced. (It might well be argued that a text written in
such a style is really more effective—provided that it contains no serious errors—than a
modern text expounding a noncontroversial theory which the student is not encouraged to
doubt.)

According to Lenin* the arguments of Mach and other “idealistic” (in the philosophical
sense) scientists subverted many Marxist philosophers, who accepted them as the latest
results of science. Lenin quotes with approval the views of Boltzmann, who, while “afraid
to call himself a materialist” nevertheless had a theory of knowledge which was “essentially
materialistic.” Consequently Boltzmann now has the dubious distinction of being a hero of
scientific materialism in the eyes of the Marxists.*

As the leader of the atomist school in the 1890’s, Boltzmann frequently had to engage in
debate with the Energetists. One such debate took place at the meeting of the
Naturforschergesellschaft at Lübeck in 1895. As Arnold Sommerfeld recalls it,†

The champion for Energetics was Helm; behind him stood Ostwald, and behind both of them the
philosophy of Ernst Mach (who was not present in person). The opponent was Boltzmann, seconded by
Felix Klein. The battle between Boltzmann and Ostwald was much like the duel of a bull and a supple
bullfighter. However, this time the bull defeated the toreador in spite of all his agility. The arguments of
Boltzmann struck through. We young mathematicians were all on Boltzmann’s side; it was at once
obvious to us that it was impossible that from a single energy equation could follow the equations of
motion of even one mass point, to say nothing of those for a system of an arbitrary number of degrees of
freedom. On Ostwald’s behalf, however, I must mention his remark on Boltzmann in his book Grosse
Männer (Leipzig, 1909, p. 405): there he calls Boltzmann “the man who excelled all of us in acumen and
clarity in his science.”

What did Boltzmann really think about the existence of atoms? One commentator‡ has
asserted that “even the most convinced adherents of this [kinetic] theory, such as
Boltzmann, ascribe to it merely the value of a mechanical model which imitates certain
properties of gases and can afford the experimenter certain useful indications, and are very
far from believing bodies to be in reality composed of small particles . . . ” Indeed, a
curious feature of Boltzmann’s attitude toward the molecular model of gases is his attempt
to justify the use of asymptotic limits in which the number of molecules in a volume
becomes infinite, while their size becomes infinitesimal. He is perfectly aware of the fact
that one can deduce finite numerical values for these molecular parameters from experiment
by using gas theory (Part I, §12; Part II, §22); and he refers to Maxwell’s theory of rarefied
gas phenomena (radiometer effect, etc.) as a triumph of molecular theories over the
phenomenological approach (Part I, §1). Yet his desire to obtain a more intuitively clear
(anschaulich) presentation of his theory impels him to assume that each infinitesimal
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volume element in the gas contains a very large number of molecules (Part I, §6) and, in
attempting to justify this assumption, he goes so far as to say that it is futile to expect to
observe fluctuations from the asymptotic laws resulting from the fact that there may be only
a finite number of atoms in a small space (Part II, §38). This statement was of course
contradicted only a few years later by experiments on Brownian motion and Millikan’s oil-
drop experiment.

We cannot give here a comprehensive analysis of Boltzmann’s views on the philosophy
of science, but must refer to his extensive writings and the studies by Broda and Dugas
cited in the Bibliography. The following quotation is chosen only because it was originally
published in English (in a letter to Nature, February 28, 1895) so that there is no danger of
distorting Boltzmann’s meaning by translation (assuming of course that he is expressing his
own views accurately in English) :

I propose to answer two questions:—
(1) Is the Theory of Gases a true physical theory as valuable as any other physical theory?
(2) What can we demand from any physical theory?
(The first question I answer in the affirmative, but the second belongs not so much to ordinary

physics (let us call it orthophysics) as to what we call in Germany metaphysics. For a long time the
celebrated theory of Boscovich was the ideal of physicists. According to his theory, bodies as well as the
ether are aggregates of material points, acting together with forces, which are simple functions of their
distances. If this theory were to hold good for all phenomena, we should be still a long way off what
Faust’s famulus hoped to attain, viz., to know everything. But the difficulty of enumerating all the
material points of the universe, and of determining the law of mutual force for each pair, would be only
a quantitative one; nature would be a difficult problem, but not a mystery for the human mind.

When Lord Salisbury says that nature is a mystery [Presidential Address to the British Association
meeting at Oxford, 1894], he means, it seems to me, that this simple conception of Boscovich is refuted
almost in every branch of science, the Theory of Gases not excepted. The assumption that the gas-
molecules are aggregates of material points, in the sense of Boscovich, does not agree with the facts. But
what else are they? And what is the ether through which they move? Let us again hear Lord Salisbury.
He says:

“What the atom of each element is, whether it is a movement, or a thing, or a vortex, or a point
having inertia, all these questions are surrounded by profound darkness. I dare not use any less pedantic
word than entity to designate the ether, for it would be a great exaggeration of our knowledge if I were
to speak of it as a body, or even as a substance.”

If this be so—and hardly any physicist will contradict this—then neither the Theory of Gases nor any
other physical theory can be quite a congruent account of facts, and I cannot hope with Mr. Burbury, that
Mr. Bryan will be able to deduce all the phenomena of spectroscopy from the electromagnetic theory of
light. Certainly, therefore, Hertz is right when he says: “The rigour of science requires, that we
distinguish well the undraped figure of nature itself from the gay-coloured vesture with which we clothe
it at our pleasure.” [Untersuchungen über die Ausbreitung der elektrischen Kraft, p. 31. Leipzig, Barth,
1892], But I think the predilection for nudity would be carried too far if we were to forego every
hypothesis. Only we must not demand too much from hypotheses.

It is curious to see that in Germany, where till lately the theory of action at a distance was much more
cultivated than in Newton’s native land itself, where Maxwell’s theory of electricity was not accepted,
because it does not start from quite a precise hypothesis, at present every special theory is old-fashioned,
while in England interest in the Theory of Gases is still active; vide, among others, the excellent papers
of Mr. Tait, of whose ingenious results I cannot speak too highly, though I have been forced to oppose
them in certain points.

Every hypothesis must derive indubitable results from mechanically well-defined assumptions by
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mathematically correct methods. If the results agree with a large series of facts, we must be content, even
if the true nature of facts is not revealed in every respect. No one hypothesis has hitherto attained this
last end, the Theory of Gases not excepted. But this theory agrees in so many respects with the facts, that
we can hardly doubt that in gases certain entities, the number and size of which can roughly be
determined, fly about pell-mell. Can it be seriously expected that they will behave exactly as aggregates
of Newtonian centres of force, or as the rigid bodies of our Mechanics? And how awkward is the human
mind in divining the nature of things, when forsaken by the analogy of what we see and touch directly?

Nevertheless, Boltzmann’s pessimism about the future of the kinetic theory, indicated in his
Foreword to Part II, deepened in the following years, and led to fits of severe depression,
culminating in his suicide in 1906. This suicide must be ranked as one of the great tragedies
in the history of science, made all the more ironic by the fact that the scientific world made
a complete turnabout in the next few years and accepted the existence of atoms, following
Perrin’s experiments on Brownian motion and an accumulation of other evidence. By 1909
even Ostwald himself had been converted, as he admits in the Foreword to the fourth
edition of his textbook on chemistry. Atomism had triumphed, though only at the cost of
denying to atoms almost all the properties with which they had originally been endowed.

* In his endeavors to satisfy the demands of all his readers, Boltzmann has not forgotten even the
faculty adviser of graduate students in physics. At the end of Part II, §86, he mentions a class of
problems that would be suitable for doctoral dissertations!

† M. Kac, Probability and Related Topics in Physical Sciences (New York: Interscience, 1959), p.
261. Reprinted by permission.

* H. Reichenbach, The Direction of Time (Berkeley and Los Angeles: University of California Press,
1956), p. 128.

† References for this and other works cited here will be found in the Bibliography at the end of this
volume.

* See the papers by S. G. Brush and E. Mendoza listed in the Bibliography; also D. ter Haar,
Elements of Statistical Mechanics (New York: Rinehart, 1954), Appendix I (H-theorem and ergodic
theorem), and Rev. Mod. Phys. 27, 289 (1955) (recent developments). A series of selected annotated
reprints of the most important original papers on the kinetic theory is to be published by Pergamon
Press.

* Boltzmann, Sitzungsber. math.-phys. Classe K. Bay. Akad. Wiss., München [“Mun. Ber.”] 22, 329
(1892); the statement referred to is on p. 157 of the English translation in Phil. Mag. [5] 35 (1893).

* Materialism and Empirio-Criticism Izdanie “Zveno,” Moscow, 1909.
* See, e.g., the article by Bogolyubov and Sanochkin, Usp. Fiz. Nauk 61, 7 (1957), and Davydov’s

introduction to the Russian translation of Gas Theory.
† A. Sommerfeld, Wiener Chem. Zeitung 47, 25 (1944); see also G. Jaffé, J. Chem. Educ. 29, 230

(1952).
‡ A. Aliotta, La Reazione idealistica contro la scienza (Palermo : Casa Editrice “Optima,” 1912);

quoted from p. 375 of the English translation by Agnes McCaskill (London, 1914).
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PART I

Theory of gases with monatomic molecules, whose dimensions

are negligible compared to the mean free path.

NOTE ON LITERATURE CITATIONS

All the numbered footnotes correspond to Boltzmann’s notes in the original text, but the
numbers start with 1 in each section rather than each page, and the form of citation of some
journals has been changed for the sake of consistency with modern style. Footnotes
indicated by asterisks, daggers, etc., have been added by the translator. More complete
information including titles of articles cited will be found in the Bibliography at the end of
the book.

NOTE ON GOTHIC LETTERS

To forestall possible difficulties in recognition, here are the alphabetical equivalents:
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FOREWORD TO PART I

“Alles Vergängliche
Ist nur ein Gleichniss!”*

I have often before come close to writing a textbook on gas theory. I remember especially
the enthusiastic request of Professor Wroblewski at the Vienna World’s Fair in 1873. When
I showed little inclination to write a textbook, since I did not know how soon my eyes
would fail me, he answered dryly: “All the more reason to hurry up!” At present, when I
no longer have this reason, the time seems less appropriate for such a textbook than it was
then. For, first, gas theory has gone out of fashion in Germany, as it were; second, the
second edition of O. E. Meyer’s well-known text has appeared, and Kirchhoff has devoted
a longer section of his lectures on the theory of heat to gas theory.† Yet Meyer’s book,
though acknowledged to be excellent for chemists and students of physical chemistry, has a
completely different purpose. Kirchhoff’s work shows the touch of a master in the selection
and presentation of its topics, but it is only a posthumously published set of lecture notes on
the theory of heat, which treats gas theory as an appendix, not a comprehensive textbook.
Indeed, I freely confess that the interest, on the one hand, which Kirchhoff showed in gas
theory, and on the other hand the many gaps in his presentation because of its brevity, have
encouraged me to publish the present work, which likewise originated from lectures at the
universities of Munich and Vienna.

In this book I have tried above all to make clearly comprehensible the path-breaking
works of Clausius and Maxwell. The reader may not think badly of me for finding also a
place for my own contributions. These were cited respectfully in Kirchhoff’s lectures and
in Poincaré’s Thermodynamique* at the end, but were not utilized where they would have
been relevant. From this I concluded that a brief presentation, as easily understood as
possible, of some of the principal results of my efforts might not be superfluous. Of great
influence on the content and presentation was what I have learned at the unforgettable
meeting of the British Association in Oxford and the subsequent letters of numerous
English scientists, some private and some published in Nature.†

I intend to follow Part I by a second part, where I will treat the van der Waals theory,
gases with polyatomic molecules, and dissociation. An explicit proof of Equation (110a)—
which is only indicated briefly in §16, in order to avoid repetition—will also be included.

Unfortunately it was often impossible to avoid the use of long formulas to express
complicated trains of thought, and I can well imagine that to many who do not read over
the whole work, the results will perhaps not seem to justify the effort expended. Aside from
many results of pure mathematics which, though likewise apparently fruitless at first, later
become useful in practical science as soon as our mental horizon has been broadened, even
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the complicated formulas of Maxwell’s theory of electromagnetism were often considered
useless before Hertz’s experiments. I hope this will not also be the general opinion
concerning gas theory!

Vienna, September, 1895

Ludwig Boltzmann

INTRODUCTION

§1. Mechanical analogy for the behavior of a gas.

Clausius has made a sharp distinction between the general theory of heat, based
essentially on the two fundamental principles of thermodynamics, and the special theory of
heat, which starts out by making a definite assumption—that heat is molecular motion—
and then attempts to construct a more precise description of the nature of this motion.

The general theory of heat also requires hypotheses which go beyond the bare facts of
nature. Nevertheless, it is obviously less dependent on special assumptions than the special
theory, and it is desirable and necessary to be able to separate its exposition from that of the
special theory, and to show that it is independent of the subjective assumptions of the latter.
Clausius has already done this very clearly, and indeed has based the division of his book*
into two parts on just this principle, and it would be useless to repeat his procedure.

Recently, the mutual relations of these two branches of the theory of heat have changed
somewhat. Through the exploitation of some very interesting analogies and differences,
which the properties of energy exhibit in various phenomena of physics, there has arisen
the so-called Energetics, which is unfavorable to the view that heat is molecular motion.
This view is in fact unnecessary for the general theory of heat and, as is well known, was
not held by Robert Mayer. The further development of Energetics is certainly very
important for science ; however, up to now its concepts are still rather unclear, and its
theorems not very precisely expressed, so that it cannot replace the older theory of heat in
dealing with new special cases where the results are not already known.†

Likewise in the theory of electricity, the older mechanical explanations of phenomena
by action at a distance, customarily employed especially in Germany, have suffered a
shipwreck. Indeed, Maxwell speaks with the greatest respect of Wilhelm Weber’s theory,
which by determining the conversion factor of electrostatic and electromagnetic units and
by discovering the relation of that factor to the velocity of light has laid the first stone in the
structure of the electromagnetic theory of light; yet one accedes to the contention that
Weber’s mechanical hypothesis about the action of electrical force is harmful to the
progress of science.

In England, views on the nature of heat and on atomistics have remained relatively
unchanged. But on the continent, where earlier the assumption of central forces, useful in
astronomy, had been generalized to an epistemological demand, and for this reason
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Maxwell’s electrical theory did not receive much notice for a decade and a half (only this
generalization was obnoxious), the provisional character of all hypotheses has now been
generalized, and it has been concluded that the assumption that heat is motion of the
smallest particles of matter will eventually be proved false and discarded.

It must however be remembered that any similarity between the kinetic theory and the
doctrine of central forces is purely coincidental. Gas theory has in fact a particular kinship
with Maxwell’s theory of electricity; the visible motion of a gas, viscosity, and heat, are
conceived as phenomena that are essentially different in stationary or almost stationary
states, while in certain transitional cases (very rapid sound waves with evolution of heat ;
viscosity or heat conduction in very dilute gases1) a sharp distinction is no longer possible
between visible and thermal motion (cf. §24). Likewise in Maxwell’s theory of electricity,
in borderline cases the distinction between electrostatic and electrodynamic forces, etc., can
no longer be maintained. It is just in this transition region that Maxwell’s electrical theory
has yielded new facts; likewise the gas theory has led to completely new laws in these
transition regions, which appear to reduce to the usual hydrodynamic equations, corrected
for viscosity and heat conduction, as purely approximate formulae (cf. §23). The
completely new laws were indicated for the first time in Maxwell’s 16-year-old paper, “On
stresses in rarefied gases.”* The phenomena which the theories based on older
hydrodynamic experience can never describe are those connected with radiometer action.†
Researches under many different conditions, and quantitative observations, have definitely
proved that the stimulus and explanation for this previously unknown realm of
experimental investigation could only have come from the theory of gases; likewise, the
tremendous fertility of Maxwell’s theory of electricity for experimental investigations for
more than twenty years has seldom been pointed out.

Although in the following exposition any qualitative difference between heat and
mechanical energy will be excluded, in the treatment of collisions of molecules the old
distinction between potential and kinetic energy will be retained. This does not basically
affect the nature of the subject. The assumptions about the interaction of molecules during a
collision have a provisory character, and will certainly be replaced by others. I have also
studied a gas theory in which, instead of forces acting during collisions, one merely has
conditional equations in the sense of the posthumous mechanics of Hertz,* which are more
general than those of elastic collisions; I have abandoned this theory, however, since I only
had to make more new arbitrary assumptions.

Experience teaches that one will be led to new discoveries almost exclusively by means
of special mechanical models. Maxwell himself recognized the defect of Weber’s electrical
theory at first glance; on the other hand, he pursued zealously the theory of gases and the
method of mechanical analogies, which goes beyond that which he calls the method of
purely mathematical formulae.†

As long as a clearer and better representation is not available, we shall still need to go
beyond the general theory of heat, and without impugning its importance, cultivate the old
hypotheses of the special theory of heat. Indeed, since the history of science shows how
often epistemological generalizations have turned out to be false, may it not turn out that the
present “modern” distaste for special representations, as well as the distinction between
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qualitatively different forms of energy, will have been a retrogression? Who sees the
future? Let us have free scope for all directions of research; away with all dogmatism,
either atomistic or antiatomistic! In describing the theory of gases as a mechanical analogy,
we have already indicated, by the choice of this word, how far removed we are from that
viewpoint which would see in visible matter the true properties of the smallest particles of
the body.

We shall first take the modern viewpoint of pure description, and accept the known
differential equations for the internal motions of solid and fluid bodies. From these it
follows in many cases, for example collisions of two solid bodies, motion of fluids in
closed vessels, etc., that as soon as the form of the body deviates the least bit from a simple
geometrical figure, waves must arise, which cross each other ever more randomly, so that
the kinetic energy of the original visible motion must finally be dissolved into invisible
wave motion. This mathematical consequence of the equations describing the phenomena
leads (to a certain extent by itself) to the hypothesis that all vibrations of the smallest
particles, into which the ever diminishing waves must finally be transformed, must be
identical with the heat that we observe to be produced, and that heat generally is a motion
in small—to us, invisible— regions.

Whence comes the ancient view, that the body does not fill space continuously in the
mathematical sense, but rather it consists of discrete molecules, unobservable because of
their small size. For this view there are philosophical reasons. An actual continuum must
consist of an infinite number of parts; but an infinite number is undefinable. Furthermore, in
assuming a continuum one must take the partial differential equations for the properties
themselves as initially given. However, it is desirable to distinguish the partial differential
equations, which can be subjected to empirical tests, from their mechanical foundations (as
Hertz emphasized in particular for the theory of electricity). Thus the mechanical
foundations of the partial differential equations, when based on the coming and going of
smaller particles, with restricted average values, gain greatly in plausibility; and up to now
no other mechanical explanation of natural phenomena except atomism has been
successful.

A real discontinuity of bodies is moreover established by numerous, and moreover
quantitatively agreeing, facts. Atomism is especially indispensable for the clarification of
the facts of chemistry and crystallography. The mechanical analogy between the facts of
any science and the symmetry relations of discrete particles pertains to those most essential
features which will outlast all our changing ideas about them, even though the latter may
themselves be regarded as established facts. Thus already today the hypothesis that the stars
are huge bodies millions of miles away is similarly viewed only as a mechanical analogy
for the representation of the action of the sun and the faint visual perceptions arising from
the other heavenly bodies, which could also be criticized on the grounds that it replaces the
world of our sense perceptions by a world of imaginary objects, and that anyone could just
as well replace this imaginary world by another one without changing the observable facts.

I hope to prove in the following that the mechanical analogy between the facts on which
the second law of thermodynamics is based, and the statistical laws of motion of gas
molecules, is also more than a mere superficial resemblance.
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The question of the utility of atomistic representations is of course completely unaffected
by the fact, emphasized by Kirchhoff,* that our theories have the same relation to nature as
signs to significates, for example as letters to sounds, or notes to tones. It is likewise
unaffected by the question of whether it is not more useful to call theories simply
descriptions, in order to remind ourselves of their relation to nature. The question is really
whether bare differential equations or atomistic ideas will eventually be established as
complete descriptions of phenomena.

Once one concedes that the appearance of a continuum is more clearly understood by
assuming the presence of a large number of adjacent discrete particles, assumed to obey the
laws of mechanics, then he is led to the further assumption that heat is a permanent motion
of molecules. Then these must be held in their relative positions by forces, whose origin
one can imagine if he wishes. But all forces that act on the visible body but not equally on
all the molecules must produce motion of the molecules relative to each other, and because
of the indestructibility of kinetic energy these motions cannot stop but must continue
indefinitely.

In fact, experience teaches that as soon as the force acts equally on all parts of a body—
as for example in so-called free fall—all the kinetic energy becomes visible. In all other
cases, we have a loss of visible kinetic energy, and hence creation of heat. The view offers
itself that there is a resulting motion of molecules among themselves, which we cannot see
because we do not see individual molecules, but which however is transmitted to our
nerves by contact, and thus creates the sensation of heat. It always moves from bodies
whose molecules move rapidly to those whose molecules move more slowly, and because
of the indestructibility of kinetic energy it behaves like a substance, as long as it is not
transformed into visible kinetic energy or work.

We do not know the nature of the force that holds the molecules of a solid body in their
relative positions, whether it is action at a distance or is transmitted through a medium, and
we do not know how it is affected by thermal motion. Since it resists compression as much
as it resists dilatation, we can obviously get a rather rough picture by assuming that in a
solid body each molecule has a rest position. If it approaches a neighboring molecule it is
repelled by it, but if it moves farther away there is an attraction. Consequently, thermal
motion first sets a molecule into pendulum-like oscillations in straight or elliptical paths
around its rest position A (in the symbolic Fig. 1, the centers of gravity of the molecules are
indicated). If it moves to A′, the neighboring molecules B and C repel it, while D and E
attract it and hence bring it back to its original rest position. If each molecule vibrates
around a fixed rest position, the body will have a fixed form; it is in the solid state of
aggregation. The only consequence of the thermal motion is that the rest positions of the
molecules will be somewhat pushed apart, and the body will expand somewhat. However,
when the thermal motion becomes more rapid, one gets to the point where a molecule can
squeeze between its two neighbors and move from A to A″ (Fig. 1). It will no longer then
be pulled back to its old rest position, but it can instead remain where it is. When this
happens to many molecules, they will crawl among each other like earthworms, and the
body is molten. Although one may find this description rather crude and childish, it may be
modified later and the apparent repulsive force may turn out to be a direct consequence of
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the motion. In any case, one will allow that when the motions of the molecules increase
beyond a definite limit, individual molecules on the surface of the body can be torn off and
must fly out freely into space; the body evaporates. If it is in an enclosed vessel, then this
will be filled with freely moving molecules, and these can occasionally penetrate into the
body again; as soon as the number of recondensing molecules is, on the average, equal to
the number of evaporating ones, one says that the vessel is saturated with the vapor of the
body in question.

FIG. 1

A sufficiently large enclosed space, in which only such freely moving molecules are
found, provides a picture of a gas. If no external forces act on the molecules, these move
most of the time like bullets shot from guns in straight lines with constant velocity. Only
when a molecule passes very near to another one, or to the wall of the vessel, does it
deviate from its rectilinear path. The pressure of the gas is interpreted as the action of these
molecules against the wall of the container.

§2. Calculation of the pressure of a gas.

We shall now undertake a more detailed consideration of such a gas. Since we assume
that the molecules obey the general laws of mechanics, then in collisions of the molecules
with each other and with the wall, the principle of conservation of kinetic energy, and of
motion of the center of gravity, must be satisfied. We can make as varying pictures of the
internal properties of the molecules as we like; as long as these two principles are satisfied,
we shall obtain a system which shows a definite mechanical analogy with the actual gas.
The simplest such picture is one in which the molecules are completely elastic, negligibly
deformable spheres, and the wall of the container is a completely smooth and elastic
surface. However, when it is convenient we can assume a different law of force. Such a
law, provided it is in agreement with the general mechanical principles, will be no more
and no less justified than the original assumption of elastic spheres.

We imagine a container of volume Ω of any arbitrary shape, filled with a gas, against
whose walls the gas molecules are reflected exactly like completely elastic spheres. Let a
part of the wall of the container, AB, have surface area φ. We place perpendicular to it,
running from inside to outside, the positive axis of abscissas. The pressure on AB will
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clearly not be changed if we imagine behind this surface element a right cylinder on the
base AB, in which the surface element AB is like a piston which can be displaced parallel
to itself. This piston will then be pushed into the cylinder by the molecular impacts. If a
force P acts from the outside in the negative direction, then its intensity can be chosen so
that the molecular impacts are kept in equilibrium, and the piston makes no visible motion
in either direction.

During any instant of time dt, there may be several molecules colliding with the piston
AB ; the first exerts a force q1, the second a force q2, etc., in the positive abscissa direction,
on the piston. Denoting by M the mass of the piston, and by U the velocity in the positive
direction, then one has for the time element dt the equation

If one multiplies by dt and integrates over an arbitrary time t, then :

If P is to be equal to the pressure of the gas, then the piston must not show any noticeable
motion, aside from invisible fluctuations. In the above formula, U0 is the value of its
velocity in the abscissa direction at the initial time, and U1 is its value after an interval of
time t. Both quantities will be very small; indeed, one can easily choose the time t such that
U1 = U0, since the piston must periodically assume the same velocity during its various
small fluctuations. In any case, U1 – U0 cannot continually increase with increasing time,
and therefore with increasing time the quotient (U1 – U0)/t must approach the limit zero.
Whence follows:

The pressure is therefore the mean value of the sum of all the small pressures that the
individual colliding molecules exert on the piston at different times. We shall now calculate
∫qdt for any one collision which the piston experiences during the time t with a molecule.
Let the mass of the molecule be m, and let the component of its velocity in the abscissa
direction be u. The collision begins at time t1 and ends at time t1+τ; before time t1 and after
time t1+τ, the molecule exerts essentially no force on the piston. Then
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During the time of the collision, however, the force which the molecule exerts on the piston
is equal and opposite to the force which the piston exerts on the molecule:

We denote by ξ the velocity component of the colliding molecule before the collision in
the direction of the positive abscissa axis, and by –ξ the same component after the collision,
and we obtain :

Since the same is true for all other colliding molecules, it follows from Equation (1) that:

where the sum is to be extended over all molecules that strike the piston between the
instants 0 and t. Only those which are in collision with the piston at the instants 0 and t are
thereby omitted, which is permissible when the total time interval t is very large compared
to the duration of an individual collision.

We shall see (§3) that even when only a single gas is present in the container, all the
molecules can be no means have the same velocity. In order to preserve the greatest
generality, we assume that in the container there are different kinds of molecules, which
however are all reflected like elastic spheres from the walls. n1Ω molecules will have mass
m1 and velocity c1 with components ξ1, η1, ζ1 in the coördinate directions. They should be
uniformly distributed, on the average, throughout the interior volume Ω of the container, so
that there are n1 in unit volume. Further, there are n2Ω molecules distributed similarly,
having another velocity c2 with components ξ2, η2, ζ2 and perhaps also a different mass
m2. The quantities n3, c3, ξ3, η3, ζ3, m3, etc., up to ni, ci, ξi, ηi, ζi, mi have similar
meanings. The state of the gas in the container should remain stationary during the time t,
so that when during a time τ some of the n1Ω molecules cease to have velocity components
ξ1, η1, ζ1 as a result of collisions with other molecules or with the wall, an equal number of
molecules on the average will acquire the same velocity components during the same time.

We must first calculate how many of our n1Ω molecules strike the piston in the time
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interval t, on the average. During a short time dt, all n1Ω molecules travel the distance c1dt
in a direction such that their projections on the coördinate axes are ξ1dt, η1dt, and ζ1dt. If
ξ1 is negative, then the molecule considered cannot collide with the piston. If it is positive,
we construct in the container an oblique cylinder, whose base is the piston AB, and whose
side is equal to and in the same direction as the path c1dt. Then those, and only those, of
our n1Ω molecules which at the beginning of the interval dt are in this cylinder—whose
number we shall denote by dv—will collide with the piston during time dt. The n1Ω

molecules are on the average uniformly distributed in the entire container, and this uniform
distribution extends even up to the wall, since molecules reflected from the wall move
backwards as if it did not exist and there was instead another gas with the same properties
beyond it. Then n1Ω is to dv as Ω is to the volume of the oblique cylinder;2 the latter,
however, is equal to φξ1dt, whence it follows that :

Since now the state in the container remains stationary, during any arbitrary time t, n1φξ1t
of our n1Ω molecules collide with the piston. They all have mass m1 and velocity
component ξ in the abscissa direction before the collision, and contribute to the sum ∑mξ
in Equation (2) the term:

and since this is true for all molecules, we obtain

where the sum is to be extended over all molecules in the container whose velocity
components in the abscissa direction are positive. Ρ/φ = p is the pressure corresponding to
unit surface. The formula will also be valid when φ is infinitesimal, so that the container
wall need not be flat anywhere. Under the assumption (whose validity will be shown later,
in §19) that in a stationary gas there is no preferred direction in space for the direction of
motion of a molecule, there must be equally many molecules of each kind in the positive as

in the negative abscissa direction, so that  summed over all molecules with

negative ξh is as large as the sum over molecules with positive ξh, and thus one gets

where the summation is now over all molecules in the container, and therefore over all
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values of h from h = 1 to h = i.
When any quantity g has the value g1 for n1 molecules, the value g2 for n2 molecules,

etc., and the value gi for ni molecules, then we shall denote the expression:

by  and call it the mean value of g. Note that

is the total number of all the molecules. Then we can write

If all molecules have the same mass, then

Since the gas has the same properties in all directions, we have ξ2 = η2 = ζ2 Since
furthermore, for each molecule, c2 = ξ2+η2+ζ2, then also  and 

. Hence we obtain

where nm is the total mass contained in unit volume of the gas, i.e., the density ρ of the gas;
one has therefore

Since p and ρ can be determined experimentally, one can calculate . One finds that at

0°C,  is 461 m/sec for oxygen; for nitrogen it is 492 m/sec; for hydrogen it is 1,844

m/sec. It is this velocity whose square is equal to the mean square velocity of the molecule;
it is also the velocity with which all molecules must move in order to produce in the gas the
prevailing pressure, when all molecules have equal velocities and move equally often in all
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directions in space, or when one third of the molecules move back and forth in a direction
perpendicular to the surface considered, the other two thirds moving in parallel directions.
On the other hand,  is of the same order of magnitude as the mean velocity of a

molecule, but differs from it by a numerical factor (cf. §7).
When other gases are present in the container, let n′, n″, etc. be the number of molecules

in unit volume, m′, m″, etc. the masses of each molecule for the different gases, and ρ′ , ρ″,
etc. their partial densities—i.e., the density which each gas would have if it were alone in
the container. It is then evident from Equations (4) and (5) that

is the total pressure of the gas mixture; it is also equal to the sum of the partial pressures,
i.e., the pressure which each gas would exert if it were alone in the container.

The force that two molecules exert on each other during a collision can be completely
arbitrary, provided only that the sphere of action is small compared to the mean free path.
On the other hand, it will be assumed that the molecules are reflected at the walls like
elastic spheres. We shall make ourselves independent of the latter restrictive assumption in
§20. A second general derivation of the equations of this section from the virial theorem
will be given in Part II, §50.

* Goethe, Faust, Part 2, Act V, final “Chorus Mysticus.” At least seven different English translations
of this couplet have been published; roughly, it means that all transitory (i.e., earthly) things are only
symbols or reflections (of reality). It is suggested that the reader interpret this in the light of
Boltzmann’s philosophy of science (see Translator’s Introduction).

† O. E. Meyer, Die kinetische Theorie der Gase (Breslau: Maruschke und Berendt, 1877; second
edition, 1899). Kirchhoff, Vorlesungen über die Theorie der Wärme, p. 134 et seq. (Leipzig: B. G.
Teubner, 1894).

* Poincaré, Thermodynamique (Paris: Gauthier-Villars, 1892).
† Bryan, Nature 51, 31, 152, 176, 262, 319 (1894–1895); 52, 244 (1895). Culverwell, Nature 50, 617

(1894) ; 51,78,105,246, 581 (1894–1895) ; 52, 149 (1895). Burbury, Nature 51, 175 (1894); 52, 316
(1895). Fitzgerald, Nature 51, 221 (1895). Boltzmann, Nature 51, 413, 581 (1895).

* Clausius, Abhandlungen über die mechanische Wärmetheorie (Braunschweig: F. Vieweg, Part I,
1864, Part II, 1867, Part III, 1889). More complete bibliographic information on this and other works
cited may be found in the Bibliography at the end of this book.

† There is space to cite only a few of the many works on Energetics : Georg Helm, Die Lehre von der
Energie (Leipzig, 1887); Grundziige der mathematischen Chemie (Leipzig, 1894); Ann. Physik [3] 57,
646 (1896); Die Energetik (Leipzig, 1898). Wilhelm Ostwald, Leipzig Ber. 43, 271 (1891), 44, 211
(1892); Ann. Physik [3] 58, 154 (1896); Verh. Ges. d. Naturf. Aerzte, Th. 1, p. 155 (1895) ;
Individuality and Immortality (Boston: Houghton, Mifllin; 1906); Die Forderung des Tages (Leipzig,
1 9 1 0 ) ; Energetische Grundlagen der Kulturwissenschaft (Leipzig, 1909) ; Monistische
Sonntagspredigten (Leipzig, 1911); Der energetische Imperativ (Leipzig, 1912); Die Energie (Leipzig,
1912); Die Philosophie der Werte (Leipzig, 1913). Boltzmann, Ann. Physik [3] 57, 39, 58, 595 (1896),
60, 231 (1897) 61, 790 (1897); Wien. Ber. 106, 83 (1897); Verh. Ges. d. Naturf. Aertze, Th. 2, p. 65
(1898); Th. 1, p. 99 (1899). Pierre Duhem, Traité d’energetique (Paris, 1911). Max Planck, Z. phys.
Chem. 8, 647 (1891); Ann. Physik [3] 57, 72 (1896). Abel Rey, La Théorie de la Physique chez les
physiciens contemporains (Paris, 1907). Jules Sageret, La vague mystique (Paris, 1920). René Dugas, La
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Théorie Physique au sens de Boltzmann (Neuchatel-Suisse: Editions du Griffon, 1959).
1 Cf. Kundt and Warburg, Ann. Physik [2] 155, 341 (1875). [Numbered notes are by Boltzmann.—

TR.]
* Maxwell, Phil. Trans. 170, 231 (1880).
† William Crookes, though not its original discoverer, was the first to investigate extensively and

publicize the radiometer effect: see Proc. R. S. London 22, 37 (1874), Phil. Trans. 164, 501 (1874), and
many other papers. It created a sensation in the scientific world during 1875–1877, since it apparently
was a demonstration of the long-sought pressure of light. However, it was immediately suggested by
Osborne Reynolds [Proc. R. S. London 22, 401 (1874)] and others that the motion of the radiometer
plates was probably due to the reaction of gas molecules leaving the heated sides. Arthur Schuster [Proc.
R. S. London 24, 391 (1876)] showed that when the entire radiometer is suspended in a larger evacuated
vessel, the case turns in a direction opposite to that in which the plates turn, so that the effect must be due
largely to internal rather than external causes. The light shining on the radiometer plates provides
energy to heat them up, but not momentum to move them in a particular sense. While it was thus
recognized that the kinetic theory must provide the explanation for the radiometer, the detailed
mechanism and quantitative theory were not worked out until much later. See E. H. Kennard, Kinetic
Theory of Gases (New York: McGraw-Hill, 1938), pp. 333–337, and L. B. Loeb, The Kinetic Theory of
Gases, 2nd ed. (New York: McGraw-Hill, 1934), pp. 364–386.

* Heinrich Hertz, Die Prinzipien der Mechanik (Leipzig, 1894).
† See A. E. Woodruff, Isis 53, 439 (1962).
* Kirchhoff, Vorlesungen üher mathematische Physik. I. Mechanik (Leipzig: B. G. Teubner, 1874.)
2 Concerning the conditions of validity of a similar proportion, cf. §3.
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CHAPTER I

The molecules are elastic spheres. External forces and visible mass

motion are absent.

§3. Maxwell’s proof of the velocity distribution law; frequency of collisions.

We shall suppose for a moment that in the container there is a single gas composed of
completely identical molecules. The molecules will also from now on—unless we specify
otherwise—be assumed to behave like completely elastic spheres when they collide with
each other. Even if all the molecules initially had the same velocity, there would soon occur
collisions in which the velocity of one colliding molecule is nearly in the direction of the
line of centers, but that of the other is nearly perpendicular to it. The first molecule would
thereby end up with nearly zero velocity, while the velocity of the second would become 

 times as large. In the course of further collisions it would soon happen, if the number

of molecules were large enough, that all possible velocities would occur, from zero up to a
velocity much larger than the original common velocity of all the molecules; it is then a
question of calculating the law of distribution of velocities among the molecules in the final
state thus reached, or, as one says more briefly, to find the velocity distribution law. In
order to find it, we shall consider a more general case. We assume that we have two kinds
of molecules in the container. Each molecule of the first kind has mass m, and each of the
second has mass m1. The velocity distribution which prevails at any arbitrary time t will be
represented by drawing as many straight lines (starting from the origin of coördinates) as
there are m-molecules in unit volume. Each line will be the same in length and direction as
the velocity of the corresponding molecule. Its endpoint will be called the velocity point of
the corresponding molecule. Now at time t let

be the number of m-molecules whose velocity components in the three coördinate
directions lie between the limits

and for which the velocity points thus lie in the parallelepiped having at one corner the
coördinates ξ, η, ζ and having edges of length dξ, dη, dζ parallel to the coördinate axes. We
shall always call this the parallelepiped dω. We shall also use the abbreviations dω for the
product dξdηdζ, and f for f(ξ, η, ζ, t). If dω were a volume element of any other shape,
though still infinitesimal, the number of m-molecules whose velocity points lie inside dω
would still be equal to
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as one can see by dividing the volume element dω into even smaller parallelepipeds. If the
function f is known for one value of t, then the velocity distribution for the m-molecules is
determined at time t. Similarly we can represent the velocity of each m1-molecule by a
velocity point, and denote by

the number of molecules whose velocity components lie between any other limits

and for which therefore the velocity points lie in a similar parallelepiped dω1. Likewise we
write dω1 for dξ1dη1dζ1 and F1 for F(ξ1, η1, ζ1, t). Moreover, we shall completely exclude
any external forces, and assume that the walls are completely smooth and elastic. Then the
molecules reflected from the wall will move as if they came from a gas which is the mirror
image of our gas, and which is thus completely equivalent to it; the container wall is
thought of as a reflecting surface. According to these assumptions, the same conditions will
prevail everywhere inside the container, and if the number of molecules in a volume
element whose velocity components lie between the limits (10) is initially the same
everywhere in the gas, then this will also be true for all subsequent times. If we assume this,
then it follows that the number of m-molecules inside any volume Φ that satisfy the
conditions (10) is proportional to the volume Φ and is therefore equal to

likewise the number of m1-molecules in the volume Φ that satisfy the conditions (13) is:

From these assumptions it follows that the molecules that leave any space as a result of their
progressive motion will on the average be replaced by an equal number of molecules from
the neighboring space or by reflection at the walls of the container, so that the velocity
distribution is changed only by collisions, and not by the progressive motion of the
molecules. We shall make ourselves independent of these restrictive conditions (made now
to simplify the calculation) in §§15–18, where we shall take account of the effect of gravity
and other external forces.

We next consider only the collisions of an m-molecule with an m1-molecule and indeed
we shall single out, from all those collisions that can occur during the interval dt, only those
for which the following three conditions are satisfied:

1. The velocity components of the m-molecule lie between the limits (10) before the
collision, hence its velocity point lies in the parallelepiped dω.

Pure Mathematical Physics



16

2. The velocity components of the m1-molecule lie between the limits (13) before the
collision, hence its velocity point lies in the parallelepiped dω1. All m-molecules for which
the first condition is fulfilled will be called “m-molecules of the specified kind,” and
similarly we speak of “m1-molecules of the specified kind.”

3. We construct a sphere of unit radius, whose center is at the origin of coördinates, and
on it a surface element dλ. The line of centers of the colliding molecules drawn from m to
m1 must, at the moment of collision, be parallel to a line drawn from the origin to some
point of the surface element dλ. The aggregate of these lines constitutes the cone dλ.

All collisions that take place in such a way that these three conditions are fulfilled will
be called “collisions of the specified kind” and we have the problem of determining the
number dv of collisions of the specified kind that take place during a time interval dt in unit
volume. We shall represent these collisions in Figure 2. Let О be the origin of coördinates,
С and C1 the velocity points of the two molecules before the collision, so that the lines ОС
and ОС1 represent these velocities in magnitude and direction, before the collision. The
point С must lie inside the parallelepiped dω, and the point C1 inside the parallelepiped
dω1. (The two parallelepipeds are not shown in the figure.) Let OK be a line of unit length
which has the same direction as the line of centers of the two molecules at the instant of the
collision, drawn from m to m1. The point K must therefore lie inside the surface element
dλ, which is also not shown in the figure. The line C1C = g represents in magnitude and
direction the relative velocity of the m-molecule with respect to the m1-molecule before the
collision, since its projections on the coördinate axes are equal to ξ – ξ1, η – η1, and ζ – ζ1,
respectively. The frequency of collisions obviously depends only on the relative velocity.
Hence if we wish to find the number of collisions of the specified kind, we can imagine
that the specified m1-molecule is at rest, while the m-molecule moves with velocity g. We
imagine further that a sphere of radius σ (the sphere σ) is rigidly attached to each of the
latter molecules, so that the center of the sphere always coincides with the center of the
molecule, σ should be equal to the sum of the radii of the two molecules. Each time that the
surface of such a sphere touches the center of an m1-molecule, a collision takes place. We
now draw from the center of each sphere σ a cone, similar and similarly situated to the
cone dλ. A surface element of area σ2dλ is thereby cut out from the surface of each of
these spheres. Since all the spheres are rigidly attached to the corresponding molecules, all
these surface elements move a distance gdt relative to the specified m1-molecule. A
collision of the specified kind occurs whenever one of these surface elements touches the

center of a specified m1-molecule, which is of course possible only if the angle ϑ between
the directions of the lines C1C and OK is acute. Each of these surface elements traverses by
its relative motion toward the m1-molecule an oblique cylinder of base σ2dλ and height g

cos ϑdt. Since there are fdωm molecules of the specified kind in unit volume, all the
oblique cylinders traversed in this manner by all the surface elements have total volume
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FIG. 2.

All centers of m1-molecules of the specified kind lying inside the volume Φ will touch
during the interval dt one surface element σ2dλ and hence the number dν of collisions of
the specified kind which occur in the volume element during time dt is equal to the number
ΖΦ of centers of m1-molecules of the specified kind that are in the volume Φ at the
beginning of dt. But according to Equation (14a) this is

In this formula there is contained a special assumption, as Burbury1 has clearly
emphasized. From the standpoint of mechanics, any arrangement of molecules in the
container is possible; in such an arrangement, the variables determining the motion of the
molecules may have different average values in one part of the space filled by the gas than
in another, where for example the density or mean velocity of a molecule may be larger in
one half of the container than in the other, or more generally some finite part of the gas has
different properties than another. Such a distribution will be called molar-ordered [molar-
geordnete]. Equations (14) and (14a) pertain to the case of a molar-disordered distribution.
If the arrangement of the molecules also exhibits no regularities that vary from one finite
region to another—if it is thus molar-disordered—then nevertheless groups of two or a
small number of molecules can exhibit definite regularities. A distribution that exhibits
regularities of this kind will be called molecular-ordered. We have a molecular-ordered
distribution if—to select only two examples from the infinite manifold of possible cases—
each molecule is moving toward its nearest neighbor, or again if each molecule whose
velocity lies between certain limits has ten much slower molecules as nearest neighbors.
When these special groupings are not limited to particular places in the container but rather
are found on the average equally often throughout the entire container, then the distribution
would be called molar-disordered. Equations (14) and (14a) would then always be valid for
individual molecules, but Equation (17) would not be valid, since the nearness of the m-
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molecule would be influenced by the probability that the m1-molecule lies in the space Φ.
The presence of the m1-molecule in the space Φ cannot therefore be considered in the
probability calculation as an event independent of the nearness of the m-molecule. The
validity of Equation (17) and the two similar equations for collisions of m- or m1-molecules
with each other can therefore be considered as defining the meaning of the expression: the
distribution of states is molecular-disordered.

If the mean free path in a gas is large compared to the mean distance of two neighboring
molecules, then in a short time, completely different molecules than before will be nearest
neighbors to each other. A molecular-ordered but molar-disordered distribution will most
probably be transformed into a molecular-disordered one in a short time. Each molecule
flies from one collision to another one so far away that one can consider the occurrence of
another molecule, at the place where it collides the second time, with a definite state of
motion, as being an event completely independent (for statistical calculations) of the place
from which the first molecule came (and similarly for the state of motion of the first
molecule). However, if we choose the initial configuration on the basis of a previous
calculation of the path of each molecule, so as to violate intentionally the laws of
probability, then of course we can construct a persistent regularity or an almost molecular-
disordered distribution which will become molecular-ordered at a particular time.
Kirchhoff2 also makes the assumption that the state is molecular-disordered in his definition
of the probability concept.

That it is necessary to the rigor of the proof to specify this assumption in advance was
first noticed in the discussion of my so-called H-theorem or minimum theorem. However, it
would be a great error to believe that this assumption is necessary only for the proof of this
theorem. Because of the impossibility of calculating the positions of all the molecules at
each time, as the astronomer calculates the positions of all the planets, it would be
impossible without this assumption to prove the theorems of gas theory. The assumption is
made in the calculation of the viscosity, heat conductivity, etc. Also, the proof that the
Maxwell velocity distribution law is a possible one—i.e., that once established it persists for
an infinite time—is not possible without this assumption. For one cannot prove that the
distribution always remains molecular-disordered. In fact, when Maxwell’s state has arisen
from some other state, the exact recurrence of that other state will take place after a
sufficiently long time (cf. the second half of §6). Thus one can have a state arbitrarily close
to the Max-wellian state which finally is transformed into a completely different one. It is
not a defect that the minimum theorem is tied to the assumption of disorder, rather it is a
merit that this theorem has clarified our ideas so that one recognizes the necessity of this
assumption.

We shall now explicitly make the assumption that the motion is molar- and molecular-
disordered, and also remains so during all subsequent time. Equation (17) is then valid, and
we obtain

This is the number of collisions of the specified kind in unit volume in time dt, which was
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to be calculated. We ignore the grazing collisions, whose number is in any case a higher-
order infinitesimal, so that in each collision at least one velocity component of each
molecule changes by a finite amount. In each collision of the specified kind, the number
fdω of m-molecules whose velocity components lie between the limits (10), which we call
m-molecules of the specified kind, and also the number F1dω1 of m1-molecules of the
specified kind, both decrease by one. In order to find the total decrease ∫dv suffered by fdω
during dt as a result of all collisions of m-molecules with m1-molecules (without restriction
on the magnitude and direction of the line of centers), we must consider ξ, η, ζ, dω and dt
as constant in Equation (18) and integrate dω1 and dλ over all possible values—i.e., we

integrate dω1 over all space, and dλ over all surface elements for which the angle ϑ is
acute. We shall denote the result of this integration by ∫dv.

The decrease  which the number fdω experiences as a result of the corresponding
collisions of m-molecules with each other is obviously given by a completely analogous
formula; we simply denote by ξ1, η1, ζ1 the velocity components of another m-molecule
before the collision. All other quantities have the same meaning, except that one replaces
m1 by m and the function F by the function f, and σ by the diameter s of an m-molecule.
When we have instead of dv the expression

where f1 is an abbreviation for f(ξ1 η1, ζ1, t). To obtain —i.e., the total decrease of

fdω resulting from collisions of the m-molecules with each other during dt—one must
obviously consider ξ, η, ζ, dω, and dt as constant and integrate dω1 and dλ over all possible
values. The total decrease of fdω during dt is therefore equal to . If the state

is to be stationary, this must be exactly equal to the number of m-molecules whose
velocities at the beginning of dt do not fulfill the conditions (10) but which during this time
interval are changed by collisions in such a way that they now satisfy them—they obtain by
collision a velocity lying between the limits (10). In other words,  must be

equal to the total increase of fdω resulting from collisions.

§4. Continuation; values of the variables after the collision; collisions of the
opposite kind.*

To find this increase, we shall next seek the velocities of the two molecules after a
collision of the specified kind. Before the collision one of the colliding molecules, whose
mass is m, has velocity components ξ, η, ζ; the other, of mass m1, has components ξ1, η1,

ζ1. The line of centers drawn from m to m1 forms at the instant of collision an angle ϑ with

the relative velocity of the molecule m with respect to m1. If the angle ∊ between the plane
of these two lines and any other given plane—for example, that of the two velocities before
the collision—is given, then the collision is completely specified. The velocity components
ξ′, η′, ζ′, and  of the two molecules after the collision can thus be expressed as
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explicit functions of the 8 variables ξ, η, ζ, ξ1, η1, ζ1, ϑ, ∊:

We prefer however the geometric construction to the algebraic development of the
functions (20), and we return to Figure 2, p. 39. We divide the segment C1C at the point S
into two parts, such that

Then the line OS represents the velocity of the common center of mass of the two
molecules; for one sees that its three projections on the coördinate axes have the values:

But these are in fact just the velocity components of the common center of mass. Just as we
have shown that C1C is the relative velocity of the m-molecule with respect to m1, it
follows also that SC and SC1 are the relative velocities of the two molecules with respect to
the common center of mass before the collision. The components of these relative velocities
perpendicular to the line of centers OK will not be changed by the collision. The
components in the direction OK are p and p1 before the collision, and p′ and  after the

collision. Then according to the principle of conservation of the motion of the center of
mass:

and according to the principle of conservation of kinetic energy:

Whence it follows that

or
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and one sees at once that, since the molecules must separate from each other after the
collision, only the latter solution is correct, and that hence the two components of relative
velocity with respect to the center of mass, which fall in the direction K1Κ2||OK, will
simply be reversed by the collision.

From this one obtains the following construction of the lines ОС′ and , which

represent the velocities of the two molecules after the collision in magnitude and direction.
One draws through S the line K1K2; then one draws in the plane of the lines Κ1Κ2 and
C1C, the two lines SC′ and SC1′, which are equal in length to the lines SC and SC1, and
are equally inclined on the other side from K1K2. The two endpoints C′ and  of the

latter two lines are at the same time the endpoints of the required lines ОС′ and . We

can also call them the velocity points of the two molecules after the collision. The
projections of OC′ and  on the three coördinate axes are thus the velocity

components   of the two molecules after the collision.

These geometrical constructions completely replace the alternative algebraic development
of the functions (20). The points , and C′ obviously fall on a straight line. This

line  represents the relative velocity of the molecule m with respect to the molecule

m1 after the collision, and one sees from the figure that its length is equal to C1C, whereas
the angle it forms with the line OK is 180° – ζ.

Up to now we have considered only one of the specified collisions, and we have
constructed the velocities after the collision for it. We now consider all the specified
collisions, and ask between which limits the values of the variables after the collision lie,
for all these collisions—i.e., for all collisions such that the conditions (10), (13), and (15)
are fulfilled before the collision. Since we assume the time duration of the collision to be
infinitesimal, the direction of the line of centers is the same at the end of the collision as at
the beginning, and it is only a question of finding the limits between which the velocity

components   are found after the collision. Had we

calculated the function (20), then we would have considered ϑ and ∊ as constants and ξ, η,
ζ, ξ1, η1, ζ1 as independent variables, and we would have to express 

 in terms of dξ dη dζ dξ1 dη1 dζ1 by means of the

well-known Jacobian functional determinant. However, we prefer the geometric
construction, and we must therefore answer the question: what volume element would be
described by the points С′ and  when, without changing the direction of the line OK,

we let the points С and C1 describe the volume elements dω and dω1? First, let the position
of the point С as well as the direction of the line OK remain fixed, and let C1 sweep out the
entire parallelepiped dω1. From the complete symmetry of the figure, it follows directly that

 describes a congruent parallelepiped which is the mirror image of dω1. Likewise if the

point C1 is fixed and the point С sweeps out the parallelepiped dω, then the point С′
sweeps out a parallelepiped congruent to dω. For all collisions that we earlier called
collisions of the specified kind, the velocity point of the m-molecule lies in the
parallelepiped dω′ after the collision, and that of the m1-molecule in dω1, and it is always
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true that . The same result would also be obtained by explicit

calculation of the functions (20) and construction of the functional determinant1

We shall now consider another class of collisions of an m-molecule with an m1-
molecule, which will be called the “collisions of the inverse kind.” They are characterized
by the following conditions:

1. The velocity point of the m-molecule lies in the volume element dω′ before the
collision; the number of m-molecules in the volume element for which this condition is
satisfied is, by analogy with Equation (9), f′dω′, where f′ is the value of the function f
obtained by replacing ξ, η, ζ by ξ′, η′, ζ′—i.e., it is the quantity f(ξ′, η′, ζ′ t).

2. The velocity point of the m1-molecule lies in the volume element  before the

collision. The number of m1-molecules in unit volume for which this condition is satisfied
is , where  is an abbreviation for .

3. The line of centers of the two molecules at the instant of the collision, drawn from m1
to m, is parallel to some line drawn from the origin of coördinates within the cone dλ. (In
those integrals that refer to the collision of identical molecules, there will of course occur in
place of the molecule of mass m1 simply an m-molecule whose velocity components are
ξ1, η1, ζ1.)

Figure 3 represents the same collision as Figure 2, the lines having been kept fixed as far
as possible. Figure 4 represents the opposite collision. The arrow directed toward the center
of the molecule always represents its velocity before the collision, while that directed away
from the collision represents its velocity after the collision. In all collisions of the opposite
kind, the relative velocity of the m-molecule with respect to that of the m1-molecule before
the collision is represented by the line  in Figure 2. Its magnitude is thus equal

again to g, and it forms the angle ϑ with the line of centers drawn from m to m1, since we

have likewise reversed the direction of the line of centers. The angle ϑ must of course be
acute if the collision is to be possible. The number of inverse collisions in unit volume
during dt is, by analogy with Equation (18), given by
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FIG. 3.

We have called these collisions those of the opposite kind, since they follow exactly the
opposite course as those originally specified, so that the velocities of the two molecules
after the collision lie between the same limits, (10) and (13), as those before the collision
for the originally specified collisions.

FIG. 4.

An opposite collision increases both fdω and F1dω1 by one. In order to find the total
increase of fdω resulting from all collisions of m-molecules with m1-molecules, during time

dt, one must first express  in terms of ξ, η, ζ, ξ1, η1, ζ1, ϑ, and

∊. Since , we have:

We leave the letters f′ ,  and dλ in the equation, remembering however that one must

consider their arguments  to be functions of ξ, η, ζ, ξ1, η1, ζ1,

ϑ, ∊ and also dλ through the differentials of the latter angles. As is well known, one can

show that dλ = sin ϑdϑd∊ (cf. beginning of §9). In the differential expression (23), one
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now considers ξ, η, ζ, dω and dt constant and integrates over all possible values of dω1 and
dλ. Thereby all collisions will be included that can take place between an m-molecule and
an m1-molecule, such that the former has velocity components within the limits (10) before
the collision, but without any other restrictions. The result of this integration, ∫dv′, thus
gives us the increase of fdω resulting from all collisions of m-molecules with m1-molecules
during dt. Similarly, this quantity increases by  as a result of collisions of m-

molecules with each other, where

H e r e  is again used as an abbreviation for . 

 are here functions of ξ, η, ζ, ξ1, η1, ζ1, ϑ and ∊, inasmuch

as the former represent the velocity components after a collision, and are determined by the
initial conditions (10), (13), and (15), in which however both molecules have mass m.

If we subtract from the total increase of fdω the total decrease, we obtain the net change

which the quantity fdω experiences during time dt. Thus:

In the integrals ∫dv and ∫dv′ the integration variables are identical, and likewise in the
integrals  and .

If we combine these integrals and divide the whole equation by dω · dt, then it follows
from Equations (18), (19), (23), and (24) that:

The integration is to be extended over all possible dω1 and dλ. Likewise, one obtains for
the function F the equation

Pure Mathematical Physics



25

Here s1 is the diameter of an m1-molecule; in Equation (26), ξ1, η1, and ζ1 are arbitrary and
should be considered constant in the integral, while ξ, η, and ζ are to be integrated over all
their possible values. In the first integral,  are the velocity

components after a collision of the specified kind in the case that one of the colliding
molecules has mass m, and the other has mass m1; while in the second integral they refer to
the case that both molecules have mass m1. ∂F1/∂t, F, and F′ are abbreviations for ∂F(ξ1,
η1, ζ1, t)/∂t, F(ξ, η, ζ, t), and F(ξ′ η′, ζ′, t).

If the state is to be stationary, then the quantities ∂f/∂t and ∂F1/∂t must vanish for all
values of the variables. This certainly occurs when in all the integrals the integrand
vanishes for all values of the variable of integration—when one therefore has for all
possible collisions of the m-molecules with each other, the m1-molecules with each other,
and of m-molecules with m1-molecules, the three equations

Since the probability of the originally specified collision is given by Equation (18), and that
of the opposite one by Equation (23), the general validity of the third of Equations (27) is
equivalent to the statement that, however dω, dω1, and dλ1 may be chosen, the originally
specified (or briefly, “direct”) collision is as probable as the opposite one. In other words, it
is equally probable that two molecules should separate from each other in a certain way as
that they should collide in the opposite way. The same follows from the two other parts of
the system of Equations (27) for the collisions of m-molecules with each other and of m1-
molecules with each other. However, one sees at once that a distribution of states must
remain stationary when it is equally probable that two molecules separate from each other
after a collision and that they collide with each other in the opposite way.

§5. Proof that Maxwell’s velocity distribution is the only possible one.

We shall deal later with the solution of Equations (27), which presents no particular
difficulty. It leads necessarily to the well-known Maxwell velocity distribution law. For this
case the two quantities ∂f/∂t and ∂F/∂t vanish, since the integrands of all the integrals
vanish identically. It still remains to be shown that the Maxwell velocity distribution, once
established, is not altered by further collisions. It has still not been proved that Equations
(25) and (26) cannot be satisfied by other functions that do not make the integrands vanish
for all values of the variables of integration. One may give such possibilities as little weight
as he wishes; I find myself inclined to dispose of them by a special proof. Since this proof
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has, as will appear, a not uninteresting connection with the entropy principle, I will
reproduce it in the form given by H. A. Lorentz.*

We consider the same gas mixture as before, and retain the earlier notation.
Furthermore, we denote by lf and lF the natural logarithms of the functions f and F. The
result obtained on substituting in lf for ξ, η, ζ the velocity components of a particular gas
molecule of mass m at time t, we call the value of the logarithmic function corresponding to
the molecule considered at the time considered. Similarly, we obtain the value of the
logarithm function corresponding to any m1-molecule at any time when we substitute in
lF1 the velocity components ξ1, η1, ζ1 of that molecule at that time. We shall now calculate
the sum H of all values of the logarithm functions corresponding at a particular time to all
m-molecules and m1-molecules contained in a volume element. At time t, there are in the
volume element fdω m-molecules of the specified kind, i.e., m-molecules whose velocity
components lie between the limits (10). These clearly contribute a term f · lf · dω to the sum
H. If we construct the analogous expression for the m1-molecules and integrate over all
possible values of the variables, then it follows that:

We now seek the change experienced by H during a very small time dt. This will be due to
two causes:1

1. Each m-molecule of the specified kind provides at time t the term lf in the expression
(28). After time dt, the function f experiences the increment

Hence lf experiences the increment :

and each m-molecule of the specified kind provides in the expression (28) the term

All m-molecules of the specified kind provide together the contribution
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in (28). Applying the same arguments to all other m-molecules and m1-molecules, one
finds for the total increment of H, resulting from the variation of the quantities lf and lF
under the integral signs in Equation (28), the value :

But this is nothing more than the variation of the total number of molecules in unit volume,
which must be equal to zero, since neither the size of the container nor the uniform
distribution of molecules should undergo any change.

2. The collisions change not only lf and lF but also fdω and F1dω1—i.e., the number of
molecules of the specified kind changes a little. The variation dH of H due to this second
cause will, according to the above, be equal to the total variation of H during dt. In order to
find it, we again denote by dv the number of collisions of the specified kind in unit volume
during dt. Each such collision decreases both fdω and F1dω1 by one.

Since each m-molecule contributes the addend lf to (28), and each m1-molecule
contributes lF1, the total decrease of H resulting from these collisions will be

Each of these collisions increases f′dω′ by one, and consequently H is increased by lf′dv.
Finally, each of these collisions increases  by one, and consequently H is

increased by . The total increase of H during time dt is therefore :

(cf. Eq. [18]).
If we keep dt constant in this expression and integrate over all the other variables (where

of course  are to be considered as functions of ξ, η, ζ, ξ1,

η1, ζ1) then we obtain the total increase d1H that H experiences as a result of all collisions
of m-molecules with m1-molecules. We write this symbolically in the form

We can also calculate the same quantity by considering inverse collisions, of which
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there are dv′ in the time interval dt. These collisions will decrease both f′dω′ and 

by one, and increase both fdω and F1dω1 by one. Consequently the inverse collisions will
increase H by

(cf. Eq. [23]).
If we keep dt constant and integrate over all the other variables, and average the result

with (31a), we then obtain for d1H the value

This is the total increment experienced by H during dt as a result of all collisions of m-
molecules with m1-molecules. The increment d2H of the same quantity resulting from
collisions of the m-molecules with each other will clearly be found in a completely similar
way. We simply have to replace m1 and F by m and f, and σ by s. However, one must
remember that when the two colliding molecules are identical, each collision will be
counted twice in the expressions for the integrals, so that the final result must be divided by
two. (The same thing happens in the calculation of the self-potential and self-induction
coefficients.) Hence we find

where f1 and  have the same meaning as before. If we calculate in the same way the

increment of H resulting from collisions of m1-molecules with each other, then we obtain
for the total increment dH during time dt:
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Since the logarithm function always increases when its argument increases, we see that
in each of the three integrals the first factor in brackets has the same sign as the second.

Since, moreover, g is essentially positive, and the angle ϑ is always acute, all the quantities
in the integrand are essentially positive, and vanish only for glancing collisions or for
collisions with zero relative velocity. The above three integrals are therefore composed
purely of essentially positive terms, and the quantity that we have called H can therefore
only decrease; at most it can be constant, but this is only possible when all terms of all three
integrals vanish, i.e., when for all collisions Equations (27) are satisfied. Since H cannot
change with time in the stationary state, we have shown that for the stationary state
Equations (27) must be satisfied for all collisions. The only assumption made here is that
the velocity distribution is molecular-disordered at the beginning, and remains so. With this
assumption, one can prove that H can only decrease, and also that the velocity distribution
must approach that of Maxwell.

§6. Mathematical meaning of the quantity H.

We shall postpone, for the moment, the solution of Equations (27), and insert a few
remarks on the meaning of the quantity called H. This meaning is twofold. The first is
mathematical, the second physical. We shall discuss the first only in a simple case, a single
gas in a container of unit volume. Naturally we shall be able to simplify the conclusions by
using this assumption, though we must also relinquish a simultaneous proof of Avogadro’s
law.

First we make a few preliminary remarks about the principles of the calculus of
probabilities. From an urn, in which many black and an equal number of white but
otherwise identical spheres are placed, let 20 purely random drawings be made. The case
that only black balls are drawn is not a hair less probable than the case that on the first draw
one gets a black sphere, on the second a white, on the third a black, etc. The fact that one is
more likely to get 10 black spheres and 10 white spheres in 20 drawings than one is to get
20 black spheres is due to the fact that the former event can come about in many more
ways than the latter. The relative probability of the former event as compared to the latter is
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the number 20!/10!10!, which indicates how many permutations one can make of the terms
in the series of 10 white and 10 black spheres, treating the different white spheres as
identical, and the different black spheres as identical. Each one of these permutations
represents an event that has the same probability as the event of all black spheres. If there
were in the urn a large number of otherwise identical spheres, of which a certain number
are white, an equal number black, an equal number blue, an equal number red, and so
forth, then the probability of drawing a white spheres, b black spheres, c blue spheres, etc.,
is

times as large as the probability of drawing spheres of only one color.
Just as in this simple example, the event that all molecules in a gas have exactly the

same velocity in the same direction is not a hair less probable than the event that each
molecule has exactly the velocity and direction of motion that it actually has at a particular
instant in the gas. But if we compare the first event with the event that the Maxwell velocity
distribution holds in the gas, we find there are very many more equiprobable configurations
to be counted as belonging to the latter.

In order to express the relative probabilities of these two events in terms of a
permutation number, we proceed as follows : for all collisions in which the velocity point
of one molecule is in some infinitesimal volume element before the collision, we saw that it
will be in a volume element of exactly the same size after the collision (assuming that the
other variables characterizing the collision are kept constant). We divide the total space into
many (ζ) equal-sized volume elements ω (cells), so that the presence of the velocity point of
a molecule in each such volume element is to be considered an event equiprobable with its
presence in each other volume element—just as previously we considered the drawing of a
black or white or blue sphere to be equally probable. Instead of a, the number of drawings
of white spheres, we now have the number n1ω of molecules whose velocity points lie in
the first of our volume elements; instead of b, we have the number n2ω of molecules whose
velocity points lie in the second volume element ω, and so forth. Instead of Equation (34)
we have

for the relative probability that the velocity points of n1ω molecules lie in the first volume
element, and so forth. Then п = (п1+п2+п3+· · · ) ω is the total number of all molecules in
the gas. For example, the event that all molecules have equal and equally directed velocities
corresponds to having all velocity points lying in the same cell. Here we would have Z =
n!/n! = 1; no other permutations are possible. It is already very much more probable that
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half the molecules have one particular velocity and direction, and the other half have
another velocity and direction, than that all have the same velocity and direction. Then half
the velocity points would be in one cell and half in another, so that

Since now the number of molecules is extraordinarily large, n1ω, n2ω, etc., can be
treated as very large numbers.

We shall use the approximation formula

where e is the base of natural logarithms and p is an arbitrarily large number.1

Denoting by l the natural logarithm, we see that:

Omitting  compared to the very large number n1ω and forming the similar expressions

for (n2ω)!, (n3ω)!, etc., one obtains :

where

has the same value for all velocity distributions and is therefore to be considered a constant.
Then we ask for the relative probability of the distribution of different velocity points of our
molecules in our cells, where of course the cell divisions, the size of a cell ω, the number of
cells ζ and the total number of molecules n and their total kinetic energy are to be
considered constant. The most probable distribution of velocity points of the molecules in
our cells will be the one for which lZ is a maximum; hence the expression
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will be a maximum. If we write dξdηdζ for ω and f(ξ, η, ζ) for n1, n2, etc., and then
transform the sum into an integral, we get

This expression is completely identical to the expression into which the quantity H
given by Equation (28) for a single gas transforms, however. The theorem of the previous
section, which states that H decreases through collisions, says simply that through collisions
the velocity distribution of the gas molecules comes closer and closer to the most probable
one, as soon as the state is molecular-disordered, and thus the calculus of probabilities is
introduced. I must content myself here with this brief illustration, and refer the reader
elsewhere2 for more details.

In connection with the foregoing, one should mention the following point, already made
long ago by Loschmidt.* Let a gas be enclosed by absolutely smooth, elastic walls. Initially
there is an unlikely but molecular-disordered state—for example, all molecules have the
same velocity c. After a certain time, the Maxwell velocity distribution will nearly be
established. We now imagine that at time t, the direction of the velocity of each molecule is
reversed, without changing its magnitude. The gas will now go through the same sequence
of states backwards. We have therefore the case that a more probable distribution evolves
through collisions into a less probable one, and that the quantity H increases as a result of
collisions. This in no way contradicts what was proved in §5; the assumption made there
that the state distribution is molecular-disordered is not fulfilled here, since after exact
reversal of all velocities each molecule does not collide with others according to the laws of
probability, but rather it must collide in the previously calculated manner. In the example
cited, in which we assumed the mass of all molecules equal, all molecules at the beginning
had the same velocity c. After a time in which each molecule has experienced on the
average one collision, many molecules will have a velocity γ. However, ignoring the few
molecules that have experienced several collisions, all these molecules come from a
collision in which the other molecule left with a velocity . If we now reverse

all velocities, then nearly all molecules whose velocity is γ will collide only with molecules
whose velocity is , so that the characteristics of a molecular-ordered

distribution are present.
The fact that H now increases does not contradict the laws of probability either; for

these only predict the unlikeliness, not the impossibility, of an increase in H. Indeed, on the
contrary it follows explicitly that each distribution of states, even if very unlikely, has a
probability different from zero, though very small. Similarly, when one has a Maxwell
distribution, the case that one molecule has the velocity that it actually has at that time,
likewise for the second, third, and other molecules, is not in the least more probable than
the case that all molecules have the same velocity.

It would clearly be a gross error to conclude that any motion whereby H decreases is
equiprobable with one in which the velocities are reversed and H increases. Consider any
motion for which H decreases from time t0 to time t1. When one reverses all the velocities
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at time t0, he would by no means arrive at a motion for which H must increase; on the
contrary, H would probably still decrease. It is only when one reverses the velocities at time
t1 that he obtains a motion for which H must increase during the time interval t1 – t0, and
even then H would probably decrease again after that, so that motions for which H
continually remains very near to its minimum value are by far the most probable. Motions
for which it increases to a considerably larger value, or sinks from a large value to its
minimum value, are equally improbable; one knows however that H has many larger
values during a definite time interval, so it must decrease with high probability.7

Planck has attempted to base a proof that the Maxwell velocity distribution is the only
possible stationary one on this reversibility principle.* From Hamilton’s principle he has
not yet proved, to my knowledge, that through the reversal each stationary state distribution
must transform into another one. One can still show the following: when, after a state
distribution A (which is stationary to an arbitrary degree of approximation) has lasted for an
arbitrarily long time, one suddenly reverses all the velocities, then he obtains a motion B
which again remains stationary (with the same degree of approximation) just as long. We
saw that a molecular-disordered distribution, after reversal of all velocities, can transform
into a molecular-ordered one; one can therefore believe that the motion B will be
molecular-ordered. Now for certain forms of containers there are certainly possible
molecular-ordered motions that remain stationary for arbitrarily long times. It appears
however that these could be destroyed at any time by an arbitrarily small change in the
form of the container. We assume that the state distribution B cannot remain molecular-
ordered during its entire duration. Moreover, for the state distribution A, we assume that
each velocity is equiprobable with the opposite velocity. The state distribution B must be
identical with A, since by virtue of the second assumption the magnitude and direction of
each velocity in B has the same probability as in A, and by virtue of the first assumption the
collisions follow the laws of probability. In B, however, each inverse collision must occur
as often as the corresponding direct collision in A, since the two move in opposite
directions. Hence in B, each inverse collision must be just as probable as the corresponding
direct one in A. But since both distributions are identical, it follows that in each of them,
each direct collision has the same probability as the corresponding inverse one, whence
follow Equations (27), whose necessary consequence is the Maxwell distribution.

When one may not assume a priori that each velocity has the same probability as the
opposite one—for example, when gravity acts—Planck’s proof appears to be inapplicable,
but the minimum theorem remains valid.4

A remark is necessary here. The quantities previously denoted by dω = dξdηdζ and now
by ω are volume elements, and hence really only differentials. The number n of molecules
in unit volume is indeed a very large number, but it is still finite. (When we choose the
cubic centimeter as volume element, then for air under ordinary conditions this number is a
few trillion.) It may therefore be surprising that we treat the expressions n1ω, n2ω, and f(ξ,
η, ζ, t)dξdηdζ as very large numbers. One could also carry out the same calculations on the
assumption that these are fractions; they would then simply represent probabilities. But an
actual number of objects is a more perspicuous concept than a mere probability, and the
considerations just carried out would have required complicated digressions and
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explanations since one cannot speak of the permutation number of a fraction. Such
thoughts remind us, however, that we could have chosen the volume element as large as
we pleased. We could have assumed so many equivalent gases to be present in the volume
element that even when ω is chosen very small, the velocity points of many molecules
would still always lie in it. The order of magnitude of the volume chosen as volume
element is completely independent of the order of magnitude of the volume elements ω and
dξdηdζ.

Even more dubious is the assumption we shall make later, that not only the number of
molecules in the volume element whose velocity points lie in a differential volume, but also
the number of molecules whose centers are in such a volume element, is infinitely large.
The latter assumption is no longer justified as soon as one has to deal with phenomena in
which finite differences in the properties of the gas are encountered in distances that are not
large compared to the mean free path (shock waves of 1/100 mm thickness, radiometer
phenomena, gas viscosity in a Sprengel vacuum, etc.). All other phenomena take place in
such large spaces that one can construct a volume element for which the visible motion of
the gas can be taken as a differential, yet which still contains a large number of molecules.
This neglect of small terms whose order of magnitude is completely independent of the
order of magnitude of the terms occurring in the final result must be carefully distinguished
from the omission of terms that are of the same order of magnitude as those from which the
final result is derived (cf. beginning of §14). While the latter omission causes an error in the
result, the former is simply a necessary consequence of the atomistic conception, which
characterizes the meaning of the result obtained, and is the more permissible, the smaller the
dimension of the molecule compared to that of the visible bodies. In fact from the
standpoint of atomistics, the differential equations of the doctrines of elasticity and
hydrodynamics are not exactly valid, but rather they are themselves approximation
formulae which become more nearly exact as the space in which the visible motions occur
becomes large compared to the dimensions of molecules. Likewise, the distribution law for
molecular velocities is not precisely correct as long as the number of molecules is not
mathematically infinite. The disadvantage of giving up the supposedly exact validity of the
hydrodynamic differential equations is however compensated by the advantage of greater
perspicuousness.

§7. The Boyle-Charles-Avogadro law. Expression for the heat supplied.

We now proceed to the solution of Equations (27). These are only a special case of
Equations (147) which we shall treat in §18. From these equations it follows, as we shall
prove explicitly there, that the functions f and F must be independent of the direction of the
velocity, and can only depend on its magnitude. We could already give this proof in the
same way here for a special case. In order not to repeat ourselves, we shall assume without
proof that neither the form of the container nor any special circumstance influences the
distribution of states. Since then all directions in space are equivalent, the functions f and F
must be independent of direction, and can be functions only of the magnitudes of the
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relevant velocities c and c1. If we set f = eφ(mc2) and , then the last of

Equations (27) becomes

Here the two quantities mc2 and  are clearly completely independent of each

other, and also the third quantity mc′2 can take all values from zero to ,

independently of the first two. Denoting these three quantities by x, y, and z, and
differentiating the last equation with respect to x, then with respect to y, and finally with
respect to z, we obtain :

whence it follows that

Since the first of these expressions does not contain у or z′ and the second and third
must be equal to it, the second may not contain у and the third may not contain z. They do
not contain any other variables; hence they must be constant; since they are equal to each
other, the derivatives of the two functions φ and Φ must be equal to the same constant, –h,
whence it follows that:

The number dnc of m-molecules in unit volume whose velocity has arbitrary direction
and magnitude between c and c+dc is clearly equal to the number of those for which the
velocity point lies between two spherical surfaces drawn around the origin of coordinates
with radii c and c+dc, and thus in a space of volume dω = 4πc2dc. Hence, according to
Equation (11):

The molecules whose velocity has a magnitude between c and c+dc and a direction that

forms an angle between ϑ and ϑ+dϑ with a fixed line (e.g., the axis of abscissas) are
identical with those whose velocity point lies in a ring bounded by the two spherical
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surfaces of radii c and c+dc and the two conical surfaces with apexes at the origin, whose

common axis is the abscissa direction, and whose generators make angles ϑ and ϑ+dϑ with

the axis. Since this ring has volume 2πc2 sin ϑ · dcdϑ, the number dnc,ϑ of such molecules
is given by the following expression:

If we integrate (37) over all possible velocities, so that c goes from 0 to ∞, we obtain the
total number n of molecules in unit volume. This and the following integrations are easily
performed with the aid of the two well-known integral formulae:

One then obtains:

and hence instead of Equations (36) and (37) one can write

If we multiply dnc by c2, the square of the velocity of those molecules whose number is
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equal to dnc, integrate over all possible velocities and finally divide by the total number of
molecules in unit volume, n, then we obtain the quantity that we call the mean square
velocity and denote by . It is therefore equal to:

Similarly one finds for the mean velocity the value:

Therefore we have:

We shall now put on the axis of abscissas the various values of c, and over them erect
ordinates whose height is the quantity c2e–hmc2

, which is proportional to the probability that
the velocity lies between c and c+dc (where dc should have the same value for all c). We
thereby obtain a curve whose largest ordinate is found at the abscissa

This abscissa cw* is usually called the most probable velocity.
If one now puts the velocity squared, x = c2, on the axis of abscissas, and makes the

ordinate proportional to the probability that c2 lies between x and x+dx, where the
differential dx has the same value for all x, then the ordinates will be proportional to 

. The largest ordinate is then at  which does not correspond to
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the velocity  but rather to . In a certain sense,  could

therefore be called the most probable velocity squared.
If one considers in the gas a surface of unit area, and looks for the mean or most

probable velocities of all molecules that strike the surface in unit time, then he obtains
further quantities, which differ from those previously defined as mean and most probable.

All these expressions therefore are not precisely defined; it is in no way uniquely
determined what one should call the mean. Similar ambiguities will be encountered in
defining the mean free path.

Since

In the same way, many other mean values could be calculated. For example,

The same is of course valid for the second gas, and since h must have the same value for
both gases in a mixture, it follows from Equation (44) that for two mixed gases, regardless
of the density of each,

When two kinds of gas molecules are mixed in a space, in general those of one kind will
impart kinetic energy to those of the other, or conversely. The above equation says that
whatever happens, no matter what their density and other properties may be, in thermal
equilibrium both have the Maxwellian state, and the mean kinetic energy of a molecule has
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the same value for either kind of gas.
In order to judge whether two gases have the same temperature, or whether one gas of

higher density has the same temperature as another sample of the same gas of smaller
density, we must imagine the gases to be separated by a heat-conducting wall, and ask for
the thermal equilibrium in this case. The molecular processes in such a heat-conducting
wall cannot be submitted to calculation according to such simple principles as those
employed above, yet it seems likely—and can also be shown by calculations on the basis of
certain assumptions—that the same condition of thermal equilibrium would still hold (cf.,
the mechanical device conceived by Bryan, discussed in §19). Experimentally, the fact that
the expansion of a gas in a vacuum and the diffusion of two gases proceed without
noticeable evolution of heat proves this. By the same assumption, it must in general be true
that when two gases with the same properties but different densities, or with different
properties, are in thermal equilibrium, then they have the same temperature, and the mean
kinetic energy of a molecule must have the same value for one gas as for the other. The
temperature must therefore be the same function of the mean kinetic energy for all gases.
From Equation (6) it follows that for two gases at equal temperature, when the pressure at
the surface is also the same, n = n1, hence the numbers of molecules in unit volume is the
same—the well-known Avogadro law. Furthermore, since m is constant for the same gas, it
follows that for a gas at the same temperature but different pressures, c2 is constant, and
hence by Equation (7) the pressure p is proportional to the density ρ—the Boyle or
Mariotte law.

We shall now choose a gas which is as nearly perfect as possible—say hydrogen—as
the normal gas. For the normal gas, the pressure, density, mass and velocity of a molecule
will be denoted by P, ρ′, M, and C. For any other gas, lower-case letters will be used. We
choose as our thermometric substance the normal gas at constant volume and therefore
constant density—i.e., we choose the temperature scale so that the temperature T is
proportional to the pressure of the normal gas on a unit surface at constant density. Then in
the formula P = ρ′C2/3, the temperature T must be proportional to P at constant ρ′, and
therefore it must also be proportional to C2. We denote this proportionality factor by 3R, so
that for this density

If the normal gas is at another density, then the temperature T is the same when  has

the same value. Hence R is also independent of density and the formula 

goes over to P = Rρ′T. The constant R can be chosen so that the difference between the
temperature of the gas when in contact with melting ice and when in contact with boiling
water is equal to 100. The absolute value of the temperature of melting ice is thereby
determined. Then this must be in the same ratio to the temperature difference (100) between
boiling water and melting ice as the pressure of hydrogen at the latter temperature is to the
pressure difference between the two temperatures (all pressures being taken at the same
density). This proportion gives the temperature of melting ice as 273.
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For another gas, for which lower-case letters are used, one obtains in the same way 
, and since at equal temperatures , it follows from Equation

(51) that

where µ = m/Μ is the so-called molecular weight, i.e. the ratio of the mass or weight of a
molecule (a freely moving particle) of the gas in question to the mass of a molecule of the
normal gas. If we put this value of  into the equation , then we obtain for

any other gas:

where r is the gas constant of the gas considered, but R is a constant which is the same for
all gases. Equation (52) is the well-known expression for the combined Boyle-Charles-
Avogadro law.

§8. Specific heat. Physical meaning of the quantity H.

We now imagine a simple gas in an arbitrary volume Ω. We introduce the amount of
heat dQ (measured in mechanical units), which raises the temperature by dT and increases
the volume by dΩ. We set dQ = dQ1 + dQ4, where dQ1 represents the heat used in
increasing the molecular energy, while dQ4 represents that used in doing external work. If
the gas molecules are perfectly smooth spheres, then in collisions no forces act to make
them rotate. We assume that such forces in general do not exist. Then, when the molecule
happens to have some rotational motion already, it will not be changed by the addition of
the amount of heat qQ. Hence the total amount of heat dQ1 will be consumed in increasing
the kinetic energy with which the molecules move among each other, which we call the
kinetic energy of progressive motion. We have considered only this case up to now;
however, in order not to have to repeat the same calculations later, we shall now perform
the following calculations for the more general case in which the molecules have another
form, or consist of several particles moving with respect to each other (atoms). Then in
addition to progressive motion, intramolecular motion will also be present, and work can be
performed against the forces holding the atoms together (intramolecular work). In this case
we set dQ1 = dQ2 + dQ3 and denote by dQ2 the heat consumed in increasing the kinetic
energy of progressive motion, and by dQ3 the heat consumed in increasing the kinetic
energy of intramolecular motion and in performing intramolecular work. By kinetic energy
of progressive motion of a molecule, we mean the kinetic energy of the total mass of the
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molecule, considered to be concentrated at its center of mass.
We have shown that when the volume of a gas is increased at constant temperature, the

kinetic energy of progressive motion and also the law of distribution of the different
progressive velocities among the molecules both remain unchanged. The molecules just
move farther apart—i.e., there is a greater interval between two collisions. Although we
have not investigated the internal motion, we could take it as probable that in a simple
expansion at constant temperature, on the average neither the internal motion during the
collision, nor that during the motion from one collision to the next, would be changed by a
mere decrease in the collision frequency. The duration of a collision would still be
vanishingly small compared to the time between two successive collisions. Like the kinetic
energy of progressive motion, the intramolecular motion and the intramolecular potential
energy can depend only on temperature. The increase of each of these energies is therefore
equal to the temperature increment dT multiplied by a function of temperature, and if we set
dQ3 = βdQ4, then β can depend only on temperature. We can return at any time to the
previous case, absolutely smooth spherical molecules, simply by setting β = 0. The number
of molecules in the volume Ω of our gas is nΩ, and since the mean kinetic energy of
progressive motion of a molecule is , the total kinetic energy of progressive

motion of all molecules is

or, when one denotes the total mass of the gas by k, equal to

since clearly k = ρΩ = nmΩ.
Since, further, the total mass k of the gas is not changed by the addition of heat, the

increase of kinetic energy of progressive motion is

If we measure the heat in mechanical units, then this is also equal to dQ2. But according
to Equation (51a)
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and hence

The external work done by the gas is p · dΩ; this is therefore also equal to the quantity
dQ4 measured in mechanical units. Now the total mass of the gas remains constant, hence

and according to Equation (52),

hence

If one substitutes all these values he obtains, for the total heat added, the value:

If the volume is constant, then dΩ/k = d(1/ρ) = 0, and the added heat will be
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On the other hand, if the pressure is constant, then d(T/p) = (dT)/p and the added heat
will be

If one divides dQ by the total mass k, then he obtains the heat added per unit mass. If
one divides by dT, then he obtains the amount of heat that must be added to raise the
temperature by one degree, the so-called specific heat. Therefore the specific heat per unit
mass of the gas at constant volume is:

On the other hand, the specific heat per unit mass at constant pressure is:

In both expressions all quantities except β are constant. The latter can be a function of
temperature. Since R refers only to the normal gas and hence has the same value for all
gases, the product γр · µ and also the product γν · µ will have the same values for all gases
for which β has the same value—e.g., in particular for all gases for which β is equal to zero.
The difference of specific heats, γp – γv, is for all gases equal to the gas constant itself:

The product of this difference and the molecular weight µ is for all gases a constant equal to
R. The ratio of specific heats is
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Conversely,

In the case that the molecules are perfect spheres, which we have assumed previously, β
= 0 and hence . This value was in fact observed by Kundt and Warburg for

mercury gas,* and more recently by Ramsay for argon and helium;† for all other gases
investigated up to now, κ is smaller, so that there must be intramolecular motion. We shall
come back to this subject in Part II.

The general expression (53) for dQ is not a complete differential of the variables T and
ρ; however if one divides it by T, then since β is a function only of T, he obtains a complete
differential. If β is constant, then one has

This is therefore the so-called entropy of the gas.
If several gases are present in separate containers, then naturally the total added heat is

equal to the sum of the amounts of heat added to the individual gases, so that whether or
not they have the same temperature, their total entropy is equal to the sum of the entropies
of each gas. If several gases whose masses are k1, k2, · · · , whose partial pressures are p1,
p2, · · · , and whose partial densities are ρ1, ρ2, · · · , are mixed in a container of volume Ω,
then the total molecular energy is always equal to the sum of the molecular energies of the
components. The total work is (p1+p2+· · ·)dΩ, where

Hence it follows that the differential of the heat added to the mixture has the value:

From this it follows that the total entropy of several gases, when β has the same constant
value for each one, is
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where some are in different containers, while others may be mixed; except that in the latter
case ρ is the partial density, and naturally all the mixed gases must have the same
temperature. Experience teaches that the constant is not changed on mixing, as long as p
and ρ do not change.

Since by now we have learned the physical meaning of all the other quantities, we shall
deal with the physical meaning of the quantity denoted by H in §5; for the present we shall
have to limit ourselves to the case considered in §5, where the molecules are perfect
spheres, and hence the ratio of specific heats is .

We obtain, according to Equation (28), for unit volume of a single gas, H = ∫flfdω; for
the stationary state we have

hence

Now however ∫fdω is equal to the total number n of molecules, and furthermore

hence

Furthermore, according to Equations (44) and (51a),

hence
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and according to Equation (40)

Hence, aside from a constant,

We saw that –H represents, apart from a constant, the logarithm of the probability of the
state of the gas considered.

The probability of simultaneous occurrence of several events is the product of the
probabilities of the events; the logarithm of the former probability is therefore the sum of
the logarithms of the probabilities of the individual events. Hence the logarithm of the
probability of a state of a gas of doubled volume is –2H; of tripled volume, –3H; and of
volume Ω, –ΩH. The logarithm of the probability  of the arrangement of the molecules
and distribution of states among them in several gases is

where the sum is to be extended over all gases present. This additive property of the
logarithm of the probability is already expressed by Equation (28) for a gas mixture.

If we multiply by RM, which is constant for all gases (M is the mass of a hydrogen
molecule), we obtain

In nature, the tendency of transformations is always to go from less probable to more
probable states. Thus if  is smaller for one state than for a second, then to facilitate the
transformation from the first state to the second, the action of another body may be
necessary, but this transformation will still be possible without permanent changes in any
other bodies. On the other hand, if  is smaller for the second state, the transformation
can occur only if another body takes on a more probable state. Since the quantity 

, which differs only by a constant factor and an addend from –H, increases and
decreases with , we can assert the same things about it as about . But the quantity 

 is in our case, where the ratio of specific heats is equal to , in fact the total

entropy of all the gases.
One sees this at once if he sets β = 0 in the empirically correct expression (58). The fact

that in nature the entropy tends to a maximum shows that for all interactions (diffusion, heat
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conduction, etc.) of actual gases the individual molecules behave according to the laws of
probability in their interactions, or at least that the actual gas behaves like the molecular-
disordered gas which we have in mind.

The second law is thus found to be a probability law. We have of course proved this
only in a special case, in order not to make it too difficult to understand because of too
much generality. Moreover, the proof that for a gas of arbitrary volume Ω the quantity
ΩΗ—and for several gases the quantity ∑ ΩH—can only decrease through collisions, and
thus is to be considered as a measure of the probability of states, was only hinted at. This
proof can easily be given explicitly, and will be given at the end of §19. We still need to
generalize and deepen our conclusions.

Even if one concedes validity to the gas theory only as a mechanical model, I still
believe that this conception of the entropy principle, to which it has led, strikes at the heart
of the subject in the correct way. In one respect we have even generalized the entropy
principle here, in that we have been able to define the entropy in a gas that is not in a
stationary state.

§9. Number of collisions.

We shall now consider again the same mixture of two gases as in §3, and adopt all the
notation used there. We proceed from the number of collisions, given by Equation (18),
which occur between an m-molecule (a molecule of the first kind of gas of mass m) and an
m1-molecule (a molecule of the second kind of gas of mass m1) in unit volume during time
dt, that satisfy the three conditions (10), (13), and (15).

We consider now only the state of thermal equilibrium, for which we found in §7 the
equations (41) and (42).

We ask first, how many collisions in all, without any restriction, take place between an
m-molecule and an m1-molecule in unit volume during time dt. We obtain this by dropping
the three restrictive conditions to which the collisions have previously been subjected—i.e.,
when we integrate over the differentials. In order to find the limits of integration, we
represent the velocities c and c1 of the two molecules before collision by the lines ОС and
OC1 in Figure 5. The line OG should be parallel to the relative velocity C1C of the m-
molecule with respect to the m1-molecule before the collision, and the sphere with centre О
and radius 1 (the sphere E) intersects the point G. The line OK should have the same
direction as the line of centres drawn from m to m1, and intersects the sphere E in the point

K. Hence KOG is the angle denoted by ϑ. We allow the position of the line OK to vary in

such a way that ϑ increases by dϑ as the angle ∊ of the two planes KOG and COC1

increases by d∊. The circle shown in Figure 5 should be the intersection of the sphere E
with the latter plane, which we can choose as the plane of the diagram, when we imagine
the coördinate axes (of which we are now completely independent) to be lying in some

oblique way. When ϑ and ∊ take all values between ϑ and ϑ+dϑ, and ∊ and ∊+d∊, then

the point K describes on the sphere E a surface element of surface area sin ϑ · dϑ · d∊. As
indicated in §4, we can choose this surface element as the surface element dλ, so that we
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obtain, according to Equation (18),

FIG. 5.

We now leave fixed the two volume elements dω and dω1 within which the points С

and C1 lie, but integrate dv with respect to ϑ and ∊ over all possible values, i.e., we

integrate ϑ from 0 to π/2 and ∊ from 0 to 2π (see the conditions mentioned in §3). The
result of the integration will be denoted by dv1, and thus we obtain1

This is therefore the total number of collisions that occur between an m-molecule and an
m1-molecule in unit volume during time dt, such that before the collision:

1. the velocity point of the m-molecule lies in the volume element dω,

2. the velocity point of the m1-molecule lies in the volume element dω1.

On the other hand, condition (15) has been dropped, so that the direction of the line of
centers is not subject to any restrictive condition. We shall now denote the angle COC1 in
Figure 5 by φ, the point С being held fixed while C1 varies so that the line OC1 takes all
values between c1 and c1+dc1, and the angle φ takes all values between φ and φ+dφ. We
thereby obtain the surface element, denoted by dσ in Figure 5, of area c1dc1dφ at a
distance C1A = c1 sin φ from the line ОС. If we allow this surface element to rotate around
the line OC as axis, it will sweep out a ring of volume  sin φdc1dφ. The two

integrations over φ and c1 can always be carried out in the same way each time, so that the
velocity point C1 of the m1-molecule always lies inside the ring R. We find the total
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number dv of collisions in unit volume in time dt between an m-molecule and an m1-
molecule such that the velocity point of m lies in dω while that of m1 lies in the ring R by
integrating the expression dv1 with respect to dω1 over all volume elements of the ring R.
In other words, we simply set

in dv1, whereby we obtain

In order to eliminate any restrictions on the magnitude and direction of the velocity c1,
we merely have to integrate over all values of φ and c1, keeping c constant. Thus we
integrate over φ from 0 to φ, and over c1 from 0 to ∞, whence we obtain

Since  cos φ and sin φdφ = gdg/cc1, we have

The relative velocity gπ for φ = π is c+c1. The relative velocity g0 for φ = 0 is c – c1 if
c1 < c, but it is c1 – c if c1 > c. Hence one has

but

One therefore must split the integration in Equation (62) into two parts:2
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The above quantity dv3 represents therefore the total number of collisions which the m-
molecules whose velocity points lie in dω undergo with any m1-molecules. If we divide
this number by fdω (the number of such m-molecules) and call the quotient vc, then we
shall obtain the probability that an m-molecule whose velocity is c collides during dt with
an m1-molecule; i.e., this quotient

specifies what fraction of a very large number A of m-molecules, all moving with the
velocity c in the gas mixture, will collide with m1-molecules during the time interval dt.

We can also say: we imagine an m-molecule moving with constant speed c through the
gas mixture. After each collision, its velocity is restored to the value c by some external
cause, and also the velocity distribution in the gas mixture is not disturbed by this one
molecule. Then vcdt will be the probability that this molecule collides with an m1-molecule
during time dt; vc will therefore be the number of collisions, on the average, with m1-
molecules in unit time. The two equations (63) and (64) yield, on substituting for F1 its
value from Equation (42):
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hence since

If we replace all the quantities referring to the second kind of molecule by those
referring to the first—i.e., replace n1, m1, and σ by n, m, and s—then the above quantity vc
becomes

The number  is the number of times that the m-molecule moving with constant
velocity c through the mixture collides on the average with another m-molecule in unit
time.

The quantity dnc given in Equation (43) specifies how many of the n m-molecules have
on the average a velocity between c and c+dc; dnc/n is therefore the probability that the
velocity of an m-molecule lies between these limits, and when one follows an m-molecule
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through a sufficiently long time interval T, then the fraction of the time T during which its
velocity lies between c and c+dc will be equal to Tdnc/n. During this time Tdnc/n, the m-
molecule collides vcTdnc/n times with a m1-molecule, and  times with

another m-molecule. Hence each m-molecule collides a total of (T/n)∫vcdnc times with an
m1-molecule and  times with another m-molecule. Therefore in unit

time each m-molecule will collide on the average v = (1/n)∫vcdnc times with an m1-
molecule and  times with an m-molecule, so that there will be 

 collisions in all.

Integration of Equation (69) yields :

where

In the latter integral, c has all values from zero to infinity, but c1 can only run through
those values smaller than the given value of c. If one interchanges the order of integrations,
then c1 has all values from zero to infinity whereas c assumes all values greater than the
given c1 Hence :
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Since one can label the variables at will in a definite integral, we can exchange the
labels c and c1. Hence we obtain for J2 an expression that differs from the one given for J1
only by having the symbols m and m1 permuted. One thus obtains J2 by permuting m and
m1 in J1:

hence

If one writes n, m, and s in place of n1, m1, and σ, then it follows that:

Since in unit volume there are n m-molecules, each of which collides v times in unit time
with an m1-molecule, there are in all

collisions between an m-molecule and an m1-molecule.* But since in a collision of two m-
molecules, there are always two molecules of the same kind, the number of collisions
between m-molecules is :
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A similar formula holds for the collisions of m1-molecules with each other.

§10. Mean free path.

Let there be n m-molecules in unit volume; let the first have velocity c1, the second c2,
etc. Then  is the mean velocity. We shall call it the

number-average. Since the state is stationary,  does not change with time. If we multiply

the last equation by dt and integrate over a very long time T, then:

Since during a very long time all molecules behave in the same way, all the summands are
equal and it follows that , where

is the time-average of the velocity of any single molecule.

is the sum of all distances that it traverses during time T. But since it collides 

times with another molecule during this time, the mean distance traversed between two
successive collisions (the arithmetic mean of all distances between two successive
collisions) is:

The difference between time- and number-average will be ignored, since the two are
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equal.* The same value for λ would of course have been obtained if we had defined it as
the average of all distances traversed by all the m-molecules in unit volume between two
successive collisions, in unit time. For a simple gas we have:

This value is  times larger than the value λClaus calculated by Clausius (cf. [60] and

[67]).
The molecule earlier imagined to be moving with constant velocity c through the gas

mixture would in unit time traverse a path of length c, and since during this time it would
have collided  times with other molecules, it would travel between one collision

and the next the average distance:1

Since at any instant all molecules that have velocity c are subject to the same conditions, λc
is also the distance that such a molecule will travel from any instant to its next collision.
When at any specified instant many m-molecules all have the same velocity c, and we take
the average of all paths traversed by each of them from that instant to its next collision, we
obtain again the same value λc. The same holds of course if we go backwards in time. At a
specified time t, many m-molecules should have velocity c. If we now ask, how great is the
distance which these molecules have travelled on the average from their last collision to
time t, we would again obtain the value λc.

A false inference has been drawn from this, which Clausius* has clarified, and which
deserves to be mentioned. We again consider an m-molecule which moves for a long time
with the persistent velocity c. At some instant t it finds itself at the point B. We ask for the
distance of the point B from the place where the molecule last collided, and take the
average of all these distances for all possible locations of the point B. This would be equal
to λc.

Likewise we could ask for the distance of B from the place where the molecule will
suffer its first collision after the time t. The average of the latter distances would again be
equal to λc. Since however the sum of the distances of B from the preceding and following
collisions would be equal to the path between the two collisions, one might think that the
mean distance between two successive collisions would be equal to 2λc. This conclusion is
false, since the probability that B lies on a longer path is greater than the probability that it
lies on a shorter one. If one takes the average of all paths between two successive
collisions, then the shorter path-distances will be relatively more frequent than if one gives
the point B all possible positions on the entire path of the m-molecule and then takes the
mean of the various distances of the point B from the next collision following or preceding.
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A trivial example will illustrate this much better than a long explanation. We shall make
several throws with a true die; between two throws of “one” there will be on the average
five others. We consider some interval J between two successive throws. Between the
interval J and the next throw of “one” there will be on the average not  but rather 5

other throws. Likewise between J and the last preceding throw of “one” there will be on
the average 5 throws.

Tait has defined the mean free path λ in a somewhat different manner. We saw above
that at a specified time t there are in unit volume dnc molecules whose velocity lies between
c and c+dc, and that all these molecules travel on the average a distance λc from any instant
of time to their next collision. If we consider all the nm-molecules that are in unit volume at
any time, and take the average of all the paths that they traverse from that time to their next
collision, then we obtain:

This gives, after substituting the values (70) and (71) and making some easy reductions :

where

The expression (80) reduces, when only m-molecules are present, to:

I found the value of the definite integral to be 0.677464.2 Tait obtained a value that
agrees to the first three decimal places.3 Hence:
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One sees easily that the quantity λT must be somewhat smaller than the mean value
earlier denoted by λ. Previously λ was the mean of all paths traversed by all the molecules
in unit volume in unit time. Each molecule would thus contribute as many paths to the
arithmetic mean as the number of collisions it experienced in unit time. By Tait’s method,
however, each molecule contributes only one path. Since the faster molecules collide more
frequently and also travel a longer distance from one collision to the next than do the
slower ones, the first method counts the longer paths relatively more often; hence the
average must be larger than by the second method.

Tait points out that one could also define the mean path as the product of the mean time
between two collisions and the mean velocity, which would give

whence for a simple gas one gets:

The mean duration of time between two collisions could similarly be defined in a
different way; but we have already spent too much time on these less important concepts,
which can only be excused by the attempt to attain the clearest possible understanding of
the fundamental concepts.

When we obtain different values for the mean free path, it is clearly not the fault of an
error in the calculation. Each value is exact on the basis of its own definition. If any
precisely performed calculation leads to a final formula that contains the mean free path, it
will be evident from the calculation itself which definition should be used. Only when the
calculation by which the formula is obtained is inexact can there be any doubt.

§11. Basic equation for the transport of any quantity by the molecular motion.

We now consider a vertical cylindrical column of a simple gas, whose molecules have
mass m. We draw the z-axis vertically upwards, the plane z = z0 being the bottom and the
plane z = z1 the top of the gas column. As usual we assume that the distance between these
two planes is small compared to the cross-section of the gas column, so that the effect of the
wall that bounds the gas column on the side can be ignored. Let Q be any quantity which a
gas molecule can have in different amounts. The top of the container shall now have the
property that each molecule, however it may behave before the collision, will have after
reflection the average amount G1 of this quantity Q. Likewise each molecule will rebound
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from the bottom with the average amount G0 of this quantity. For example, if the molecules
were spheres of diameter s which conduct electricity, and the top and bottom were two
metal plates, which had constant potentials one and zero, then each molecule would
rebound from the bottom unelectrified, but would leave the top with electrical charge s/2.
The quantity Q would then be the amount of electricity, and one would have the process of
electrical conduction. If the bottom were at rest, and the top were moving in the direction of
the abscissa axis in its own plane, then one would have the process of viscosity and Q
would be the momentum measured in the abscissa direction. If the top and bottom were at
two different temperatures, one would have heat conduction in the gas.

To be specific, we shall assume that G1 is larger than G0. For any z, and hence in any
layer parallel to the xy plane lying between the top and the bottom, which we shall call the
layer z, each molecule has on the average the amount G(z) of this quantity.

We imagine in this layer a piece AB of unit surface area; a molecule that passes through
AB from above to below will have experienced its last collision before its passage through
AB in a higher layer.

We say briefly that it comes from a higher layer. Hence on the average it will have an
amount of the quantity Q larger than G(z). The molecules that pass through AB from below
will carry on the average a smaller amount of this quantity with them, so that in unit time a
definite amount Г of Q will be transported from above to below, and the determination of
this amount Г is our next problem. We consider, out of all our molecules, only those whose
velocities are between c and c+dc. There will be dnc of these in unit volume. Of these,
according to Equation (38),

move in such a way that the direction of their velocity forms an angle between ϑ and ϑ+dϑ
with the negative z-axis. Each molecule traverses during time dt a path of length cdt, which

forms an angle ϑ with the negative z-axis.
Hence there will pass through AB in time dt as many of the molecules considered as

may lie at the beginning of dt in an oblique cylinder whose base is AB, and whose volume

is c cos ϑdt. This latter number is just

(cf. the derivation of Equation (3) in §2).
Thus during unit time, when the state is stationary,
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molecules will pass through AB from above to below, whose velocities are between c and

c+dc, and make an angle between ϑ and ϑ+dϑ with the negative z-axis. If we consider a
particular one of these molecules, which passes through AB at time t, and denote the path it
has traversed from its last previous collision to the instant t by λ′, then clearly it comes from

a layer with z-coördinate z+λ′ cos ϑ, where each molecule possesses on the average the

amount G(z+λ′ cos ϑ) of the quantity Q; it will therefore transport through AB this amount,
which we can set equal to

since λ′ is small.
All the  molecules considered above will therefore transport the amount

through AB from above to below, where ∑ λ′ is the sum of the paths of all the 
molecules. We can set ∑ λ′ equal to the product of the number  of these molecules and
the mean free path. This mean free path, according to the remark following Equation (78)
in the text, is equal to the quantity denoted by λc. Hence  and we

obtain for the amount of Q transported through unit surface from above to below by the 
 molecules in unit time the result:

If we substitute for  its value, noting that dnc, λc, G, and ∂G/∂х are not functions of

ϑ, and integrate over ϑ from 0 to π/2, then we obtain for the total amount of Q transported
by the molecules whose velocities are between c and c+dc, from above to below, the value:

Similarly we find that the molecules whose velocities lie between the same limits
transport from below to above the amount
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Hence all these molecules will transport the net amount

more from above to below than in the reverse direction. If we make the simplifying
assumption that all molecules have the same velocity c, then the velocities of all molecules
present lie between c and c+dc. One therefore has to replace dnc by n, and λc by the mean
free path of each of these molecules. Then dΓ will be identical with the total amount Г of Q
transported in unit time through unit surface by the molecules from above to below, in
excess of the amount transported in the opposite direction. Therefore we obtain

since here the Clausius mean free path formula is applicable.
If we do not make the simplifying assumption that all molecules have the same velocity,

then we will obtain Г by integrating the above value of dГ over all possible values.
Equation (78) gives (since there is only one kind of gas)

If we substitute for  and dnc their values from Equations (71) and (43), then after
some easy reductions we get:

where ψ(x) is the function defined by Equation (81).
I found the value 0.838264 for the definite integral, by mechanical quadrature.1 Tait

calculated it later to three decimal places, which agree with my value.2

From Equations (44), (45), and (47) it follows that:
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Likewise it follows from Equations (67), (77), and (82) that:

When we substitute for  and 1/πs2 any of these values, we obtain each time

an equation of the form

where c is either the most probable or the mean velocity or the square root of the mean
square velocity, λ is the mean free path according to Maxwell’s, Tait’s, or Clausius’
definition, and k is a constant which is different in each case. If we understand by c the
mean velocity and by λ the Maxwell mean free path, then:

The coefficient therefore differs only slightly from the coefficient  in Equation (86).

§12. Electrical conduction and viscosity of the gas.

We shall first consider intentionally an example in which the quantity Q is not a purely
mechanical property of the molecule. Let the bottom and top of the container be two plates
which are both good electrical conductors, maintained at the constant potentials 0 and 1.
The distance between the bottom and top is one. The effect of the side walls will be
neglected, as usual. We consider this problem simply as an exercise, and we therefore
assume that the spherical gas molecule is a good conductor of electricity and that its
electrical charge does not affect its molecular motion, without pretending that these
conditions could be realized in nature. G is then the electricity accumulated on a molecule.
For molecules reflected from the bottom it has the value G0 = 0, and for those reflected
from the top the value G1 = s/2. For the latter, the electrical potential in the interior and at
the surface must be equal to 1. This electrical potential is equal to the quantity of electricity
G1 divided by the radius s/2. If the state is to be stationary, then Г must have the same
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value for each cross-section. Since we assume that the molecular motion is not disturbed by
the electrification, the other quantities appearing in Equation (88) have the same value for
each cross-section, and it follows from this equation that ∂G/∂z is independent of z. If the
distance between top and bottom is equal to 1, then:

The amount of electricity transported in unit time through unit surface by molecules
from above to below in excess of that transported from below to above is therefore,
according to Equation (88):

According to our assumptions (which of course are not proved) this would be the electrical
conductivity of the gas.

We shall now treat another example. The bottom will be at rest, but the top is being
displaced in the abscissa direction at constant velocity. Consequently the gas molecules
near the top are dragged along, while those near the bottom are held back. The mean
velocity component of a molecule in the abscissa direction, i.e., the visible velocity of the
gas in this direction, will therefore increase with increasing values of the z-coördinate. For
the layer z it has the value u. We now understand by G the average momentum mu of a
molecule in the abscissa direction, and hence we obtain:

If we denote the total mass of gas between the bottom and the layer z by M, and the
velocity of its center of mass in the abscissa direction by , then

where ∑mξ is the sum of the momenta of all particles in the abscissa direction. As a result
of the molecular motion of the gas, more momentum Г will be transported downwards than
upwards in unit time through unit surface. Hence during the time dt the quantity ∑mξ
experiences the increment
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while M remains unchanged. Here ω is the surface area of the cross section of our gas
cylinder. Hence  increases by

because of the molecular motion. The same increase would occur if the force Mdx/dt acted
on the gas. If the state is to be stationary, an equal but opposite force must act from outside
on the gas mass M. This can only come from the bottom, and since the action and reaction
are equal, the gas exerts on the bottom the force

in the positive abscissa direction. This force is gas viscosity. It is proportional to the surface
ω, and to the differential quotient of the tangential velocity и by the normal z.

The proportionality constant is the viscosity coefficient. It has the value

For air at 15°С and normal barometric pressure, the experiments of Maxwell,1 О. E.
Meyer,2 and Kundt and Warburg3 give, nearly in agreement with each other,

Since oxygen and nitrogen have rather similar properties and the formula is only
approximately correct in any case, we can set this equal to the viscosity constant of

nitrogen. For this we find at 0°C, . Since  and

since  is proportional to the square root of the absolute temperature, it follows for nitrogen
at 15°C that:

If one understands by c in Equation (91) the mean velocity, so that one should set k =
0.350271, he then obtains:
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For the number of collisions that a nitrogen molecule experiences per second at 15°C
and at normal barometric pressure, one obtains :

Since according to Equation (77)

the two quantities n and s cannot be determined individually. They can however be found
as soon as another relation between these quantities is known.

According to Loschmidt4 this can be accomplished by the following arguments, whose
validity he justifies by consideration of the molecular volumes of various substances. The
volume of a molecule considered as a sphere is πs3/6. If one does not have such a simple
picture of a molecule, then he may consider this to be the volume of a sphere whose
diameter is equal to the minimum distance of approach of the centers of gravity of two
molecules in a collision. Thus πns3/6 is the fraction of the total gas volume (set equal to 1)
that will be filled with molecules, when one regards them as spheres of the above size,
while the space 1 – (πns3/6) between them remains empty.

We assume that the gas can be liquefied and that in the liquid state the total volume is ∊

times larger than the space occupied by the molecules; then ∊πns3/6 is the volume of the
liquid resulting from liquefaction of the gas, and since the volume of the gas was equal to
one, we have

where vg is the volume of an arbitrary quantity of gas of density such that there are n
molecules in unit volume, whereas vf is the volume of the same amount of gas in the liquid
state.* On multiplying this last equation by Equation (77), one obtains:

Now the volume of a liquid is not significantly changed by either pressure or
temperature, and furthermore the force that two gas molecules exert on each other in a
collision is probably greater than that which we can exert on liquids in our laboratories.6
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Hence we may well assume that the volume of a liquid is not more than ten times as large,
and generally not smaller, than it would be if two neighboring molecules were at that

distance which is in the gas their minimum distance in a collision, so that ∊ is between 1
and 10. The density of liquid nitrogen was found by Wroblewsky to be not much different
from that of water.* Also, from the atomic volume it follows that the difference between
the two densities cannot be so large that it need be taken into account in this approximate
calculation. If we set the two equal, then we find for nitrogen at 15° and atmospheric

pressure: (vg/vf) = 813; and we obtain, when we set ∊ = 1, s = 0.0000001 cm = one
millionth of a millimeter. Hence we may take it as probable that the mean distance of the
centers of gravity of two neighboring molecules in liquid nitrogen, as well as the smallest
distance to which two colliding molecules in gaseous nitrogen can approach on the
average, lies between this value and the tenth part of it.

For the number  of molecules in 1 cc of nitrogen at 25°C at

atmospheric pressure, one obtains a number which in any case falls between  and 250

trillions.
Substitution of this value into Equation (90) gives: Γ = (23 · 109/sec). This would be the

absolute conductivity in electrostatic units. The electromagnetic specific resistance would
therefore be:

A cube of nitrogen, 1 cm on each side, has resistance (4 · 1010 cm/sec) = (40 ohm) while
an equal cube of mercury has resistance (1/10600) ohm. Since nitrogen actually is a much
poorer conductor than mercury, it follows that the hypothesis that the molecule is a
conducting sphere is incorrect.

The order of magnitude of the diameter of a molecule was later calculated by Lothar
Meyer,6 Stoney,7 Lord Kelvin,8 Maxwell,9 and van der Waals,10 and they found, by
several completely different methods, values in agreement with the one above.

In order to find the dependence of the viscosity coefficient on the nature and state of the
gas in question, we replace ρ by nm, and λ by its value according to Equation (77). One
obtains:

and by virtue of Equations (46) and (51a):
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Thus the viscosity coefficient is independent of the density of the gas, and proportional
to the square root of its temperature. The independence of density, which is of course valid
only as long as the condition of our calculation is satisfied—namely, that the mean free path
is small compared to the distance between top and bottom—was verified by experiment,
especially by Kundt and Warburg.* As far as the dependence on temperature is concerned,
Maxwell’s experiment gave a viscosity coefficient proportional to the first power of the
temperature (loc. cit.), which is correct only for easily coercible gases, especially carbon
dioxide. For less coercible gases, several later observers found close agreement with the
formula developed here for the temperature coefficient of the viscosity though most values
lie between the value of this calculation and the one found experimentally by Maxwell.11

The first remark to be made is that a more rapid increase of the viscosity with
temperature than the square root of the absolute temperature cannot be attributed to the
inaccuracy of our calculation, since one perceives immediately the following: when one
raises the temperature without changing the density, then on the assumption of elastic,
negligibly deformable molecules, the molecular motion is on the average completely
unchanged except that its velocity increases in proportion to the square root of the absolute
temperature. It is as though time were shortened in this ratio, and hence it follows that the
amount of momentum transported in unit time must increase by the same amount. On the
other hand, according to Stefan,12 s could decrease with increasing temperature. This
would have the following meaning. The molecules are not absolutely rigid, rather they are
somewhat flattened by the collision, so that their diameter appears to decrease, and indeed it
decreases more the higher the temperature of the gas. Maxwell* assumes that the molecules
are centers of force, which exert on each other a force that is negligible at large distances,
but as they approach becomes a very rapidly increasing repulsive force, which is to be
chosen as an appropriate function of the distance. In order to explain the temperature
coefficient of the viscosity which he found, he sets this function equal to the inverse fifth
power of the distance. I once remarked that one could obtain all the essential properties of a
gas by substituting for this repulsive force a purely attractive force which is an appropriate
function of the distance, and one could thereby explain dissociation phenomena and the
well-known Joule-Thomson experiment.† Because of our ignorance as to the nature of
molecules, all these models must of course be considered simply as mechanical analogies,
which one must regard as all being on an equal footing, as long as experiment has not
decided between them. In any case, however, it is probable that the diameter of a molecule
is not a precisely defined quantity. Nevertheless, the neighboring molecules in the liquid
state must be at such a distance that they interact strongly with each other, and the
interaction of more than two of them is no longer an exceptional case. Hence they are at
distances about the same as that at which gas molecules already experience a significant
deviation from rectilinear paths. The quantities denoted above by s and σ represent nothing
more than the order of magnitude of this distance. In order that the calculation may remain
meaningful, we shall return to the assumption that the molecules are almost undeformable
elastic spheres. Then it follows from the last formula for the viscosity coefficient that it is
proportional to the square root of the mass of a molecule, for different gases at the same
temperature, and inversely proportional to the square root of the molecular diameter.
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§13. Heat conduction and diffusion of the gas.

In order to calculate the heat conductivity from Equation (88), we have to assume that
the top and bottom planes are maintained at two different temperatures. G is then the
average heat contained by a molecule. The mean kinetic energy of progressive motion of a
molecule is

The total average energy of internal motion of a molecule will be set equal to

hence the total average molecular motion is

or, by virtue of Equation (57),

Since according to our hypothesis heat is nothing but the total energy of molecular
motion, the amount of heat G pertaining to a molecule will be measured in mechanical
units. If we assume that the ratio of specific heats, κ, is constant, which is probably true at
least for the permanent gases, then

Now according to Equation (51a),
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where, as before, µ = (m/M) is the molecular weight of the gas. We thereby obtain

hence according to Equation (88),

The coefficient of ∂Т/∂z is what one calls the heat conductivity  of the gas. It therefore
follows that

The dependence of the heat conductivity on density and temperature is therefore, as
long as κ is constant, the same as that of the viscosity. In particular, since κ depends hardly
at all on density for permanent gases at constant temperature, the heat conductivity is
independent of density, which was confirmed by the experiments of Stefan* and of Kundt
and Warburg.†

For different gases for which κ has nearly the same value, the heat conductivity
coefficient is proportional to the quotient of the viscosity coefficient divided by the
molecular weight—or, as the last expression in Equation (92) shows, inversely proportional
to the square of the diameter and to the square root of the molecular weight. Hence it is
significantly larger for the smaller and lighter molecules than for the larger ones. This has
been confirmed by experiment.

If we denote by γp and γv the specific heats of the gas referred to constant mass, at
constant pressure and constant volume, respectively, where heat is again to be measured in
mechanical units, then we have (Eq. 55a)

hence
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In the last formula the unit of heat is arbitrary. If one puts, for air at 0°C and atmospheric
pressure,

and for  its value given above, then it follows that:

For the heat conductivity of air, different observers have found values lying between
0.000048 and 0.000058 in the above units.1 Taking account of the fact that our calculation
is only an approximate one, we consider this agreement sufficiently good.

In order to calculate the diffusion of two gases, we shall again return to the gas cylinder
considered in §11. Let the gas be a mixture of two simple gases. A molecule of the first
kind of gas has mass m, and diameter s; a molecule of the second kind has mass m1 and
diameter s1. In the layer z there are (in unit volume) n molecules of the first and n1 of the
second kind of gas, where n and п1 are to be functions of z. Also, the number dnc of
molecules of the first kind for which the magnitude of the velocity lies between c and c+dc
will be a function of z. One then finds by considerations similar to those in §11 that in unit
time

molecules of the first kind move through unit surface with velocities between c and c+dc,

the angle between their direction of motion and the negative z-axis lying between ϑ and ϑ

+ dϑ. These molecules come on the average from a layer whose z-coördinate has the value

z+λc cos ϑ, for which therefore we can write in place of dnc:

If one integrates over ϑ from 0 to π/2, then the number of molecules of the first kind of
gas that pass in unit time through unit surface at any angle but with velocity between c and
c+dc has the value:
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likewise the number of molecules that pass from below to above has the value:

Hence there will be a net flow of

molecules of the first kind of gas from above to below. On the simplifying assumption that
the velocities of all molecules are the same, one would have in place of  simply the

total number  of molecules of the first kind that pass in unit time through unit surface
from above to below, in excess of those that pass from below to above, and instead of dnc
one would have simply the total number n of molecules of the first kind in unit volume in
the layer z. One would then have:

The occurrence of different velocities for molecules of the same kind will be taken
account of only in the simplest case, where both kinds of gas have molecules of the same
mass and diameter. In this case, which Maxwell calls self-diffusion, we assume that during
the diffusion Maxwell’s velocity distribution holds for the molecules of each kind of gas in
each layer, so that Equation (43),

remains unchanged, except that n is a function of z, whence one obtains:
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Moreover, λc has the same value as it would in a simple gas in which there are n+n1
molecules in unit volume. λc is then given by Equation (78) in which νc = 0 but  is
given by Equation (71). In the latter equation, n+n1 is to be substituted for n, and s means
the diameter of a molecule, which is the same for both kinds of gas. Substitution of all these
values in Equation (94) and integration over c from 0 to ∞ yields for the total number of
molecules of the first kind that pass through unit surface from above to below, in excess of
those that pass from below to above, the value:

a formula which one could have obtained directly from Equation (87) by replacing Г and G
by  and n/(n+n1). Thus the probability that a molecule belongs to the first kind of gas
may be treated exactly like the quantity Q, introduced in §11, pertaining to a molecule, and
Г then means the number of molecules of the first kind that pass through unit volume in
unit time from above to below, in excess of those that pass in the opposite direction. Self-
diffusion thus takes place, according to our approximate formulas, just as we imagined in
§12 that electrical conduction might; one merely replaces the electrical charge of the
molecule by the property of belonging to one or the other kind of gas. But there is an
essential difference when one assumes that the electrical charges of two colliding molecules
are equalized in a collision. However, since our formulas are constructed in such a way that
after the collision any direction in space is equally probable for each molecule, it must
follow from this that electrical conduction is just as rapid when the molecules behave like
perfect insulators in collisions with each other, and like perfect conductors in collisions with
the top and the bottom. Then electrical conduction would be completely analogous to
diffusion.

If one introduces in Equation (96) the quantity k defined in Equation (89), then he
obtains:

If one multiplies on both sides by the constant m, then it follows that:

 is the net mass of the first gas that passes through the surface from above to
below, while nm is the mass of the first gas in unit volume in the layer z, hence ∂(nm)/∂z is
its gradient in the z direction. The factor multiplying this expression in the last equation is
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therefore what one calls the diffusion coefficient. This gives for air at 15°C and
atmospheric pressure, based on the above value for , the value 0.155 cm2/sec; while

Loschmidt2 has found values between 0.142 and 0.180 for different combinations of gas
that behave like air. If one considers the dependence of the quantity ρ on temperature and
pressure, then he finds that the diffusion coefficient is directly proportional to the  power

of the absolute temperature, and inversely proportional to the total pressure of the two
gases. At equal temperature and equal total pressure, the diffusion constant for self-
diffusion is, like the heat conductivity, inversely proportional to the quantity , as

one finds from Equation (96), since h and n+n1 are constant.
In this simplest case of diffusion, where the mass and diameter of a molecule are the

same for both gases, the aggregate of the two gases behaves like a single stationary gas. If
we denote by dNc,ϑ, dnc,ϑ, and  the total number of molecules of both gases, the

number of molecules of the first kind of gas, and of the second kind, respectively, for

which the velocity lies between c and c+dc and its direction forms an angle between ϑ and

ϑ+dϑ with the positive z axis; then according to Equation (38):

One might think that consequently at least in this simple case our calculations would be
exactly correct. However, we shall see that when the molecules are elastic spheres, the
faster molecules diffuse more rapidly and the slower ones less rapidly.3 Where n is small,
that is at a place where the molecules of the other kind of gas predominate over the
diffusing molecules, then for large values of c the quantity dnc,ϑ will be larger than

whereas for smaller values of c it will be smaller than this. At the same place the reverse
must be true for the other gas. Hence the exactness of the equation we obtained,

is in doubt. Likewise it is doubtful whether among the molecules that collide in a layer
(according to Clausius, the ones sent out from a layer) all directions of the velocity are
equally probable.

§14. Two kinds of approximations; diffusion of two different gases.
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One might think from what has been said up to now that Equation (87), and Equation
(88), which was derived from it with the coefficient (89), are strictly correct; this would be
an error. In fact, in deriving them we made the assumption that the velocity distribution
would not be altered by the quantity Q associated with the molecules. In many cases, for
example viscosity, when the visible motion is small compared to the mean velocity of a
molecule, the velocity distribution will be altered only slightly; yet the value of the quantity
dnc in Equation (83) will always be different from its value  in Equation (84). Hence

there is added to the expression (85) a term of the form

which is of the same order of magnitude as the expression (85) itself. Also, the assumption
that all directions of motion of a molecule are equally probable is doubtful.

We assumed finally that each molecule transports through the surface AB that amount

G(z+λ′ cos ϑ) of the quantity Q which a molecule would possess on the average in the
layer in which it experienced its last collision. This assumption is also arbitrary. This
amount can differ for molecules that leave the layer in different directions and with different

velocities; it can therefore be a function Ф of c and ϑ, so that ∂G/∂z cannot be taken out in

front of the integral sign in the following integrations over ϑ and c. The amount of Q
transported by a molecule through AB would then depend not only on the layer where it
last collided, but also on the place where it collided the next to last time, and perhaps also
on the place of the collision before that.

This is related to a situation already discussed in comparing diffusion and electrical
conduction. It can happen that in a collision each of the colliding molecules retains the
amount of Q that it had before the collision; however, an equalization can also take place. If
we call Q electricity, then the former corresponds to the case when the molecules are
conducting but are covered with an insulating layer that is penetrated in collisions with the
top and bottom but not in collisions between two molecules; the latter corresponds to the
case when the molecules are composed of a conducting substance right up to their surface.

In these two cases the function Φ can be different, so that the transport of Q would be
unequal even though the mean value of G in a layer z would be the same in both cases,
namely

In fact it is more probable that a molecule will continue in nearly the same rather than the
opposite direction after a collision. One sees this in the formulas (201) and (203) derived
later on. Hence the transport of Q is more obstructed and hence slower when it is equalized
between two colliding molecules than when it is not.
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Numerous researches have been carried out to take account of the terms neglected
because of all these assumptions, especially by Clausius, O. E. Meyer, and Tait.*
Nevertheless, in the case of elastic spheres the perturbation of the velocity distribution by
viscosity, diffusion, and heat conduction has not yet been calculated exactly, so that in all
the relevant formulas terms have been neglected which are of the same order of magnitude
as those which determine the result, so that they are not essentially better than the ones
obtained here in a simpler way.

Such omissions, which make the results mathematically incorrect in the sense that they
are not logical consequences of the assumptions made, are to be distinguished (as we
explained at the end of §6) from assumptions that are physically only approximately
correct, for example the assumption that the duration of a collision is small compared to the
time between two collisions. As a consequence of the latter assumptions the results will
also be physically inexact, i.e., their validity can only be determined by experiment.
However, these physical approximations do not prevent the results from being
mathematically correct, since they provide the limiting case to which the law must approach
ever more closely as the physical assumptions are realized more exactly.

We shall now calculate the diffusion of two gases when the mass and diameter of a
molecule are different in the two gases, but only on the simplifying assumption that the
velocities of all molecules of the first kind of gas are equal to c, while those of all molecules
of the second kind are equal to c1.

Equation (95) then holds for the first kind of gas. The mean free path will then of course
be calculated from Equation (68). However, since the whole calculation is only an
approximate one, we shall not take account of the occurrence of different velocities here,
since this simplifies the calculation, and use Equation (76). Thus we obtain for the number
of molecules of the first kind of gas that pass in unit time through unit surface from above
to below, in excess of those going the other way,

whence

Similarly one finds for the number  of molecules of the second kind of gas that pass

downwards through the surface in excess of the number passing upwards the value:
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since (п+n1) is constant in the gas as a whole. Here we have:

There now arises the difficulty that the diffusion constant does not come out the same
for both gases—i.e., according to the formulas, more molecules pass through each cross
section in one direction than in the other. This actually happens in diffusion through a very
narrow passage or a porous wall. However in our case where we assume that the mixture is
at rest and the effect of the side walls is negligible, the pressure must always be equalized,
and therefore according to Avogadro’s law an equal number of molecules must move in
each direction.

Our formula gives a false result. Similarly, Maxwell’s first formula for heat conduction*
gave a visible mass motion of the heat-conducting gas. Clausius† and O. E. Meyer‡ have
obtained other formulas for heat conduction, which avoid this visible mass motion, but for
which the pressure is different at different places in the gas. Although this actually occurs in
very dilute gases, as calculation and experiment both agree for the radiometer,** such great
pressure differences as would follow from the formulas are inadmissible.1 This is therefore
a clear proof of the inaccuracy of all these calculations.

In the case of diffusion, with which we now concern ourselves, O. E. Meyer* has
removed the contradiction by superposing on the molecular motion calculated here—in
which  more molecules pass through unit surface in unit time downwards than

upwards—an equal but oppositely directed flow of the mixture. Since the mixture consists
o f n+n1 molecules, n of the first kind and n1 of the second, the flow of the mixture is
imagined to be such that n(N1 – N)/(n+n1) of the first kind and n1(N1 – N)/(n+n1) of the
second kind pass downwards in excess of those going upwards. Hence according to this
superposition,

molecules of the first kind pass downwards in excess of those going upwards, and equally
many molecules of the second kind pass upwards in excess of those going downwards.
The diffusion coefficient is therefore now
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where  and  have the values just found. According to this formula the diffusion

coefficient would depend on the mixing ratio, and therefore would not have the same value
in different layers of the gas mixture, so that for the stationary state n and п1 would not be
linear functions of z. Stefan2 has developed another approximate theory of diffusion on
other principles, and he finds that the diffusion coefficient should not depend on the mixing
ratio. Experimentally the question is still open. Yet such a strong variation of the diffusion
coefficient as that given by the above formula seems to be excluded.

As for the various complicated revisions undergone by these various theories of
viscosity, diffusion, and heat conduction, the comparison with experimental results for
different kinds of gases, and the conclusions which may be drawn about the molecular
properties of various gases, I cannot go into them here. They may be found, rather
exhaustively collected, in O. E. Meyer’s Kinetische Theorie der Gase. Of the works
published later, those of Tait3 may be mentioned.*

One sees at once that the first two terms represent the increase in H by what is called the first cause in the
text, and that for the reasons given in the text it vanishes. The other two terms represent the increase in H
due to the second cause and give, after substitution of the values of ∂F/∂t from Equations (25) and (26):

where dρ=σ2g cosϑdωdω1dλ, dr = s2g cosϑdωdω1dλ and  cosϑdωdω1dλ. All the

integrations are extended over all possible values of the variables.

One sees at once that the sum  is likewise equal to H. Its

differentiation yields:

The quantities ∂f′/∂t and ∂F′/∂t can be found in the same way as ∂f/∂t and ∂F/∂t if one considers, instead

Pure Mathematical Physics



77

of a collision in which the velocity components before the collision are ξ, η, ζ, ξ1, η1, ζ1 and afterwards 
, a collision in which they are 

before and ξ, η, ζ, ξ1, η1, ζ1 afterwards. Then by symmetry one gets

and similarly for ∂F′/∂t. Substitution of these values in Eq. (30) yields (taking account of the fact that

the first two integrals on the right hand side vanish and that ):

Since in a collision of two m-molecules or two m1-molecules, the two colliding molecules play the same
role, it follows that

with two similar equations for F. From this, taking the average of the two values (30) and (31) for
dH/dt, there follows the value given in the text:

for the number of collisions that a molecule will experience in unit time when it moves with constant
velocity c among identical molecules at rest, σ is the sum of the radii of a moving and a stationary
molecule. The path traversed by the moving molecule from one collision to the next would have on the
average the length

10 If one writes in Eq. (61) the value n1 in place of , 1 in place of dt, and 1 in place of

fdω, and integrates over φ from zero to π just as in the text, then he finds the number v′ of collisions that
an m-molecule would experience with m1-molecules in unit time, if it moved with constant speed c. It is
thereby assumed that there are in unit volume n1 m1-molecules, all of which move with the same
velocity c1 but with the velocity directions equally distributed over all possible directions in space. The
integration yields

Pure Mathematical Physics



78

If moreover the m1-molecules are identical with the m-molecules, there being in all n of them in unit
volume, and furthermore c = c1, and s is the diameter of the molecules, then one obtains for the number
of collisions that one molecule experiences with identical ones of the same velocity moving in all
directions, in unit time, the value

The mean path (from one collision to the next) will be

This is the value calculated by Clausius for the mean free path; it differs numerically somewhat from
that derived in the text, which was calculated by Maxwell. [R. Clausius, Ann. Physik [2] 105, 239
(1859); J. C. Maxwell, Phil. Mag. [4] 19, 19 (1860); Clausius defended his original value in a note in
Phil. Mag. [4] 19, 434 (1860). Maxwell did not bother to give a detailed proof of his own result, but this
was done by W. D. Niven in Maxwell’s Scientific Papers, Vol. I, p. 387. See S. G. Brush, Amer. J. Phys.
30, 271 (1962); Bernstein, Isis 54, 206, (1963).—ТR.]

If one has in unit volume n molecules with diameter s and n1 with diameter s1 =2σ – s, and if all n of
the former move with the same velocity c, while all n1 of the latter move with a different velocity c1,
distributed uniformly in all directions in space, then one of the n molecules experiences v′+v″ collisions,
and its mean path is:

1 Burbury, Nature 51, 78 (1894). See also Boltzmann, Weitere Bermerkungen über Würmetheorie,
Wien. Ber. 78 (June 1878), third-to-last and next-to-last pages.

2 Kirchhoff, Vorlesungen über Wärmetheorie, 14th lecture, §2, p. 145, line 5.
* See Part II, §77, for corrections to this section. For further discussion of opposite collisions, see R.

C. Tolman, The Principles of Statistical Mechanics (New York: Oxford University Press, 1938),
Chapter 5.

3 Cf. Wien. Ber. 94, 625 (1886); Stankevitsch, Ann. Physik [3] 29, 153 (1886). The fact that the
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angles ϑ and ∊ also depend on the positions of с and c1 does not weaken the force of the arguments in the
text. One can first introduce in place of ϑ and ∊ two angles which determine the absolute position of OK

in space, then transform ξ, η, · · · ζ1 into  and finally again introduce ϑ and ∊.

* H. A. Lorentz, Wien. Ber. 95, 115 (1887).
4 One can present the proof given in the text in the following more analytical form. We shall

certainly include all required values when we integrate the integrals in Equation (28) over all variables
from − ∞ to + ∞. Velocities that do not occur in the gas will not contribute to the integral, since for these
velocities either f оr F must vanish. Hence the limits are constant and one obtains dH/dt by
differentiating with respect to t under the integral sign, which gives:

This proof is somewhat shorter, but it appears to depend on certain mathematical conditions—
permissibility of differentiation under the sign of integration, etc.—which affect only the ease of
demonstrating the theorem and not its validity, since it is really a question of very large but not infinite
numbers. The theorem was proved without introducing definite integrals in my paper in Wien. Ber. 66,
Oct. 1872, Section II.

5 See Schlömilch, Сотр. der höh. Analysis, Vol. 1, p. 437, 3d ed.
6 Boltzmann, Wien. Ber. 76 (Oct. 1877).
* J. Loschmidt, Wien. Ber 73, 128, 366 (1876), 75, 287, 76, 209 (1877). See also E. P. Culverwell,

Phil. Mag. [5] 30, 95 (1890); Nature 51, 581 (1895). G. H. Bryan, B. A. Rep. 61, 85 (1891); Nature 52,
29 (1895). G. J. Stoney, Phil. Mag. [5] 23, 544 (1887). J. Larmor, Nature 51, 152 (1894). H. W. Watson,
Nature 51, 105 (1894).

7 Cf. Nature 51, 413 (Feb. 1895).
* M. Planck, Mun. Ber. 24, 391 (1895).
8 It would be necessary to prove that the following cases are not possible: 1. Besides Maxwell’s law

there is another molecular-disordered stationary distribution of states in which each velocity does not
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CHAPTER II

The molecules are centers of force. Consideration of external forces

and visible motions of the gas.

§15. Development of partial differential equations for ƒ and F.

We now pass to the consideration of the case when external forces act, and any arbitrary
interaction may take place during collisions. In order to avoid the necessity of generalizing
the formulas later on, we consider again a mixture of two gases, whose molecules have
masses m and m1 respectively. We call them again, for brevity, m-molecules and m1-
molecules respectively. Each molecule will be almost completely unaffected by the others
during the greatest part of its motion; only when two molecules come unusually close to
each other will there be a significant change in the magnitude and direction of their
velocities. Simultaneous interactions of three molecules occur so rarely that they can be
disregarded. In order to achieve a precise exposition, we think of the molecules as material
points. As long as the distance r of an m-molecule from an m1-molecule is greater than a
specified very small distance σ, no interaction takes place; however, as soon as r is smaller
than σ, the two molecules may exert on each other any force, whose intensity ψ(r) is a
function of their distance of separation, and which is sufficient to produce a significant
deviation from their rectilinear paths. As soon as r becomes equal to σ we say that a
collision begins. For the sake of simplicity we exclude those force laws which can cause
the molecules to stick together, even though these are especially interesting since they may
lead to a clarification of dissociation phenomena;* then after a short time, r will again be
equal to σ, and at this instant, which we call the end of the collision, the interaction ceases.
For collisions of m-molecules or of m1-molecules with each other, we replace σ and ψ(r)
by s and Ψ(r), s1 and Ψ1(r), respectively. The case of elastic spheres is now a special case
obtained on assuming that the functions ψ, Ψ, and Ψ1 represent repulsive forces whose
intensities increase without limit as soon as r becomes the least bit smaller than σ, s, or s1,
respectively. Everything presented up to now is therefore obtained as a special case of the
equations to be developed here. In addition to these molecular forces, we now include
those forces acting on the molecules that arise from external causes, called briefly external
forces. We draw any fixed coördinate system in the gas. The components mX, mY, mZ of
the external forces acting on any m-molecule should be independent of time and of the
velocity components, and for all m-molecules they must be the same functions of the
coördinates x, y, z of the molecule in question. X, Y, and Z are thus the so-called
accelerating forces. The corresponding quantities for a molecule of the second kind will
have the subscript 1. The external force can indeed vary from one place to another in the
gas, but it should not vary markedly as long as the coördinates do not change by an amount
large compared to the sphere of action (characterized by the lengths σ, s, s1). Finally, we
also do not exclude the case that the gas is in visible motion. A priori one can assume
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neither that all directions of velocity are equally probable, nor that the velocity distribution
or the number of molecules in unit volume are the same in all parts of the gas, nor that they
are independent of time.

We fix our attention on the parallelepiped representing all space points whose
coördinates lie between the limits

We set do = dxdydz, and we always call this parallelepiped the parallelepiped do.
We assume, following the principles mentioned earlier, that this parallelepiped can be

infinitesimal yet still contain many molecules. The velocity of each m-molecule that finds
itself at time t in this parallelepiped shall be represented by a line starting at the origin, and
the other end point C of this line will again be called the velocity point of the molecule. Its
rectangular coördinates are equal to the components ξ, η, ζ of the velocity of the molecule
in those coördinate directions.

We now construct a second rectangular parallelepiped, which includes all points whose
coördinates lie between the limits

We set its volume equal to

and we call it the parallelepiped dω. The m-molecules that are in do at time t and whose
velocity points lie in dω at the same time will again be called the specified molecules, or the
“dn molecules.” Their number is clearly proportional to the product do·dω. Then all
volume elements immediately adjacent to do find themselves subject to similar conditions,
so that in a parallelepiped twice as large there will be twice as many molecules. We can
therefore set this number equal to

Similarly the number of m1-molecules that satisfy the conditions (97) and (98) at time t will
be:

The two functions ƒ and F completely characterize the state of motion, the mixing ratio,
and the velocity distribution at all places in the gas mixture. When they are given at the
initial time t = 0 for all values of their arguments, and when the external forces, the
molecular forces, and the boundary conditions at the wall are also given, then the problem
is completely determined, and it is completely solved as soon as one has found the values
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of the functions ƒ and F for all values of t. It is always assumed here that the state is
molecular-disordered. We now have to find a partial differential equation for the change of
the function ƒ during a very short time.

We shall allow a very short time dt to elapse, and during this time we keep the size and
position of do and dω completely unchanged. The number of m-molecules that satisfy the
conditions (97) and (98) at time t+dt is, according to Equation (99),

and the total increase experienced by dn during time dt is

The number dn experiences an increase as a result of four different causes.
1. All m-molecules whose velocity points lie in dω move in the x-direction with velocity

ξ, in the y-direction with velocity η, and in the z-direction with velocity ζ.
Hence through the left of the side of the parallelepiped do facing the negative abscissa

direction there will enter during time dt as many molecules satisfying the condition (98) as
may be found, at the beginning of dt, in a parallelepiped of base dydz and height ξdt, viz.

molecules (cf. p. 33 and 88). Then, since the latter parallelepiped is infinitesimal and is
infinitely near to do, the numbers  and fdodω contained in the two parallelepipeds are
proportional to the volumes ξdydzdt and do of the parallelepipeds. Likewise one finds, for
the number of m-molecules that satisfy the condition (98) and go out through the opposite
face of do during time dt, the value :

By similar arguments for the four other sides of the parallelepiped, one finds that during
time dt,

more molecules satisfying (98) enter do than leave it. This is therefore the increase V1
which dn experiences as a result of the motion of the molecules during time dt.

2. As a result of the action of external forces, the velocity components of all the
molecules change with time, and hence the velocity points of the molecules in do will
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move. Some velocity points will leave dω, others will come in, and since we always
include in the number dn only those molecules whose velocity points lie in dω, dn will
likewise be changed for this reason.

ξ, η, and ζ are the rectangular coördinates of the velocity point. Although this is only an
imaginary point, still it moves like the molecule itself in space. Since X, Y, Z are the
components of the accelerating force, we have:

Thus all the velocity points move with velocity X in the direction of the x-axis, with
velocity Y in the direction of the y-axis, and with velocity Z along the z-axis, and one can
employ completely similar arguments with respect to the motion of the velocity points
through dω as for the motion of the molecules themselves through do. One finds that, out of
the velocity points belonging to m-molecules in do, there will enter from the left of the
surface of the parallelepiped dω parallel to the yz plane, in time dt,

of them, while

of them will go out through the opposite surface. If one employs similar considerations for
the other four surfaces of the parallelepiped dω, he finds that in all

more velocity points of m-molecules (in do) enter dω than leave it.
Since, as noted, a molecule is included in dn when it not only lies in do but has its

velocity point in dω, this represents the increase of dn resulting from the motion of the
velocity points. But those molecules that enter do during the time dt, while during the same
time dt their velocity points enter dω, are not taken account of, nor are those that enter do
while their velocity points leave dω during dt; on the other hand, those that leave do during
dt while their velocity points enter or leave dω are counted in V1 as well as in V2 and are
therefore counted twice. Yet this leads to no error, since the number of all these molecules
is an infinitesimal of order (dt)2.

§16. Continuation. Discussion of the effects of collisions.
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3. Those of our dn molecules that undergo a collision during the time dt will clearly
have in general different velocity components after the collision. Their velocity points will
therefore be expelled, as it were, from the parallelepiped by the collision, and thrown into a
completely different parallelepiped. The number dn will thereby be decreased. On the other
hand, the velocity points of m-molecules in other parallelepipeds will be thrown into dω by
collisions, and dn will thereby increase. It is now a question of finding this total increase V3
experienced by dn during time dt as a result of the collisions taking place between any m-
molecules and any m1-molecules.

For this purpose we shall fix our attention on a very small fraction of the total number v1
of collisions undergone by our dn molecules during time dt with m1-molecules. We
construct a third parallelepiped which includes all points whose coördinates lie between the
limits

Its volume is ; it constitutes the parallelepiped dω1. By analogy with

Equation (100), the number of m1-molecules in do whose velocity points lie in dω1 at time
t is:

F1 is an abbreviation for F(x, y, z, ξ1, η1, ζ1).
We now ask for the number v2 of collisions that take place during dt between one of our

dn m-molecules and an m1-molecule, such that before the collision the velocity point C1 of
the latter molecule lies in dω1. We again denote by C and C1 the velocity points of the two
molecules before the collision, so that the lines OC and OC1 drawn from the origin to C
and C1 represent in magnitude and direction the velocities of the two molecules before the
collision. The line C1C = g gives also the relative velocity of the m-molecule with respect
to m1, in magnitude and direction; the number of collisions clearly depends only on the
relative motion. Furthermore, we assume that a collision always occurs between an m-
molecule and an m1-molecule as soon as they approach to a distance smaller than σ. The
problem of finding v2 is thus reduced to the following purely geometrical question. In a
parallelepiped do there are dN1 = F1dodω1 points. We call them again the m1-points.
Moreover, fdodω points (the m-points) move therein with velocity g in the direction C1C,
which we call the direction g for short. v2 is just equal to the number of times that an m-
point comes so close to an m1-point that their distance is less than σ. Naturally we assume a
molecular-disordered, i.e., completely random, distribution of the m-points and the m1-
points. In order not to have to consider those pairs of molecules that are interacting at the
beginning or the end of the time dt, we assume that while dt is indeed very small, it is still
large compared to the duration of a collision, just as do is very small but still contains many
molecules.

In order to solve this purely geometrical problem, one can completely ignore the
interaction of the molecules. The motion of the molecules during and after the collision will
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of course depend on the law of this interaction. However, the collision frequency can be
affected by this interaction only insofar as a molecule that has already collided once during
dt may collide again, with its altered velocity, during the same interval dt; yet such effects
would certainly be infinitesimals of order (dt)2.

We define a passage of an m-point by an m1-point as that instant of time when the
distance between the points has its smallest value; thus m would pass through the plane
through m1 perpendicular to the direction g, if no interaction took place between the two
molecules. Hence v2 is equal to the number of passages of an m-point by an m1-point that
occur during time dt, such that the smallest distance between the two molecules is less than
σ. In order to find this number, we draw through each m1-point a plane E moving with m1
perpendicular to the direction g, and a line G parallel to this direction. As soon as an m-
point crosses E, a passage takes place between it and the m1-point. We draw through each
m1-point a line m1X parallel to the positive abscissa direction and similarly directed. The
half-plane bounded by G, which contains the latter line, cuts E in the line m1H, which of
course again contains each m1-point. Furthermore, we draw from each m1-point in each of

the planes E a line of length b, which forms an angle ∊ with the line m1H. All points of the

plane E for which b and ∊ lie between the limits

form a rectangle of surface area R = bdbd∊. In Figure 6 the intersections of all these lines
with a sphere circumscribed about m1 are shown. The large circle (shown as an ellipse) lies
in the plane E; the circular arc GXH lies in the half-plane defined above. In each of the
planes E, an equal and identically situated rectangle will be found. We consider for the
moment only those passages of a n m-point by an m1-point in which the first point
penetrates one of the rectangles R.1 In their motion relative to m1, each of the m-points
travels the distance gdt during time dt, in a direction perpendicular to the plane of all these
rectangles. Therefore during time dt all those m-points that were initially in any of the
parallelepipeds whose base is one of these rectangles and whose height is equal to gdt will
go through the surface of one of these rectangles. (Cf. pp. 33, 38, and 113. The state should
again be molecular-disordered.) The volume of each of these parallelepipeds is therefore

and since the number of m1-points, and consequently the number of parallelepipeds, is
equal to F1dodω1, then the total volume of all the parallelepipeds is :

Since these volumes are infinitesimal, and lie infinitely close to the point with
coördinates x, y, z, then by analogy with Equation (99) the number of m-points (i.e., m-
molecules whose velocity points lie in dω) that are initially in the volumes ΣΠ is equal to :
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FIG. 6

This is at the same time the number of m-points that pass an m1-point during time dt at a

distance between b and b+db, in such a way that the angle ∊ lies between ∊ and ∊ + d∊.
By v2 we mean the number of m-points that pass an m1-point at any distance less than σ

during dt. We find v2 by integrating the differential expression vz over ∊ from 0 to 2π, and
over b from 0 to σ. Although the integration can easily be carried out, it is better for our
purposes merely to indicate it. Hence we write:

As we saw, v2 is at the same time the number of collisions of our dn molecules during dt
with m1-molecules whose velocity points lie within dω1. The number (earlier denoted by
v1) of all collisions of our dn molecules during dt with m1-molecules is therefore found by
integrating over the three variables ξ1, η1, ζ1 whose differentials occur in dω1, from – ∞ to
+ ∞ ; we indicate this by a single integral sign, so that we obtain :

In each of these collisions, provided it is not merely a glancing one, the velocity point of
the m-molecule involved is expelled from the parallelepiped dω, and hence dn decreases by
one.

In order to find out for how many m-molecules the velocity points lie in dω after a
collision with an m1-molecule, we simply need to ask how many collisions occur in a
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manner just the opposite of that considered above.
We shall consider again those collisions between m-molecules and m1-molecules,

whose number was denoted by v3 and is given by Equation (105). These are the collisions
that occur in unit time in the volume element do in such a way that the following conditions
are satisfied :

1. The velocity components of the m-molecules and the m1 molecules lie between the
limits (98) and (102), respectively, before the interaction begins.

2. We denote by b the closest distance of approach that would be attained if the
molecules did not interact but retained the velocities they had before the collision.
We denote by P and P1 the points at which they would be found at the instant when
this smallest distance is realized, and by g the relative velocity before the interaction.
Then b, and the angle between the two planes through g parallel to Ρ1Ρ and to the
abscissa axis, respectively, lie between the limits (104) (cf. footnote 1).

We call all these collisions, for short, direct collisions of the kind considered. For them
the velocity components of the two molecules after the collision lie between the limits

We denote by Ρ1Ρ the smallest distance to which the two molecules would approach if
they always had the same velocities as those with which they separate from each other after
the collision; and by g′ the relative velocity after the collision. Thus for all direct collisions
the length of the segment P1P′ and the angle of the planes through g′ parallel to P1P′ and
to the abscissa axis, respectively, lie between the limits

All collisions that occur during time dt in the volume element do such that the values of
the variables before the collision lie between the limits (108) and (109) will be referred to as
inverse collisions. For them the direction of g′ is to be reversed. They clearly follow just the
opposite course as the direct collisions, and after the collision the values of the variables lie
between the limits (98), (102), and (104).

Since we assume that the force law acting in the collisions is given, the values 

 and ∊′ of all the variables after the collision can be

calculated as functions of the values of the same variables ξ, η, ζ, ξ1, η1, ζ1, b, and ∊ before
the collision. Just as for the number of direct collisions we obtained Equation (105), so one
obtains for the number of inverse collisions the value :
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Here we have written: dω′ for  for ; and ƒ′ and 

 for f(x, y, z, ξ′, η′, ζ′, t) and . In order to be able to

perform the integration, we must express all the variables as functions of ξ, η, ζ, ξ1, η1, ζ1,

b, and ∊.
Later on we shall study explicitly the motion during the interaction (§21). Here we only

note the following. The motion of m relative to m1 (i.e., relative to three coördinate axes
passing through m1 and always parallel to the fixed coördinate axes, on which the

quantities g, g′, b, b′, ∊ and ∊′ depend) we call the relative central motion. It is just the same
central motion that one would obtain for the same force law by holding m1 fixed and letting
m originally have the relative velocity g in a line that has the perpendicular distance b from
m1. The latter material point must then have mass mm1/(m+m1) instead of its actual mass,
g′ is nothing but the velocity of m at the end of the relative central motion ; b′ is the
perpendicular distance of the line described by m as it recedes from m1 at the end of the
relative central motion. From the complete symmetry of any central motion it follows at
once that g′ = g, b′ = b (cf. Figure 7, §21). The symmetry axis of the path of m in the
relative central motion, which we call the line of apses, is the line connecting m1 with that
point where m has, in its entire relative central motion, the smallest separation from m1. It
plays the same role for central motion as does the line of centers for elastic collisions. The
plane of relative central motion will be called the orbital plane. It contains the four lines g,

g′, b, and b′. One sees that d∊ = d∊′ if he introduces for d∊ the angle of rotation dϑ of the
line of apses, so that ξ, η, ζ, ξ1, η1, ζ1 transform into  and

then again introduces d∊′ for dϑ; then the expression for d∊ in terms of dϑ and the values

of the variables before the collision must be exactly equal to that for d∊′ in terms of dϑ and
the values of the variables after the collision.

The proof that  has already been given for elastic

spheres. Since we used there only the theorem of kinetic energy conservation and the
theorem of conservation of motion of the center of mass in constructing the proof, and since
these theorems are still valid here, the proof can be constructed in the same way ; in place
of the line of centers one has of course to introduce the line of apses. Taking account of all
these equations, one can also write :

In Part II we shall prove a general theorem, of which the law that here

is only a special case. It is only to avoid the necessity of repeating here for a special case, as
a useless digression, results that will be developed in general later on, that we have merely
indicated briefly the proof of this theorem which is undoubtedly correct.

As a result of each “inverse” collision, the number dn of m-molecules in the
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parallelepiped do whose velocity points lie in the parallelepiped dω increases by one. The
total increment i1 experienced by dn as a result of collisions of m-molecules with m1-

molecules is found by integrating over ∊ from 0 to 2π, over b from 0 to σ, and over ξ1, η1,
ζ1 from – ∞ to + ∞. We shall write the result of this integration in the form:

Of course we cannot perform explicitly the integration with respect to b and ∊ since the
variables ξ′, η′, ζ′, and  occurring in ƒ′ and  are functions of ξ, η, ζ, ξ1,

η1, ζ1, b, and ∊, which cannot be computed until the force law is given. The difference i1 –
v1 expresses the net increase of dn during time dt as a result of collisions of m-molecules
with m1-molecules. It is therefore the total increase V3 experienced by dn as a result of
these collisions, and one has

It is to be noted that in glancing collisions it may happen that the velocity point of the m-
molecule lies in the parallelepiped dω both before and after the collision. These glancing
collisions are counted in (105) and hence also in v1, and are subtracted from V3, although
in these collisions the velocity point of the m-molecule is not expelled from dω but is
merely pushed from one place to another inside this parallelepiped. Yet this entails no error.
It is precisely because the velocity point of the m-molecule also lies in dω after the collision
that these collisions are also counted in the expression (110) for i3 and hence also in i1, and
they are therefore added back to V3.

These collisions are simply to be understood as collisions in which the velocity point of
the m-molecule is actually expelled from dω at the beginning of the collision, but at the end
of the collision it is thrown back into the same parallelepiped. Indeed, in Equation (112) we
can extend the integration over b to values greater than σ. We would thereby include in the
number of passages in v1, and exclude from those in V3, some passages in which no
change of the velocities and directions actually occurred. But the number of these collisions
will therefore be counted in the expression for i1, and added back again to V3. Obviously
the limits of integration cannot be chosen differently in the two expressions, (107) for v1
and (111) for i1. In Equation (112), where i1 – v1 is united into a single integral, on the
other hand, the integration over b can be extended as far as one wishes, since as soon as b
is larger than σ, the quantities  will be identical to ξ, η, ζ, ξ1,

η1, ζ1; hence  and the integrand vanishes. This remark is important in all

cases where the interaction of the molecules falls off gradually with increasing distance, so
that no sharp boundary of the sphere of action can be specified. In such cases one can
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integrate in Equation (112) over b from 0 to ∞, and since these limits are permissible in all
other cases, we shall retain them in the future. When no distance can be specified at which
the interaction of two molecules drops off precisely to zero, we shall still assume of course
that the interaction decreases so rapidly with increasing distance that the case where more
than two molecules interact simultaneously can be neglected.

The number of molecules that collide during dt but move in such a way that even
without a collision they would have left do or their velocity points would have left dω is of
course an infinitesimal quantity of order (dt)2.

4. The increment V4 experienced by dn as a result of collisions of m-molecules with
each other is found from Equation (112) by a simple permutation. One now uses ξ1, η1, ζ1
and  for the velocity components of the other m-molecule before and after

the collision, respectively, and one writes ƒ1 and  for

and

Then:

Since now V1+V2+V3+V4 is equal to the increment dn′–dn of dn during time dt, and
this according to Equation (101) must be equal to (∂f/∂t)dodωdt, one obtains on substituting
all the appropriate values and dividing by dodωdt the following partial differential equation
for the function ƒ:
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Similarly one obtains for F the partial differential equation :

Here we have used the abbreviation F′ for F(x, y, z, ξ′, η′, ζ′, t).

§17. Time-derivatives of sums over all molecules in a region.

Before we go further, we shall develop some general formulas useful in gas theory. Let
φ be an arbitrary function of x, y, z, ξ, η, ζ, t. The value obtained by substituting therein the
actual coördinates and velocity components of a particular molecule at time t will be called
the value of φ corresponding to that molecule at time t. The sum of all values of φ
corresponding to all the m-molecules that lie in the parallelepiped do and whose velocity
points lie in the parallelepiped dω at time t is obtained by multiplying φ by the number
fdodω of those moleclules. We denote it by

Similarly we choose for the second kind of gas any other arbitrary function Φ of x, y, z,
ξ, η, ζ, t and denote by

the sum of the values of Φ corresponding to all the m1-molecules lying in do whose
velocity points lie in dω1. Φ1 is the abbreviation for Φ(x, y, z, ξ1, η1, ζ1, t).

If we keep do constant in these expressions and integrate with respect to dω and dω1,
over all possible values, then we obtain the expressions:

which represent for the two gases the sums of all values of φ and Φ, respectively, that
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correspond to all molecules in do at time t, without any restriction on the velocities.
If we also integrate do over all volume elements of our gas, then we obtain the

expressions:

for the sums of all values of φ and Φ corresponding to all gas molecules of the first and
second kinds, respectively.

We shall now calculate the increment (∂ ∑dω,doφ/∂t)dt experienced by the sum ∑dω,doφ

during an infinitesimal time dt, if there is no change in the two volume elements do and dω
in size, shape, or position. According to the latter condition, which is expressed by the
symbol ∂/∂t, one should differentiate only with respect to the time. Since during the time
interval dt, φ changes by (∂φ/∂t)dt and ƒ by (∂f/∂t)dt, we obtain from Equation (116) :

When we substitute for ∂f/∂t its value from Equation (114), the above expression
appears to be a sum of five terms, each of which has its own physical meaning.
Accordingly we set:

so that

corresponds to the effect of the explicit dependence of φ on t;

corresponds to the effect of the motion of the molecules;
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corresponds to the effect of external forces;

corresponds to the effects of collisions of m-molecules with m1-molecules; and

corresponds to the effect of collisions of m-molecules with each other.
In order to find (∂/∂t) Σω,doφ, we have simply to integrate (∂/∂t) Σω,doφ over all

possible values of dω. We shall again write :

One obtains each B by multiplying the corresponding A by dω = dξdηdζ and integrating
over all these variables from – ∞ to + ∞, which we indicate by a single integral sign. Thus:

The third term B3, which corresponds to the increase resulting from the action of
external forces, can also be calculated in another way. Since we have to take account of all
elements dω sooner or later, we need not compare the fdodω molecules whose velocity
points lie in dω at the beginning of the time interval with those whose velocity points lie in
dω at the end of the same interval. Instead we may simply follow the former fdodω
molecules in their motion during the interval dt. For each molecule the velocity components
ξ, η, ζ will change by Xdt, Ydt, Zdt respectively during this time interval. Hence for each
molecule the corresponding value of φ changes, as a result of the action of the external
forces, by the amount:
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The effect of the external forces thus amounts merely to the fact that each of these
molecules provides this additional contribution to the sum ∑ω,doφ. The total increase
B3(φ)dodt of this sum due to the action of external forces is therefore found by multiplying
Equation (129) by fdodω and integrating over all values of dω, whereby one obtains :

According to the method by which Equations (127) and (128) were found—i.e., by
multiplying Equation (123) by dω and integrating over all values of this differential—one
would obtain for the same quantity the value :

Since X, Y, Z do not contain the variables ξ, η, ζ and since moreover dω is merely an
abbreviation for dξdηdζ and the integration signs in Equations (130) and (131) signifiy
integration over ξ, η, ζ, from – ∞ to + ∞, one sees easily that if he integrates by parts in the
first term with respect to ξ, in the second with respect to η, and in the third with respect to ζ,
then the identity of the expressions (130) and (131) can be proved. For infinite values of ξ,
η, or ζ, ƒ must vanish, and the product fφ must also approach the limit zero if Σω,dοφ is to
have a meaning.

We shall also compute directly the increase B4(φ)dodt experienced by the quantity
Σω,dοφ as a result of collisions of an m-molecule with an m1-molecule.

We again use the phrase “direct collisions” for all collisions that occur between an m-
molecule and an m1-molecule during time dt in the volume element do such that before the
collision the variables lie between the limits (98), (102), and (104). The total effect of each
of these collisions is that an m-molecule loses the velocity components ξ, η, ζ and acquires
the components ξ′ , η′ , ζ′. While it provides a term φ in Σω,dοφ before the collision, it
provides a term φ′ in the same sum after the collision φ′ is an abbreviation for φ(x, y, z, ξ′,
η′, ζ′, t)).

This sum experiences an increase φ′ – φ because of each of these collisions, and since
according to Equation (105) the number of these direct collisions is given by v3, one
obtains the total increase B4(φ)dodt experienced by the sum Σω,dοφ as a result of collisions
of an m-molecule with an m1-molecule when he integrates the product (φ′ – φ)v3, keeping
do and dt constant, over all values of all the other differentials. One thus obtains:

Pure Mathematical Physics



97

One might just as well have calculated Β4(φ) by considering those collisions between
an m-molecule and an m1-molecule in which the variables lie between the limits (108) and
(109) before the collision—i.e., those collisions which we have called “inverse.” For these,
the value φ′ would correspond to the m-molecule before the collision, and the value φ
afterwards. The sum Σω,dοφ would therefore decrease by (φ – φ′) for each collision, and
hence the total amount (φ – φ′)i3, where i3 is the number of inverse collisions as given by
Equation (110).

If we integrate over all variables except do and dt, then we must again obtain the
quantity denoted by Β4(φ) dodt. However, we would then have :

We could set Β4(φ) equal to the arithmetic mean of the two values found for it, and thus
obtain.

Integration of Equation (124) would on the other hand lead to:

One easily sees that the possibility of all these different ways of expressing Β4(φ)
follows fron the two equations:

where the summation signs express integration over all the differentials contained in i3 or in
v3 except for do and dt. These two equations follow directly; indeed, the summation over
all v3 or all i3 includes all collisions, and φ and φ′ are interchanged when one replaces the
former sum by the latter, or conversely.
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If one assumes in Equation (132) or (133) that the two molecules are identical, then :

One may still consider the two colliding molecules to play the same role, so that one can
interchange, in the last two formulae, the letters with subscript 1 and those with no
subscript, without changing the value of Β5(φ). Taking the arithmetic mean of the values of
Β5(φ) obtained by this permutation, one gets from (135) :

and from (136) :

The arithmetic mean of these two values is B5(φ)

The same result is obtained when one considers the fact that, as a result of each collision
satisfying the conditions (98), (102), and (104), the value of φ for one of the colliding
molecules changes from φ to φ′, while for the other it changes from φ1 to , so that for

each such collision the sum ∑ω,doφ must increase by  . Here φ1

and  are abbreviations for φ(x, y, z, ξ, η, ζ, t) and .

Now

of these collisions occur during dt. As a result of all these collisions, ∑ω,doφ decreases by
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If we integrate over dω, dω1, db, and d∊, then we obtain the increase of ∑ω,doφ resulting
from collisions of m-molecules with each other, i.e., the quantity B5(φ)dodt. However, we
must divide by 2, since we have counted each collision twice, and therefore we obtain
Equation (137). Had we considered only the inverse collisions, then we would have
likewise obtained Equation (138).

The special cases of Equation (136) obtained by assuming that φ is independent of the
time and of the coordinates x, y, z will be treated in §20.

We shall now set :

Since in ∑ω,oφ one has to integrate over all values of do and dω, this quantity is now a
function only of time. Hence the use of the symbol ∂/∂t is unnecessary, and we can express
differentiation by the usual Latin letter d.

Each C is obtained by multiplying the corresponding B by do and integrating over all
volume elements, or else by multiplying the corresponding A by dodω and integrating over
all do and dω.

Since the total number of molecules remains unchanged, we can calculate the sum
[C1(φ)+C2(φ) + C3(φ)]dt—which includes all increments except those resulting from
collisions—by simply following the fdodω molecules through their paths during time dt.
During this time their coördinates increase by ξdt, ηdt, ζdt, and their velocity components
by Xdt, Ydt, Zdt. Each of these molecules thus provides in the sum ∑ω,oφ at time t the
contribution

and at time t+dt a contribution larger by the amount

and since the number of these molecules is equal to fdodω, one has to multiply by this
number and integrate over all differentials except dt. On dividing by dt, one obtains:
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This value represents the increase of ∑ω,oφ (divided by dt) arising from the three causes
considered, and is also still correct when the walls of the container are in motion. If one
wrote instead of C2(φ) simply the integral of the quantity B2(φ)do, then he would consider
the position of all the volume elements do to be fixed. Therefore when the walls are in
motion one must add special terms to take account of the new parts of space that come into
the volume of the gas or go out of it during dt. These correspond to the surface integrals
that appear on partial integration of Equation (141) with respect to the coördinates.

The two quantities C4(φ) and C5(φ) are obtained by multiplying the expressions Β4(φ)
and Β5(φ) by do and integrating over all volume elements of the space filled by the gas,
whereby one obtains :

We have not considered here any effects due to motion of the walls of the container,
since the molecules that would collide in volume elements entering the space considered
because of such motion would provide terms only of order (dt)2.

Since the expression for the time derivatives of the quantities denoted by ∑dω1,doΦ1,
∑ω1,doΦ1 and ∑ω1,oΦ are constructed in just the same way, we shall not write them out.

Since A, B, and C are only the increments of definite quantities resulting from specified
causes, most authors express them as derivatives of those quantities. Maxwell* writes (∂/∂t)
∑ω,doφ, Kirchhoff † (D/Dt) ∑ω,doφ for Β5(φ) etc. As with all differentials, the A for a sum
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of two functions is equal to the A’s for the addends :

for any subscript k. These equations follow from the circumstance that φ occurs in all the
integrals A, B, C only linearly. ‡

§18. More general proof of the entropy theorem. Treatment of the equations
corresponding to the stationary state.

We shall now consider that special case when φ = lf and Φ = lF, where l signifies the
natural logarithm. Then

and we shall set

One has according to equation (141) :

If one integrates the fifth term in the parentheses with respect to ξ, the sixth with respect
to η and the last with respect to ζ, then he obtains zero each time, since X, Y, Z are not
functions of ξ, η, ζ, and ƒ vanishes at the limits ( –∞, + ∞ ). If one integrates the second,
third, and fourth terms with respect to x, y, and z, respectively, then he obtains an integral J
over the total external surface of the gas. If dS is a surface element of this surface, and N is
the outwardly directed velocity of an m-molecule, normal to dS, then J = ∫∫dSdωNf.
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One sees easily that Jdt represents the total number of K molecules that leave through
the whole surface S, in excess of those that enter; while the first term on the right hand side
of Equation (145) multiplied by dt, viz.,

represents the total increase L experienced by the number of m-molecules lying within the
surface S during time dt.

It is to be understood that we do not consider the volume element do as fixed, but rather
we allow it to move with the molecules. If the gas is surrounded by a vacuum, then the
surface S and the molecules of different velocities will always move together. Hence no
more molecules can go out through S than come in, so that L = K = 0. If the gas is enclosed
by walls at rest, at which the molecules are reflected like elastic spheres,2 then in the place
of each molecule that arrives at a volume element do adjacent to the wall as a result of its
motion toward the wall, there appears another identical molecule which simply has the sign
of its component of velocity normal to the wall reversed. Hence L = K = 0.

This argument will be valid as long as the wall is at rest, on account of the symmetry
and equal probability of opposite motions (even though the action of the wall might be of
some other kind) so long as the wall neither adds nor subtracts kinetic energy.3 In all these
cases (d/dt) ∑ω,o lf reduces to the terms C4(lf)+C5(lf) furnished by the collisions, and
Equations (140) and (142) yield:

Similarly:
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Hence according to Equation (144) :

Like the integrals in Equation (33), these integrals are sums of terms none of which can
be negative. Hence H can never increase. We could also have constructed the proof in the
same way for any number of gases in any molecular-disordered initial distribution under the
action of external forces. Thus the proof of the Clausius-Gibbs theorem—that at constant
volume, excluding any addition of energy, the quantity H can only decrease—which was
merely indicated at the conclusion of §8, has now been completely established for
monatomic gases.

The quantity dH/dt can vanish only when the integrand vanishes in all the integrals. For
the stationary final state, however, which the gas mixture must reach if the walls are at rest,
H cannot continue to decrease but must eventually become constant. Hence the integrands
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in Equation (146) must vanish for all values of the variables, i.e., for all possible collisions
the following three equations must hold :

These functions cannot of course depend on the variable t in the equilibrium state;
nevertheless, we shall not introduce this condition until later, and for the moment we look
for solutions of Equations (147) that still depend on time.

We first treat the last of these equations, and consider x, y, z, t constant; for the present
we look only at the dependence of the functions ƒ and F on the variable ξ, η, and ζ. We set

so that the last of Equations (147) becomes

In any case the equations of conservation of kinetic energy and of the motion of the center
of mass must not be violated in the collisions. One has therefore:

Clearly each of the eight variables ξ, η, ζ, ξ1, η1, ζ1, b, and ∊ can assume any of an
infinite manifold of values, independently of the others; they are the so-called independent
variables. The six quantities  will be expressed as functions

of the independent variables by six equations.
All possible equations relating the twelve variables
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can arise only from these six equations by eliminating b and ∊. However, by this
elimination only four equations can be obtained. Whence it follows that these four
equations (149) are the only ones that can exist relating these twelve variables. Equations
(147) and (148) must therefore hold for all values of each of the twelve variables that
satisfy the four conditions (149). We note that these equations are completely symmetrical
with respect to the three coördinate axes, so that one can permute the coördinates cyclically
in each equation that follows from them, without endangering the validity of the equation.

By the well-known method of undetermined multipliers we can make all twelve
differentials of the twelve quantities (150) depend on each other, if we add to the total
differential of Equation (148) the total differentials of the four equations (149) multiplied by
four different factors A, B, C, D. These factors can always be chosen such that the
coefficients of the total differentials vanish. Therefore we obtain:

With a suitable choice of the four factors, the coefficients of all twelve differentials will
vanish; hence
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or

Likewise it follows that

Elimination of A—which, as an undetermined factor, cannot in any case be set
identically equal to zero—yields:

This equation contains, aside from the variables x, y, z, t, which we always consider
constant, only the six completely independent variables ξ, η, ζ, ξ1, η1, ζ1. If one takes the
partial derivative with respect to ζ, it follows that :

Further partial differentiation of this equation with respect to η1 gives:

Differentiation with respect to ξ1 gives however:

and by cyclic permutation it follows that :
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These three equations express the fact that φ must break into three summands, of which the
first contains only ξ, the second only η, and the third only ζ.

Similarly for the function Φ we obtain :

Differentiation of Equation (151) with respect to ξ gives:

since

Further differentiation of Equation (153) with respect to η1 gives however :

Since the two expressions on the left and right hand sides contain completely different
variables, they can be equal only when both are independent of all variables and therefore
are equal to a quantity independent of ξ, η, ζ, ξ1, η1, ζ1.

Since the y and z axes enter the equations to be solved in exactly the same way, one can
likewise prove the equation

and also, that the last expression must be equal to
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Hence all these second derivatives are equal to one and the same quantity – 2h,
independent of ξ, η, ζ, ξ1, η1, and ζ1. From all these equations one easily draws the
conclusion that φ must be equal to –hm(ξ2+η2+ζ2) plus a linear function of ξ, η, ζ. The
coefficients of the latter can be written in such a form that one can write, without loss of
generality,

where u, v, w and ƒ0 are new constants, which however like h can still be functions of x, y,
z, and t. Whence it follows that :

and one obtains similarly

The functions ƒ and F must in any case have this form when the three equations (147)
are satisfied for all values of the variables. One sees easily that, conversely, when ƒ and F
have this form, Equations (147) are in fact satisfied, provided only that u1 = u, v1 = v, w1 =
w. The quantities f0, F0, u, v, w, h can be any functions of x, y, z, t.

These functions are to be determined in such a way that the two equations

and

are satisfied; Equations (114) and (115) reduced to these, since their right hand sides vanish
identically.

The number of molecules at time t in do whose velocity points are in dω is:
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If one sets

then he obtains just Equation (36), except that  replace ξ, η, ζ.
From this one sees immediately that all the considerations attached to Equation (36)

remain valid, except that all the gas molecules have a common progressive motion through
space, whose velocity components are u, v, w. When u = u1, v = v1, w = w1, these are the
components of the visible velocity with which the entire gas in do moves. If u, v, w differ
from u1, v1, w1, respectively, then u, v, w would be the components of the velocity with
which the gas of the first kind moves through the gas of the second kind in do.

One can also see this in the following way. The number of m-molecules that lie in do at
time t is :

On substituting (158) it follows that:

If one multiplies this by m and divides by do, then he obtains the partial density of the
first kind of gas :

The mean value  of the velocity component along the abscissa direction of all m-

molecules in do is :

This is clearly also the x-component of the velocity of the center of mass of the first kind
of gas in do. If a surface element parallel to the yz plane moved with this velocity in the
abscissa direction, an equal number of molecules of each kind would go through it, as
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follows directly from the concept of mean velocity. One can therefore call  the velocity

with which the first kind of gas moves in the abscissa direction in do.
On substituting (158), the numerator of Equation (161) is transformed to:

One sees at once that the first term vanishes, but that the second reduces to udn. Hence

Since  is the relative velocity of a gas molecule with respect to a surface element moving
with velocity u, and ƒ is an even function of , one sees at once that through each surface

element ⊥ to the x-axis, on the average as many molecules of the first kind go in as go out.

§19. Aerostatics. Entropy of a heavy gas whose motion does not violate
Equations (147).

On substituting the values (154), Equation (156) yields many solutions each of which
describes a state of the gas when it is under the influence of specified external forces in a
container at rest. The walls of the container satisfy the conditions employed in the
derivation of Equation (146). Thus after the cessation of all heat conduction and diffusion
phenomena, there is no persistent flow of heat into or out of the gas. We shall now look for
these solutions. It is clear that none of the relevant quantities here can depend on time.

Moreover, the equations u = v = w = u1 = v1 = w1 = 0 must hold. Hence according to
Equations (154) and (155) :

where ƒ0, F0 and h can still be functions of the coördinates. If we substitute this into
Equation (156), it follows that:
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Since this equation must be valid for all values of ξ, η, and ζ, we see that :

Therefore h must be constant everywhere in space.
Furthermore, the coefficients of ξ, η, ζ in the following terms must vanish separately.

This can happen only when X, Y, and Z are the partial derivatives of one and the same
function – χ of the coördinates. If this condition is not satisfied, then the gas cannot in
general be at rest. If it is satisfied, then:

where a is an absolute constant, since in each volume element do the quantity f0 is constant,
Equation (163) must have the same form as Equation (36). The velocity distribution in each
volume element is therefore exactly the same as it would be if only one kind of gas were
present, and the same external forces acted on an equal partial density of it. In other words,
in spite of the action of the external forces, every direction in space is equally probable for
the direction of motion of a molecule. Since the problem to which the equations treated at
the beginning of §7 refer is only a special case of the problem treated here, we see that the
assumption made there without proof, viz., that all directions of motion of a molecule are
equally probable, has now been proved. Because of the identity of the forms of the
equations, the equations developed in §7 and the conclusions drawn there from are now
applicable without change to each volume element. Hence, again corresponding to
Equation (44), the mean square velocity of an m-molecule is:
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i.e., under the action of external forces the mean kinetic energy of each molecule also
remains the same; likewise for the second kind of gas,

and the constant h must have the same value for both kinds of gas. Let ρ be the partial
density of the first kind of gas in do, and let p be the partial pressure which this kind of gas
would exert on the wall if it were present alone in do; then according to Equations (160)
and (164),

Since furthermore dn/do is the number of molecules in unit volume, then according to
Equation (6) :

Hence p/ρ has the same value everywhere in the gas. Since now the gas in each volume
element has exactly the same properties as it would have at the same partial density and
equal energy if no external forces acted, then just as in the latter case we have p/ρ = rT.
The gas constant r is, as earlier (§8), equal to . Since furthermore p/ρ has the

same value everywhere and is equal to rT, then the temperature is also the same
everywhere in spite of the action of the external forces.

For the second kind of gas one finds, completely independently of the presence of the
first,

where

The two gases therefore do not disturb each other in the equilibrium state. Thus in air
completely at rest and in complete thermal equilibrium, each constituent of the air would
form an atmosphere according to the laws given above, just as if the others were not
present ; except that for each gas, h and therefore temperature must have the same value.
According to Equation (165):

Pure Mathematical Physics



113

and likewise according to (166),

Here p, ρ, and χ are the values of these quantities at any position with coördinates x, y,
z, and p0, ρ0, χ0 are the values of the same quantities at any other place with coördinates
x0, y0, z0. These are the well known formulas of aerostatics (barometric height
measurements).

We shall now, following Bryan,* treat the following case which, although it does not
occur in nature, is of theoretical interest. The two gases in the container will be separated
by an arbitrary surface S1 into two parts, a left part T1 and a right part. To the right of the
surface S1 is a second surface S2, which lies everywhere very close to S1. The space
between S1 and S2 will be called τ, and the space to the right of S2 will be called T2. Let χ
be zero throughout T1, and let it have positive values between S1 and S2, becoming infinite
as one approaches S2. Thus an m-molecule experiences no force in T1, but in τ a force
begins to act, pushing it away from S2 toward S1 and becoming infinite if the molecule
approaches S2. Conversely in T2 no force acts on the m1-molecules; however, when these
enter τ, a force pushes them away from S1 toward S2, and becomes infinite near S1. Thus
χ1 is zero in T2, positive in τ, and becomes infinite near S1.

If there are initially no m-molecules in T2, then none can ever get into T2; if there are
initially some m-molecules in T2, where no force acts on them, then each molecule that
reaches the surface S2 is expelled into T1 and can never return. Hence we can assume in
any case that the space T2 contains no m-molecules, and likewise the space T1 contains no
m1-molecules. This illustrates the formula; for one has

In the space Τ1, χ1 = ∞, hence F = 0; in T2, χ = ∞, hence f = 0. Also, Equation (167)
gives the value zero for the partial density when χ is infinite. This in both T1 and T2 only
pure gases are present; only in τ where both χ and χ 1 are present does one find a mixture.
Our formula gives thermal equilibrium only when h has the same value for both gases,
which according to Equation (44) implies that the mean kinetic energy of a molecule must
have the same value for both gases. This is exactly the same condition that we also found
for the thermal equilibrium of two mixed gases. The mechanical conditions just discussed
are of course somewhat different from those for two gases separated by a solid heat-
conducting wall; but they have a certain similarity. We can imagine a third surface S3 to the
right of S2 and everywhere near it. By an appropriate choice of χ for three different kinds
of gas, it can be arranged that molecules of the first kind are present only to the left of S2,
those of the second kind only to the right of S2, and those of the third kind only between S1
and S3. This third gas thus facilitates the heat exchange between the first and the second
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kinds; equality of mean kinetic energy for each kind of gas is then the condition of thermal
equilibrium. Since experience shows that the condition of thermal equilibrium of two
bodies is independent of the nature of the body that facilitates the heat exchange, then the
assumption made in §7, that equality of mean kinetic energy is the condition of thermal
equilibrium when the heat exchange takes place in some other way—e.g., through a solid
wall separating the gases—is seen to be very probable.

The solution of Equations (156) and (157) found in this section is the only one possible,
provided that

and that everything is independent of time. However, if one assumes that these quantities
are different from zero, then each of these equations has many solutions, representing
motions in which H does not decrease and hence the total entropy does not increase. One
can have a gas mixture moving with constant velocity in some fixed direction in space.
There are also many other solutions. One sees immediately that, if the wall of the container
is an absolutely smooth surface of revolution, at which the molecules are reflected like
elastic spheres, then

reduces to C4(lf) + C5(lf). Then entropy neither flows in nor out of the gas. For the
stationary state we must have dH/dt = 0, hence Equations (147) and also (156) and (157)
must hold. Such a possible stationary state consists however in a uniform rotation of the
entire gas mixture around the axis of rotation of the container, as if the gas were a solid
body. This state must certainly be represented by Equations (154) and (155). If the z-axis is
the axis of rotation, then in this case

One can then satisfy Equations (156) and (157); ƒ0 and F0 will be functions of 

, and will thus show the density variations created in the gas by centrifugal

force. Other solutions of these equations, in which t can also occur explicitly, can also be
found.4 For example, there is one remarkable solution in which the gas flies outward from
a center equally in all directions in such a manner that, first, there is no viscosity; and
second, while the temperature of course drops as a result of the expansion, it drops equally
everywhere in space so that no heat conduction occurs. We shall no longer concern
ourselves with these matters, however; we shall only ask what value the quantity H has in
all these cases.

If we denote by H′ the contribution to H for the first kind of gas, in Equation (144),
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then:

In all cases where Equation (147) is not violated, ƒ is given by Equation (154). If one
sets, in accordance with Equation (160),

then:

The integration over dω = dξdηdζ can be carried out at once ; it is to be extended over
all values of ξ, η, ζ from – ∞ to + ∞ and one obtains, on doing this:

or, using Equation (159),

Now mdn = dm is the total mass of the first gas in the volume element. If we multiply
Equation (169) by the mass M of a molecule of the standard gas (hydrogen), further by the
gas constant R of this gas, and finally by – 1, and if we again denote by µ = m/M the
molecular weight of our gas relative to the standard gas, then :

Since according to Equations (44) and (51a),
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then:

the last logarithm is however a constant. Further,

which is a constant in any case. If one combines all the constants, then it follows that :

According to Equation (58), however, this is just the sum of the entropies of all the
masses in all the volume elements, and hence it is the total entropy of the first kind of gas,
and one sees from Equation (144) that one simply adds the entropies of the two parts of the
gas mixture. Neither a progressive motion of the gas nor the action of external forces has
any effect on the entropy, as long as Equations (147) hold, and therefore the velocity
distribution in each volume element is given by Equations (154) and (155). Thus we have
completed the proof—which was given only incompletely in §8—that H is identical to the
entropy, aside from a factor –RM which is constant for all gases, and an additive constant.

§20. General form of the hydrodynamic equations.

Before we pass to the consideration of further special cases, we shall develop some
general formulas. Since u, v, w are the components of the velocity with which the first gas
moves as a whole, one easily sees that during time dt there will flow through the two faces
perpendicular to the abscissa axis of the elementary parallelepiped dxdydz the amounts
ρudydzdt and
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of gas, respectively.
The sum of these quantities, added to the total amount of gas that flows through the

other four faces, is the total increase

of the amount of the first kind of gas in the parallelepiped; whence it follows that :

This is the so-called continuity equation. If one imagines an equal parallelepiped
doαdxdydz moving in space at a velocity whose components are u, v, w, then during time
dt the coördinates of the molecules contained therein will increase on the average by udt,
vdt, and wdt. The average acceleration is therefore :

If

is the total mass of these molecules, then their total momentum measured in the abscissa
direction increases by

This increase in momentum will be in part created by the external forces acting on the
total gas mass ∑m , whose components are

If only one kind of gas is present, the total momentum will not change, because of the
conservation of the motion of the center of mass in collisions; however, it will be changed
by entrances and exits of molecules in do. If we denote by ξ, η, ζ the velocity components
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of some molecule, and set (see Eq. [158]) , , ,

then  are the components of motion of the molecule relative to the volume

element do. If in unit volume there are fdω molecules whose velocity points lie within dω,
then there will enter through the left of the side surface, facing the negative abscissa
direction, of the parallelepiped do, during time dt,

molecules, whose velocity points lie within dω; these transport momentum

into the parallelepiped. Since ,

so that the total momentum transported through the left side of the parallelepiped do is

where the integration is to be extended over all volume elements dω.
∫fdω is the total number of molecules in unit volume, hence

is the density of the gas. The quantity

we call the mean value  of all . Hence

Through the opposite face, momentum
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will be transported. Similarly one finds that through the sides of do perpendicular to the y-
axis the amounts

and

respectively of momentum in the abscissa direction will be transported. If one applies the
same considerations to the last two sides, and finally sets the total increase (172) of
momentum in the abscissa direction equal to the sum of the total momentum transported
and the increase caused by the action of external forces, then it follows that :

with two similar equations for the y and z axes. These equations, as well as Equation (171),
are only special cases of the general equation (126) and were derived from it by Maxwell
and (following him) by Kirchhoff.* One can see this in the following way:

Let ψ be an arbitrary function of x, y, z, ξ, η, ζ, t, which may be equal to the function
earlier denoted by φ or may be different from it. Then the average of all values taken by ψ
for all molecules in do at time t is :

Further,
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is the total mass of the first gas contained in a volume element do, so that one therefore has
:

Using this kind of notation,

If one denotes by  the mean value of ψ in all volume elements of the gas, and by m

the total mass of the first gas, then

hence

One may therefore write :

where  and  are the total numbers of molecules of the first and second kinds of gas,

respectively.
In the following, ψ shall be a function only of ξ, η, ζ, so that according to Equation

(127) :

Since furthermore ψ does not contain the coördinates, then according to Equations (128)
and (175) :
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Since X, Y, Z are not functions of ξ, η, ζ, it follows from Equation (130) that:

If one collects all these terms, then Equation (126) reduces in this special case to:

From this equation Maxwell calculated the viscosity, diffusion, and heat conduction,
and Kirchhoff therefore calls it the basic equation of the theory.* If one sets φ = 1, he
obtains at once the continuity equation (171); for it follows from Equations (134) and (137)
that B4(1) = B5(1) = 0. Subtraction of the continuity equation, multiplied by φ, from (177)
gives (using the substitution [158]) ;5

Pure Mathematical Physics



122

If one has only one kind of gas, then Β4(φ) always vanishes. If one substitutes in the
above equation :

then

by conservation of momentum. Hence Β5(φ) always vanishes. Further,

and one obtains precisely Equation (173).
If one denotes the six quantities

then Equation (173) transforms to:

two similar equations are of course valid for the other two coördinate axes.
One would obtain exactly the same equations in a case whose mechanical conditions are

completely different from those just considered. Suppose that the molecules contained in
each volume element have no motion except their common motion with velocity
components u, v, w, but, as in a solid elastic body, when one constructs in the gas a surface
element dS perpendicular to the abscissa axis, those molecules immediately to the left of dS
(facing toward the negative abscissa direction) exert on those molecules immediately to the
right of dS a force whose components are XxdS, XydS, XzdS. Similarly, of course, there will
be surface elements perpendicular to the other coördinates.

Taking account of molecular forces, one would again obtain Equation (180) together
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with the two analogous equations for the y and z axes. Each volume element in the gas has
the same properties as if this force actually acted between the molecules on the left and
those on the right of a surface element. The molecular motion produces the appearance of
such a force; any force can be explained dynamically, as it were, in terms of the molecular
motion in the gas. For example, when the molecules on the left of dS have larger velocities
than those on the right, then the slower ones diffuse towards the left and the faster ones
towards the right ; the mean velocity of the molecules in a volume element to the right of dS
will increase, and that of the molecules in a volume element to the left will decrease. The
net effect is just the same as if the molecules on the left had exerted a force in the positive
direction on the molecules on the right, and conversely.

Thus molecular motion creates the appearance of a molecular force, and in an agitated
gas the pressure is not exactly the same in all directions, nor is it always exactly normal to
the surface.

We now imagine that the gas is enclosed by a surface impenetrable to the molecules,
and ask what force it exerts on the surface. Let dS be a surface element, and let its plane be
perpendicular to the x-axis. Let the gas move with velocity components u, v, w at the place
in question. If the motion of the gas itself experiences no sudden change, then during time
dt there will collide with dS,  molecules whose velocity points lie in dω, when 

is positive ; or they are reflected from it, when  is negative.
The total momentum in the abscissa direction transported by the reflected molecules is

therefore , and likewise that transported in the other

directions is  and . Xx, Yx, and Zx are the components of the force

corresponding to unit surface which dS exerts on the gas, and which conversely the gas
exerts on dS, as long as there is no discontinuity of motion at the surface. Likewise one can
also find from the kinetic theory the well-known expression for the force acting on any
arbitrarily directed surface element of the wall.

In particular, when the gas is at rest in a container that is also at the rest, the pressure law
follows directly from the principle of conservation of the motion of the center of gravity. If
one applies this principle to a gas in a cylindrical container whose axis is parallel to the
abscissa direction, then he finds that the pressure on the lateral surface of the container has
no component in the abscissa direction. Application of the principle to the part of the gas
between an end surface and a cross section shows that the pressure on the end surface is
normal, and is equal to the momentum transported through unit cross section in the same

direction; hence it must be equal to , or also equal to , since in

this case .

Whenever Equations (147) are satisfied for all values of the variables, the number of
molecules in the volume element do for which the components of the velocity relative to
the total motion of the gas in the same volume lie between the limits  and 

and  and  is equal to
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where f0 is a function only of x, y, and z. Therefore the probability of this relative motion is
given by exactly the same formula as that which applies to the absolute velocities in a
stationary gas. The only difference is that the visible motion, which has components u v, w,
is included in the formula. This progressive motion of the gas as a whole obviously has no
effect on its internal state, and hence no effect on the temperature and pressure of the gas,
which are expressed in the same way in terms of  as they are in terms of ξ, η, ζ

for the stationary gas. Hence, corresponding to our previous results, we have

As we shall see later, whenever there are no external forces the quantities

rapidly approach zero as a result of the effect of collisions. When external forces hinder this
process, these quantities still never differ significantly from zero as long as the external
influences are not enormously sudden and violent. For the present, we assume as a fact of
experience that in gases the normal pressure is always nearly equal in all directions, and
that tangential elastic forces are very small, so that Equations (181) are approximately true.
Substitution of the values given by this equation into Equation (173) yields:

with two similar equations for the y and z axes. These are the well-known hydrodynamic
equations without viscosity or heat conduction; they are to be regarded as first
approximations.

We now denote by Φ any function of x, y, z, and t. (∂Φ/∂t)dt is the increase experienced
by the value of this function at a point A fixed in space during time dt. Now let the point A
move with a velocity (u, v, w) equal to the total velocity of the first kind of gas in the
volume element do. During the time dt, A becomes A′. If one now substitutes for the value
of the function Φ at time t+dt at A′ its value at time t at A, and divides the difference by the
elapsed time, then he obtains

which value we shall denote by dΦ/dt for short. One can then write the continuity equation
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and the first of the hydrodynamic equations in the following form:

The latter equation reads, in first approximation :

The completely exact Equation (178) can however be written :6

Now assume again that only one kind of gas is present. Then

Let φ be a complete function of ξ, η, ζ. Then

where  is an abbreviation for  and Qn denotes a function of u, v, w,

containing no terms whose degree in u, v, w is lower than n. The coefficients of Q2 are
functions of . According to Equation (143),
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Furthermore,

hence

The coefficients of Q1 are mean values of functions of  and . Similar equations

follow for  and . If one substitutes the values (187a–d) for φ, 

, Β4φ) and Β5(φ) into Equation (187), then he obtains:

In addition there are still terms containing first and higher powers of u, v, w. But these
must vanish identically, since the internal state remains unchanged when one imparts a
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constant velocity through space to the gas as a whole. This velocity can always be chosen
such that u = v = w = 0. Referring to Equation (185), one can also write the last equation
as:

If one sets  here, then, since ,
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If one sets , then

which is exactly correct.
If we now make the assumption that the state distribution corresponds approximately to

Maxwell’s law, then Equations (181) are approximately correct. In addition, 
, for as a result of collisions the distribution of states

always rapidly approaches the Maxwellian distribution. Any mean value that vanishes for
the latter distribution will therefore be quite small, as we shall see in the next section when
we consider the effect of collisions explicitly. In this approximation, Equation (189)
transforms (taking account of Eq. [186]) to

We now construct similar equations for the y and z axes, add all three equations
together, and recall that

since the total kinetic energy of two molecules is not changed by a collision. Thereby we
obtain:
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or, using the continuity equation (184),

The integration gives, when one follows the gas mass in a volume element along its
trajectory, pρ–5/3 = constant, the well-known Poisson relation between pressure and
density.* Conduction of heat is neglected here. In general we do not know anything at all
about heat radiation. The ratio of specific heats is, in the case considered here, 5/3. Since
the internal state of the gas is nearly the same as that of one in thermal equilibrium, moving
with uniform velocity components u, v, w, the Boyle-Charles law is valid. Thus p = rρT,
hence Tρ–5/3 = constant. Any compression is connected with an adiabatic temperature
increase, and any expansion with a temperature decrease.

* See Part II, chap. vi.
1 b is the smallest possible distance of the two colliding molecules that could be attained if they

moved without interaction in straight lines with the velocities they had before the collision. In other
words, b is the line P1P, where P1 and P are the two points at which m1 and m would be found at the
moment of their closest approach if there were no interaction. Thus ∊ is the angle between the two
planes through the direction of relative motion, one parallel to P1P and the other to the abscissa axis.

* Maxwell, Phil. Trans. 157, 49 (1867).
† Kirchhoff, Vorlesungen über die Theorie der Wärme.
‡ See also Benndorff, Wien. Ber. 105, 646 (1896) for calculations of B5(φ)
2 One sees at once that on this assumption a completely smooth flat wall would experience no

resistance to its motion in a direction lying in its own plane.
3 We understand as usual by S an arbitrary surface completely enclosing the gas, which can

everywhere be taken as close to the walls as one wishes, and the integral over do extends only over all
volume elements within this surface, while that over dS extends over all surface elements. We denote by
K′dt the number of molecules that in time dt go out through the surface S in excess of those that come in;
by L′dt, the decrease in the number of molecules lying within the surface S, so that we always have K′ +
L′ =0. However, K′ and L′ are not identical with the quantities called K and L in the text, since in
calculating (d/dt) Σω,0 lf we have followed each molecule along its path during time dt. The sum has
therefore included the same molecules at the beginning and end of dt, and the difference of these two
sums was divided by dt. We thus assume that the volume element do moves along with the molecules
being considered, and that these same molecules always remain within the surface S. This is not the case
as soon as S does not move with the molecules. We shall always sum over the same space element at the
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beginning and end of dt, so that (d/dt) Σω,0 lf is simply the expression given by Eq. (120), integrated
over do and dω, in which of course lf is to be substituted for φ. Then one obtains, on substituting the
values (121–125):

C4 (lf) + C5 (lf) are the same quantities as before. The first term of the double integral is likewise the
same as in Eq. (145), and therefore it is equal to K. Also, the last three terms can, by integrating by parts
with respect to ξ, η, ζ, be put in the same form as the corresponding terms in Eq. (145). By direct
integration of the fifth term with respect to ξ, the sixth with respect to η, and the seventh with respect to

ξ, these can also be reduced to zero, since flf vanishes for infinite ξ, η, or ζ (since  must be

finite). The sum of the second, third, and fourth terms of the double integral (145a) gives (since d(flf – f)
= lfdf) on integrating over x, y, and z, the two surface integrals

both to be extended over the surface S (which is now considered fixed). The first is the quantity
previously denoted by K; the second represents, when it is multiplied by dt, the amount of the quantity H
(defined by Eq. 144) that is carried into the surface S by the motion of the m-molecules, in excess of that
carried out. There cannot be any creation of H inside the gas, any more than in the case considered in the
text. The total amount of H contained within the surface S can only increase by an amount less than, or at
most equal to, the amount of this quantity carried into the surface from without.

The quantity –H, which is proportional to the entropy, will never be changed when visible motion is
produced, or its direction is changed by external forces, or any other change occurs, as long as no
molecular motion arises thereby through collisions. Even if initially one gas is in one half and another
gas in the other half of the container, the entropy is not changed by their progressive motion. The
mixing of course leads to a more probable state, but the velocity distribution is less probable, since each
gas has an average motion in a particular direction. As soon as this average motion is annihilated by
collisions (transformed into disordered molecular motion) then H decreases and the entropy increases.

* Bryan and Boltzmann, Wien. Ber. 103, 1125 (1894).
4 Boltzmann, Wien. Ber. 74, 531 (1876).
* Maxwell, Phil. Trans. 157, 49 (1867); Kirchhoff, Vorlesungen über die Theorie der Wärme

(Leipzig, 1894).
5 For a better understanding of §3 of the 15th lecture of Kirchhoff’s Vorlesungen we make the

following remark:
Since φ is a function only of ξ, η, ζ, it transforms by the substitution (158) into a function of 

, and therefore

when in the last two derivatives φ is considered as a function of , . Therefore:
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Kirchhoff now denotes by  the derivatives obtained by leaving the quantities u, v, w,

explicitly in  and taking partial derivatives with respect to u, holding

constant the mean values of the coefficients containing ; these coefficients do not need to be
considered as functions of u, v, w, or their derivatives with respect to the coördinates. Nor are u, v, w to
be regarded as functions of x, y, z. Then

hence also

The same holds of course for the other two coördinates.
6 As Poincaré (C. R. Paris 116, 1017 [1893]) remarks, the derivatives of φ appearing in this equation

may be functions only of ξ, η, ζ or of ; they may not be arbitrary functions

o f . In the following equations, however,  is a function of  and 

 is the expression obtained when one substitutes, in the expression (137) for φ, φ1, φ′, and 

 and so forth. Since , 

 are given functions of  and ∊, one can carry out the

integrations over the latter 8 variables directly.
* S. D. Poisson, Ann. chim. phys. 23, 337 (1823).
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CHAPTER III

The molecules repel each other with a force inversely proportional to

the fifth power of their distance.

§21. Integration of the terms resulting from collisions.

We now consider cases where Equations (147) are not satisfied; in order to be able to
calculate the values ξ′ , η′, ζ′ of the variables after the collision as functions of their values
before the collision, we must now consider the collision process in more detail.

We imagine a molecule of mass m (the m-molecule) to enter into collision, i.e., into
interaction, with another molecule of mass m1 (the m1-molecule). At any time t, let x, y, z
be the coordinates of the first and x1, y1, z1 those of the second molecule. The force that the
two molecules exert on each other will be a repulsion in the direction of their line of centers
r, whose intensity ψ(r) is a function of r. The equations of motion are:

with four similar equations for the other coördinate axes.
In order to find the relative motion of the two molecules, we construct through m1 a

coördinate system whose axes remain parallel to the fixed coördinate axes, but move
parallel to themselves in such a manner that they always go through the m1-molecule,
which is therefore at any time the origin of the second coordinate system. The coördinates
of the m-molecule with respect to this second coördinate system, and thus its coördinates
relative to the m1-molecule, are:

If one substitutes

then he finds easily from Equations (191a)
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with two similar equations for the other two coördinate axes. Since also we have 
, these equations represent just the central motion that the m-

molecule would perform if its mass were  and it were repelled by the fixed m1-molecule
with the same force ψ(r). Therefore we need to discuss only this latter central motion,
which we call the relative central motion, or the central motion Z. It always takes place in
the plane that includes m1 and the initial velocity of m, which we have already called in
§16 the orbital plane. The initial velocity of the m-molecule is considered to be that velocity
which it has at a great distance from m1, before the collision, and which we already
denoted by g in the same section. The line g drawn from the fixed m1-molecule in Figure 7
will represent it in magnitude and direction. Its extension in the opposite direction is to be
called mΘ. We specify the position of m at any time t by its distance r from m1 and by the
angle β which r forms with mΘ. The work performed from the beginning of the collision
up to time t by the force ψ(r) is:

FIG. 7

The integration can begin at r = ∞ since ψ(r) = 0 for distances greater than the sphere of
action. For the present we consider only the central motion Z of the m-molecule around the
mass , since we know that the actual motion of m relative to m1 is exactly equivalent.
For this central motion Z, the kinetic energy before the collision is , but at time t it

is:

The equation of energy conservation for the central motion Z therefore reads:
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As in §16 we denote by b the smallest distance from m1 that the m-molecule would
reach if there were no interaction—i.e., if both molecules moved in straight lines in the
same directions as they did before the collisions. The orbit that the m-molecule describes
during the central motion Z will therefore have the form of the curved line in Figure 7,
which extends to infinity on both sides; both asymptotes have the same distance from m1
namely b. Since before the collision the m-molecule has relative velocity g with respect to
m1 twice the area described by the radius vector r in unit time is equal to bg; however, at
time t this must be equal to r2dβ/dt. Hence, according to the law of areas,

From this equation and Equation (192) it follows by well-known arguments that:

where ρ = b/r. Since initially β and ρ are increasing, one must choose the positive sign of
the square root until it vanishes. We now specialize the function ψ in order to carry out the
integration, by substituting:

This is the repulsion between an m-molecule and an m1-molecule at distance r. At the
same distance the repulsion between two m-molecules will be equal to K1/rn+1, while that
between two m1-molecules will be K2/rn+1.

Then:

If we substitute:
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then:

In order to avoid all discussions about the value which the quantity under the square
root sign may have, we assume that the force is always repulsive, so that ψ(r) is always
positive, and hence R and 2ρn/nαn are also positive. Since, according to Equation (193), β
always increases with time, and since the square root cannot change its sign without going
through zero, we see that ρ must always increase up to the point when

The smallest positive root of this equation we denote by ρ(α). For given n, it can be a
function only of α. When n is positive, as we assume, then moreover ρ2+2ρn/nαn can be
equal to unity for only one positive value of ρ; hence Equation (196) has no other positive
roots. For ρ = ρ(α), the moving body reaches that point A (the perihelion) of its orbit at
which it is closest to m1, and at which its velocity is perpendicular to r. Since the quantity
under the square root sign would become negative if ρ increased any further, and constant
ρ corresponds to a circular orbit (which is impossible for a repulsive force), then ρ must
again decrease; hence the root must change its sign. Because of the complete symmetry of
the problem, a congruent branch of the curve will then be described, which is the mirror
image of the part described up to that point (with respect to a plane through m1A
perpendicular to the orbital plane). The angle between the radius vector ρ(α) = m1A and
the two asymptotic directions of the orbital curve is:

It can also be computed as a function of α, as soon as n is given. 2ϑ is the angle
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between the two asymptotes of the orbital curve, and therefore between the lines along
which (in its motion relative to m1) the m-molecule approaches the m1-molecule before the
collision and recedes from it after the collision. (The former line is opposite to the direction
of motion of the molecule before the collision; the latter is in the same direction as its
motion after the collision.)

The angle between the two lines g and g′, representing the directions of the relative

velocities before and after the collision, is π –2ϑ. (These are the line DC and the extension
of BD beyond D, in Figure 7.)

When each of the two colliding molecules is an elastic sphere, only one modification is
required in Figure 7. The sum of the two radii is m1D = σ. The m-molecule moves relative
to m1 not in the curve BАС but rather in the broken line ВDC; for b ≤ σ, we have:

but for large values of b, ϑ = π/2.
We now imagine, in Figure 8, a spherical surface of center m1 and radius 1; it is

intersected at G and G′ by two lines drawn from m1 parallel to g and g′, and at X by a line
through m1 parallel to the fixed abscissa axis. Then the greatest circular arc GG′ on this

sphere is equal to π – 2ϑ.

FIG. 8

The angle ∊ has been defined in §16 in the following way. We draw through m1 a plane
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E perpendicular to g. Further, we draw through m1G two half-planes, one of which
contains the line b, and the other the positive abscissa axis. The first we called the orbital

plane. ∊ was then the angle of the two lines in which these two half planes intersected the
plane E; therefore also the angle of the two half-planes themselves, or also the angle of the
two great circle arcs GX and GG′ on our sphere, where one is always supposed to
understand by “great circle arc” the largest circular arc that is smaller than π.

For the spherical triangle we have:

Now however:

where the positive sign of the root is to be taken, since GX < π.
If we multiply Equation (199) by the magnitude g = g′ of the relative velocity before or

after the collision, then:

If we multiply this equation by m1 and add it to the equation

then:

If only one kind of gas is present, then we have to put m1 = m, K = K1. Then:

If we again denote ξ – u, ξ′ – u, η – ν ... by  then we obtain for 

 an equivalent equation:
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In order to find , we have to integrate the quantity

over ∊ from zero to 2π. The entire orbital curve thereby remains unaltered. Then we have
to integrate over b, keeping   constant. Then follows the integration

over these quantities. Since the equations (201) and (202) are equivalent, we can obtain the
expression for B5(ξ2) by simply writing ξ, η, ζ for  in .

Leaving out the terms containing the first power of cos ∊, we get

The components of the relative velocity with respect to the coördinate directions will be
denoted by , so that

If one forms the expression  which arises from  by simply

permuting  and , it follows that:

Since at the moment we are considering only one kind of gas, we must set m1 = m and
K = K1, and one has according to Equation (195):
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Since  and hence also g are considered constant in the integration

over b and ∊, which now concerns us, it follows from this that:

Hence

If one substitutes this in the expression , then he obtains under the integral sign a

factor g1–(4/n); therefore since n must in any case be positive, there will in general be a
negative or fractional power of g, which makes the integration very difficult. Only for n = 4
does g drop out completely, and the integration becomes relatively easy. Since we have set
the repulsion between two molecules equal to K/rn+1, this implies that two molecules repel
each other with a force inversely as the fifth power of the distance. One then obtains, as we
shall see, a law of dependence of the viscosity, diffusion, and thermal conduction
coefficients on temperature which for compound gases (water vapor, carbon dioxide)
appears to be in good agreement with experiment, though not for the most common gases
(oxygen, hydrogen, nitrogen). Other phenomena from which one could infer such a force
law are not known. We certainly do not wish to assert that gas molecules actually act like
point masses between which there is a repulsive force inversely proportional to the fifth
power of the distance. Since it is here only a question of a mechanical model, we adopt this
force law first introduced by Maxwell,* for which the calculation is easiest.1 Moreover,
with this law the repulsion increases so rapidly with decreasing distance that the motion of
the molecules differs little from the motion of elastic spheres (aside from glancing
collisions, which are of little importance). In order to show this, Maxwell2 has published a
very instructive figure* in which the paths of the centers of a number of molecules are
shown, projected towards a fixed molecule with the same velocity, and repelled by various
force laws. In order to compare these paths with the path that would be followed by elastic
spheres, we can do the following: we imagine in Maxwell’s figure a marked circle whose
center is S, and whose radius is Maxwell’s dotted line, so that its radius is the smallest
distance to which the centers of the two molecules approach for each force law. Now if the
molecules are elastic spheres, whose diameter is this smallest distance, and if we hold one
of them fixed and throw the others at it (not all at the same time, of course, but one after
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another so they won’t interfere with each other) then Maxwell’s figure undergoes the
following modification. The center of the fixed molecule is still S. The centers of the
moving ones will come from the same directions as in Maxwell’s figure, but will be
reflected like very small elastic spheres from the marked circle.

One sees that the resulting paths for elastic spheres are indeed quantitatively different
but not essentially qualitatively different from those following from the new Maxwellian
law.

In the following we set n = 4 with Maxwell. Then it follows from Equation (205a) that:

where

is a pure number.3

According to Equation (197):

The upper limit is the only positive value for which the quantity under the square root

sign vanishes. ϑ is therefore expressible in terms of a complete elliptic integral and a
function of α. The integral (207) was evaluated by Maxwell by mechanical quadrature. He
obtained the result:*

We now have, according to Equation (137),

Substitution of (206) gives:
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We have:

In the integration over dω1 we can take ξ, η, ζ or  outside the integral sign, and

similarly in the integration over dω we can take ξ1, η1, ζ1 or  outside the

integral sign. According to Equation (175):

Since, however, the two colliding molecules are equivalent—or, if one prefers, since
one can give any labels to variables over which one integrates in a definite integral—we
also have:

and since , we have:

 is the total velocity of a molecule relative to the average motion of
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all molecules in the volume element.
The quantity  is calculated by Maxwell by a coördinate transformation. We

imagine new x and y axes placed in such a way that the old x and y axes are rotated by an
angle λ in the xy plane. We denote the corresponding quantities in the new coördinate
system by capital letters:

If we substitute these values in Equation (206), we obtain the same terms with factors of
cos2 λ, cos λ sin λ, and sin 2 λ. If we set λ = 0, we see that the former must separately be
equal; if we set λ = π/2, we see that the latter must likewise separately be equal. Hence the
terms multiplied by sin λ cos λ on the right-and left-hand sides of the equality sign must
separately be equal. Setting them equal to each other, we obtain:

Since the new coördinate axes are just as good as the old ones, one can again use lower-
case letters instead of capitals. If one carries out the further integrations exactly as for
Equation (206), it follows that:

§22. Relaxation time. Hydrodynamic equations corrected for viscosity.
Calculation of B5 using spherical functions.

We now have to substitute this value into the general equation (187). We first consider a
special, completely ideal case: a single kind of gas fills an infinite space. There are no
external forces. The number of molecules in any one volume element do, whose velocity
components lie between the limits ξ and ξ + dξ, η and η + dη, ζ and ζ + dζ, will at time t =
0 be equal to f(ξ, η, ζ, 0)dodξdηdζ, where the function f is the same for all volume
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elements. For any later time t, let this number be equal to f(ξ, η, ζ, t)dοdξdηdζ. Since all
volume elements are subjected to the same conditions, f(ξ, η, ζ, t) also has the same value
for all volume elements. If

where a, h, u, v, w are constants, then we would have a gas in which Maxwell’s
distribution holds, but which moves through space with constant velocity components u, v,
w. Then we would have 

 

, and the distribution of states, seen from the viewpoint of an

observer moving with the gas, would not change with time. If f(ξ, η, ζ, 0) is some other
function of ξ, η, ζ, then at the initial time a velocity distribution differing from Maxwell’s,
but still the same in each volume element, holds. This distribution changes with time, but
the components of the visible motion of the gas

naturally do not change with time, because of the conservation of the motion of the center
of mass. If we again set  , then in general now

differ from zero, and we ask ourselves how these quantities change with time. First, since
nothing depends on x, y, or z, it follows that, from (188):

If one now substitutes , then it follows with the help of Equations

(213) and (214) that:

Similarly, to the first of these equations, we have:
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and consequently

Since everything is independent of x, y, z, the differential quotients with respect to t are
to be taken in the usual sense. Since furthermore all volume elements are equivalent,
exactly as many molecules will flow in through each lateral surface as flow out through the
opposite surface. The density ρ must therefore remain constant. Hence integration of these
equations, using the index 0 to characterize the values at time zero, gives the results:

Multiplication by ρ yields (recalling the notations [179]):

Similar equations follow of course for the other coördinate axes. In the simple special
case now considered, the difference in the normal pressure in two different directions (e.g.,
Xx – Yy) and likewise the tangential force (e.g., Xy) simply decreases with increasing time in
geometric progression. The time after which it becomes e times smaller is the same for all
these quantities, and is equal to

Maxwell* calls this the relaxation time. We shall see that it is very short.
We now return to the general case. In general we no longer have ,

but these quantities are still approximately equal. We shall therefore calculate their
deviations from a quantity nearly equal to one of them. For this purpose we choose their
arithmetic mean. Since, according to the assumptions necessary for the validity of
Equations (181), this is equal to the quantity denoted by p, we shall again denote it by p,
and therefore put
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If we denote the right-hand side of Equation (189) by  and substitute the value (213)
on the left-hand side for , then it follows that:

We look for the small difference between the two quantities  and 

. This, and hence the right-hand side of the above Equation (218), are small first-order

infinitesimal quantities; hence we need to retain on the right-hand side only the terms of the
largest order of magnitude. The terms of smaller magnitude are also smaller than 

. In the expression for  we can therefore set

We saw that then (see Eq. [191])

We wish to find  and thence Xx and its dependence on the instantaneous state; we must

therefore eliminate the term that contains a time-derivative. This is easy, since we find to
the same degree of accuracy

Hence in first approximation
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The following terms in the expression for  provide terms of smaller magnitude in 
, and therefore we can ignore them. Hence, according to Equation (218),

therefore, since we set ,

We now wish to substitute the value (214) for  into Equation (190). On the

right-hand side of this equation we can set  for the same reason

as before, and set the terms containing odd powers of , or  under the bar symbol

equal to zero. We thereby obtain:

If one substitutes the abbreviation

then he obtains the following values:
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These equations are not completely exact, of course; however, they are one degree more
exact than the equations Xx = Yy = Ζz = p, Xy = Yx = Xz = Zx = Yz = Zy = 0. Substitution of
these values into the equations of motion (185) yields

Here  is considered constant, which is also not strictly correct, since  is a function
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of temperature, and temperature changes during compression or rarefaction. However,
since the actual temperature-dependence of  is still in doubt, and since the gas moves, in
the case of less violent motions, almost like an incompressible fluid, so that there is no
significant compression or rarefaction, this error is not important. Equations (221) are the
well-known hydrodynamic equations corrected for viscosity.* These equations are satisfied
and one obtains therefore a possible motion, when he sets p equal to a constant and X = Y =
Z = 0, v = w = 0, and u = ay. Each layer of gas parallel to the xy plane moves with velocity
ay in the x-direction. a is the velocity difference between two such layers at unit distance
from each other. One of these layers must clearly be artificially held fixed, and another
must be artificially maintained in a state of constant motion. The tangential force on unit
surface of these layers has the value a  according to Equations (220), and  is therefore
the quantity that we already called the viscosity coefficient in §12. From Equation (219) it
follows that it is proportional to p/ρ and therefore to the absolute temperature, but at a given
temperature it is independent of pressure and density. The latter statement is also true when
the molecules are elastic spheres, but then  is proportional to the square root of the
absolute temperature. Of course the mean free path cannot now be calculated from the
numerical value of , since the beginning and end of a collision are not sharply defined;
this value can only provide a relation between the mass m of the molecule and the constant
K1 in the force law. It also permits the calculation of the relaxation time . From

the value of  for nitrogen used in §12, we find a relaxation time of about τ = 2 · 10 –10

sec at atmospheric pressure and 15°C.

We now proceed to the calculation of , etc. There is no difficulty

in raising the expression (201) to the third power and then performing the integration, as we
have done for the calculation of . The same coördinate transformation as before

gives the values of  and  and the other B5’s, which contain as

arguments of the function terms of third order in , and .  must be found by

a spatial (3-dimensional) coördinate transformation. We shall adopt here another method
which Maxwell, in his paper “On stresses in rarified gases,”4 indicated in bracketed notes
added in the last months of his life.

Any function p of the n’th degree in x, y, z, which satisfies the equation

we call a (solid) spherical function of the n’th degree. If we substitute x = cos λ, y = sin λ
cos v, c = sin λ cos v, then it is transformed to a spherical surface function of the n’th
degree: p(n)(λ, v). Further, we denote the coefficient of xn in the power series that arises
from the expansion of
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by Ρ(n)(µ) (zonal spherical function or spherical function of one argument). Now let G and
G′ be any two points on a spherical surface with polar coördinates λ, v and λ′, v′ and let Gi
be the symbol representing n + 1 arbitrary other points on the same spherical surface. Let
the polar coördinates of Gi be λi and vi. Then5

where  is the cosine of the spherical angle G′Gi. The ci are constant coefficients which

can be determined. Now hold G and Gi constant, while G′ describes a circle such that the

spherical angle GG′ always remains constant. Its cosine is called µ. Finally, denote by ∊ the
angle between the great circle GG′ and a fixed circle drawn through G. Then:

Furthermore:6

where si is the cosine of the spherical angle GGi. One has therefore:

As in Equation (223), the latter sum has the value p(n)(λ, v ). One therefore obtains the
formula:7

We wish to show the application of this theorem to the calculation of В5 in a special
case, and in particular to calculate .

As before let  be the
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velocity components of the two molecules before and after the collision; let 
 be the same velocities relative to the

average motion of all the m-molecules in the volume element, so that therefore 
 etc. where u, v, w are the components of the mean

velocity of all m-molecules in the volume element. Further, let

be the components before and after the collision, respectively, of the velocities g and g′
respectively of the molecule that has before the collision velocity components ξ, η, ζ
relative to the other one that has velocity components ξ1, η1, ζ1. The latter will again be
called the m1-molecule, even though it actually has mass m. Finally, we denote by

twice the velocity components of the center of gravity of the system formed by the two
colliding molecules, in its motion relative to the mean motion of all m-molecules in the
volume element. These are equal before and after the collision. Then

hence

We now construct around m1 a sphere of radius 1. The lines through m1 parallel to the
abscissa axis, representing the relative velocities g and g′, should intersect this sphere in the
points X, G, and G′ respectively (Fig. 8). λ, v and λ′, v′ are the polar coordinates of the
points G and G′ (i.e., λ and λ ′ are the angles Xm1G and Xm1G′, while v and v′ are the
angles made by the planes GmX and G′mX with the xy plane). Since  and  

 are the projections of g and g′ on the coördinate directions, we have
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hence

where p(2)(λ, v ) is the spherical function cos λ sin λ cos v. Earlier we denoted by ∊ the

spherical-triangle angle XGG′, and by π –  2ϑ the angle Gm1G′. Then, according to the
theorem cited on spherical functions,

where µ = cos(π – 2ϑ). On expanding Equation (222) one finds:

Hence

Whence follows, by comparison with Equation (208),
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whence finally, according to Equation (212), we obtain:

Since Equation (226) is valid for any spherical function of the second degree, it follows
in general that:

When f is not a function of x, y, z, and X = Y = Z = 0 (and the effect of the wall
vanishes) it follows from Equation (188) that

Hence if  is any spherical function of the second degree, it follows in general that

Therefore

is the reciprocal of the relaxation time for all spherical functions of the second degree in 
, and —i.e., the time in which, by the action of collisions, the mean value of that

spherical function decreases to 1/e of its original value. This confirms our earlier result.
We now pass to spherical functions of the third degree, e.g., . By analogy

with Equation (225) we find
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If we denote the expression in brackets by Φ, then according to the theorem on spherical
functions,

Now recall that µ2 – 1 = – 4 sin2 ϑ cos2 ϑ. If one substitutes 
, applies Equation (212) and

assumes that , then it follows, on taking account of Equation (208), that

The equality is valid for any spherical function of the third degree. In general,

The reciprocal of the relaxation time of a spherical function of the third degree is
therefore

Any function of the third degree in  can be represented as a sum of spherical
functions of the third degree and of the three functions 

 each multiplied by some

constant. The latter three functions are the products of the spherical functions of the first
degree by the expression .The relaxation time of these latter products still
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has to be found.
We have

If we denote the expression in brackets by Ψ then we have

hence

Therefore:

The reciprocal relaxation time of the product of  by a spherical

function of the first degree is
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§23. Heat conduction. Second method of approximate calculations.

We now wish to set  in Equation (188) and retain only terms of the largest order

of magnitude, thus neglecting the deviation of the state distribution from that which holds

for a gas moving with constant velocity, so that . Thereby we

obtain from Equation (188):

Since the present approximate calculation is based on calculating the terms as if the
Maxwell distribution were valid, if one writes  for ξ, η, ζ then he can apply

Equation (49) provided he writes therein  in place of ξ, η, ζ. Hence

Therefore

If one substitutes , then it follows using the same approximations that

Since now
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then

Likewise

hence

and according to Equations (230) and (232):

Whence it follows that
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These values can be used to carry the approximate solution of Equations (189) and
(190) one step further than has been done up to now.

We next add to Equation (189) the analogous equations for the y and z axes. Now we
have . If one takes account of Equation (234) and

the two equations obtained from it by cyclic permutation, as well as the continuity equation
(184), and if one substitutes finally for  etc. the values given in

Equation (220), it follows that:
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H ere  is the mean square velocity of thermal motion of a

molecule in the volume element do. By thermal motion, we mean the motion of the
molecule relative to the visible motion of the gas in do, the latter having velocity
components u, v, w. ρdo is the mass of all molecules in do.

is therefore the increment of heat measured in mechanical units, i.e., the increase of the
kinetic energy of thermal motion of all molecules contained in do during time dt. However,
in this case the volume element do does not remain fixed in space; rather, during time dt it
must experience that deformation and progressive motion which is required in order that
each point in it may move with velocity components u, v, w. The same molecules therefore
remain in do, aside from the exchanges effected by molecular motion. The amount of heat
supplied by the latter will then be included in the calculation as that conducted and created
by viscosity.

From §8 we find that the amount of compressional work added to a gas during time dt is
– pdΩ = – pkd(1/ρ). In our case, k = ρdo and d(1/ρ) = –(1/ρ2)(dρ/dt)dt. Hence the term
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in Equation (236) represents the work done by the external pressure p during dt on do, and
hence the heat of compression produced by the pressure p. If one applies the same
considerations by which the work of deformation of an elastic body is calculated, then he
finds that the last term with the factor  outside the differential sign in Equation (236),
when it is multiplied by dodt, expresses the total work done by additional forces that must
be added to the pressure in order to obtain the forces Xx, Xy ... given by Equations (220).8

This term therefore corresponds to the heat developed by viscosity. The next to last term,
multiplied by the factor 15/4, must therefore represent (if one multiplies it by dodt) the heat
introduced by heat conduction into the volume element. If we imagine the volume element
to be a parallelepiped with edges dx, dy, dz, and draw the x-axis from left to right, the y-axis
from back to front, and the z-axis from below to above, and denote by T the temperature,
by  the coefficient of heat conductivity—then, according to the old Fourier theory of heat
conduction (which is established by experiment, at least approximately)

are the quantities of heat that leave the parallelepiped on the left, in back, and below,
respectively;

and

are the quantities of heat that come in on the opposite sides. The total increment of heat
caused by heat conduction into the parallelepiped do during time dt is therefore
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The term multiplied by 15/4 in Equation (236) is small. We can therefore neglect higher
powers of this quantity, and treat the gas as if u, v, w were constant, while  are

given by the Maxwell velocity distribution. Its internal state will then be determined only
by , and we can apply the formulae of §7 and §8 as if it were a gas at rest. If r is

the gas constant of our gas, and R that of the normal gas, while m/µ is the mass of a
molecule of the latter, then according to Equation (52) we have

Hence the term with the factor 15/4 in Equation (236), multiplied by dodt, has the
following form:

This agrees completely with the empirical expression (237), if one sets

In order to make this independent of the thermal units used, we introduce instead of R
the specific heat. Since we assume there is no intramolecular motion, the quantity β in
Equation (54) is zero; this equation then gives:

hence9
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This value is 5/2 times as large as that given by Equation (93) and is about as much
larger than the experimental values as the latter value is smaller than them. One should not
expect quantitative agreement in cases where the assumptions made (e.g., β = 0) are clearly
not satisfied. Since R, μ, and hence also γv are constants,  depends on temperature and
pressure in the same way that  does.

We have thus obtained all the formulae accepted by the so-called descriptive theory,
except that a coefficient in the terms representing viscosity, which remains arbitrary in the
descriptive theory, has here a particular value. In the descriptive theory 

 is equal to

while here it is equal to

Therefore in the descriptive theory, in the expression for Xx – p, the compression-dependent
expression

is multiplied by a coefficient that is independent of the coefficient of ∂и/∂х, while in our
theory the latter coefficient is exactly three times as large as the former. The same holds for
Yy and Zz. The latter coefficient must indeed here, as also in the descriptive theory, be twice
the coefficient of

in the expression for Yz, and thus it is twice the experimentally measurable viscosity
coefficient.*

In the light of our theory, all these formulas are approximate ones. There is no difficulty
in carrying the approximation further. The equations thus extended to a higher degree of
approximation would not necessarily agree with experiment everywhere, since many of our
hypotheses are still arbitrary, but they will probably be useful guidelines when experiments
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are initiated. It will be difficult, but not completely hopeless, to test them by experiment,
and it is to be expected that they will teach us new facts going beyond the old
hydrodynamic equations. In order to indicate briefly how the approximation is to be carried
further, we shall substitute in Equations (189) and (190) the values just found. From the
latter, it follows by Equations (214, 235, 220, 52, 238) that

If one makes the substitution  in Equation (188), he obtains only terms that

vanish to the present degree of accuracy. One can therefore set

equal to zero, and therefore also

For Xx, Xy ... one is to substitute the values on the right side of Equation (220). Further,
according to (218a),

and since one uses here only the terms of largest magnitude,
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Similarly Xx, Yz ... can be calculated. One would thus obtain some very complicated
expressions, which would appear to Continental physicists as strange as did at first those in
Maxwell’s electrical theory. Yet who knows whether many terms of these equations may
not some day play an important role? Here we shall indicate only a special case already
considered by Maxwell. 1. Let there be neither mass motion nor external forces acting on
the gas; hence u = v = w = X = Y = Z = 0. 2. Suppose that some heat flow is taking place.
Then the derivatives with respect to t will vanish, hence, according to Equation (239a),

In this special case, Equation (189) gives:

Therefore, taking account of Equations (235),

hence since Xx + Yy + Zz = 3p,
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since for stationary heat flow

In this case we also have

therefore the volume elements in the interior of the gas are in equilibrium. But the
customary view (cf. the last page of Kirchhoff’s lectures on heat theory, already cited,
where what is said otherwise about the old heat conduction theory is quite true)—that in
stationary heat flow the pressure can be everywhere equal—is shown to be false. The
pressure varies from place to place, and at a given point it may be different directions, and
not exactly normal to the surface.

Hence, if a solid body is completely surrounded by a heat-conducting gas, it will in
general start to move, since the pressure is not equal everywhere. Maxwell was quite
correct in attributing the cause of radiometer phenomena to this effect.* Moreover, a gas in
contact with a solid wall cannot remain at rest if the wall cannot exert a finite tangential
force on the gas. These motions, created by pressure-differences inside the gas, are not to
be confused with those which arise through the action of gravity, in consequence of the
different density of warmer and colder gases. The latter motions canot play any role in the
radiometer, since the axis of rotation is vertical. Also, our formulas do not apply to the latter
motions, since we set X = Y = Z = 0.

Up to now we have followed the ingenious methods devised by Maxwell, and applied
by Kirchhoff and others. These methods permit one to avoid calculating the velocity
distribution function f(x, y, z, ξ, η, ζ, t). There is another method which proceeds on the
contrary from a calculation of this function. Although the latter method has not been used, I
will say a few words about it here, since to calculate the entropy we need to know f.

The starting point is the general equation (114) in which, since we consider only one
kind of gas, the next to last term vanishes. If we write, instead of the previously used
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constants a, h, u, v, w,

then we know that the equation will be satisfied if we put

as long as а, k, u0, v0, w0 are constants. Then u0, v0, w0 are the velocity components of the
gas as a whole.

Now let k, a, u0, v0, w0 be functions of x, y, z, t; their variations (i.e., their derivatives
with respect to these variables) are assumed to be so small that only small correction terms
need to be added to the expression (240) in order to satisfy Equation (114). We shall
represent these corrections in the form of a power series. Since a, k, u0, v0, w0 are arbitrary,
we can choose their values in such a way that the terms multiplied by ξ, η, and ζ in the
power series will vanish. This can therefore be done without any loss of generality.
Moreover, we can choose the coefficients of ξ2, η2, and ζ2 to be such that their sum is
equal to zero. We introduce the variables

and put

where

and

The left side of Equation (114) is now transformed to
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Since all the differential quotients are small, we can replace f by f(0) in them. If we write 
 for  and d0/dt for ∂/∂t + u0∂/∂x + v0∂/∂y + w0∂/∂z, then we find:

If one considers the coefficients b to be small, so that their products and squares may be
ignored, then the right side of Equation (114) becomes
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In order to avoid an accumulation of too many indices, we shall drop the index zero
from the quantities  until we get to Equation (246)—i.e., it will not be explicitly

indicated that they arise by subtracting the quantities u0, v0, w0 rather than u, v, w from the
corresponding quantities ξ, η, ζ. Since in f(0) and  it is u0, v0, w0 and not u, v, w that

are subtracted from ξ, η, ζ, we find just as before that:

Hence:

The same result holds for the products  and . Since now

it follows that  can be represented as a sum of spherical

functions of the second degree, and we have

where the abbreviation  has been used for .  and  have

similar meanings.
If one sets
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then he finds likewise, according to the principles of the previous section (cf. Eq. [231a]):

hence finally
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Equation (114) must be satisfied identically. Hence expressions (245) and (246) must be
equal for all values of x0, y0, and z0. The terms independent of x0, y0, z0 must be equal;
hence:

Since b11 + b22 + b33 + 0, the terms of second order in  give:
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Setting equal the terms containing first powers of  gives finally (taking

account of the values found for c1, c2 and c3):

Since b11 + b22 + b33 = 0, and each term containing an odd power of  or 
vanishes on integration, it follows that (if one writes dω and dω0 for dξdηdζ and 

):

Hence

if we do not carry the approximation far enough to produce any correction to the density of
the gas. Likewise:

Hence the mean square velocity of motion of the molecule relative to a point moving
with velocity u0, v0, w0 is equal to 3/2k.

On the other hand, u0, v0, w0 are only approximately equal to the components of visible
velocity of the gas in the volume element do. These components are actually defined as 

. Now we have , and furthermore
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If we denote the exact components  of the visible motion of the gas by u, v, w,

and those of the motion of a molecule relative to the visible motion by , then we

obtain in this approximation

Furthermore,

One has therefore as a first approximation

Hence, according to Equation (247),
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which is Poisson’s law. Furthermore,

hence

Therefore Equations (249) yield:

If we wish to carry the approximation one step further, we can make the above
substitutions in the terms that are small, and thereby find:

Likewise the rest of Equations (220) follow, and there is again no difficulty in extending
the degree of approximation.

§24. Entropy for the case when Equations (147) are not satisfied. Diffusion.

Up to now we have calculated H only under the restrictive assumption that Equations
(147) are satisfied. We now wish to calculate it under the general assumption that f is given
by Equation (242), so that viscosity and heat conduction are present. We assume a simple
gas. Then
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Since f is given by Equation (242), it will be approximated by

where the expression in parenthesis in Equation (242) has been denoted by 1+A.
We now wish to construct the expression H for the gas contained in the volume element

do. The value thus found will be multiplied by –RM and divided by do. Let this quantity be

Jdo is then the entropy of the gas contained in do.
If we now substitute the above values for f and lf, we obtain first a term independent of

the coefficients b and с This is the entropy (divided by do) that the gas in do would have if
it had the same energy (heat) content and the same progressive motion in space, and
obeyed the Maxwell velocity distribution law. It can be calculated just as in §19, and has,
as shown there, the value

apart from a constant. Second, we obtain terms linear in the coefficients b and c. These all
vanish. Since

if one of the numbers а, b, с is an odd integer, the coefficients of b12, b13, b23, c1, c2 and
c3 all vanish. However, if all three numbers a, b, с are even integers, then the integral does
not change its value under cyclic permutations of  and . Hence b11, b22 and b33

have the same coefficients, and the sum of the terms in question vanishes in any case, since

Since we are omitting higher order terms, there still remain in the expression for J only
terms of second order in the coefficients b and c. Their sum is
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The next terms to be added in Equation (242) (which we have not calculated) will of
course be of the same order of magnitude as these, but it is not improbable that they would
also vanish on integration

We now find:

and one finds easily:

Since

we have therefore

Pure Mathematical Physics



176

On substituting the value of b, one finds, writing θ for

the following value for the total entropy of the gas contained in the volume element do:

The sum of all the terms containing derivatives of u, v, w with respect to x, y, z is what
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Lord Rayleigh calls the dissipation function of viscosity.* The sum of the last three terms
has been called by Ladislaus Natanson the dissipation function of heat conduction. †

The energeticist holds that the different forms of energy are qualitatively different; to
him, an energy halfway between kinetic energy and heat is very strange. Hence the oft-
emphasized principle of the superposition of properties of different energies contained in a
body. The principle is valid for the static state, and for completely stationary visible motion,
where to a certain extent the forms of energy can be separated. On the other hand, if the
above equation is correct, then in the presence of viscosity and heat conduction the entropy
of the gas is not the same as it would be at the same temperature and velocity, when there is
no dissipation. Thus we have to deal with a kinetic energy that is, so to speak, half visible
kinetic energy and half transformed into thermal motion, so that in the expression for the
entropy it appears in a form that would not have been foreseen from the laws of static
phenomena. If we deform a completely elastic body by means of an external force, then we
get back all the energy we put into it, in the form of work, when it returns to its initial state.
If we produce viscosity in a gas by means of an external force, then the work done is
transformed into heat energy. After the removal of external forces, this transformation
becomes complete after a time considerably greater than the relaxation time has elapsed.
While the external forces are acting, our equations predict that the entropy at each instant is
somewhat smaller than it would be if the energy lost from visible motion were completely
transformed into heat. Instead, this energy is in a state intermediate between ordinary heat
and visible energy, and part of it can still be transformed back into work, since the Maxwell
velocity distribution does not yet hold exactly. This description of the dissipation of energy,
based on a purely mechanical model, seems to me especially remarkable.

Now suppose that two kinds of gas are present. Let m be the mass of a molecule of the
first kind, and m1 the mass of one of the second kind. The mean value и of the velocity
components ξ of all molecules of the first kind found in a volume element will be called the
x-component of the total velocity of the first kind of gas in this volume element. It need not
be equal to the mean value u1 of the velocity components ξ1 of all molecules of the other
kind of gas in the same volume element. u1 will be called the x-component of the total
motion of the second kind of gas in the volume element do. v, w, v1 and w1 have similar
meanings. Let ρ and ρ1 be the partial densities of the two kinds of gas—i.e., ρ is the total
mass of all molecules of the first kind contained in do, divided by do, and similarly for ρ1.
Let p and p1 be the partial pressures—i.e., the pressure that each kind of gas would exert
on unit surface if the other were not present. Let Р = p + p1 be the total pressure. Finally,
let  and  be the excess of the velocity components over the total

velocity components of the corresponding kind of gas:

Then the continuity equation is valid for each kind of gas, as we already proved before we
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made the assumption that only one kind of gas is present. Hence:

We shall now imagine that the volume element do moves during time dt with the
velocity components u, v, w of the first kind of gas in this volume element. The difference
between the values of any quantity Φ at time t + dt in the volume element in its new
position, and at time t in the volume element in its old position, divided by dt, we denote by
dΦ/dt, so that:

A similar meaning is given to:

In constructing the latter quantity, one imagines that the volume element is moving with
velocity components u1, v1, w1. Then the two continuity equations can also be written:

We ignore the deviations from the Maxwell velocity distribution law. Then:
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The mean kinetic energy of a molecule cannot in any case be very much different for
the two kinds of gas. One has approximately:

Since to the present degree of approximation we can ignore the squares of the small
velocity components u, v, w with which the gases diffuse through each other, compared to
ξ2, η2, ... we also have:

We set these quantities again (cf. Eq. [51a]) equal to 3RMT, and we call T the
temperature in do. Here M is the mass of a molecule of some third gas (the normal gas) and
R is a constant corresponding to the temperature scale to be chosen (the gas constant of the
normal gas). Since each of the original two gases behaves like a gas at rest,

where r and r1 are the gas constants of the original two gases, and µ = m/M, µ1 = m1/M.
We shall now set  in Equation (187). Then:

B5(φ) = 0. One therefore obtains:

where, according to Equation (132),
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We now have (see Eq. [200]):

hence

We also set (Eq. [195]):

and subsequently put n = 4. Therefore:

Maxwell calls this definite integral A1 and finds*

Pure Mathematical Physics



181

We set:

and obtain

Whence it follows, furthermore, that:

Now according to Equation (175):

and since clearly the same result holds for the second kind of gas,

we have

and Equation (254) reduces to

Likewise one obtains for the second kind of gas,
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These are the familiar hydrodynamic equations. According to our present assumptions,
viscosity and heat conduction cannot be important. Only the last term describes the
interaction of the two kinds of gas. On these assumptions, therefore, this interaction has
exactly the same effect as if one added to the force X ρdo, which acts from outside on the
gas of the first kind in do, the contribution – A3ρρ1(u – u1)do. We can arrange things so
that this gas is unaffected by the other forces that act on it, and encounters only this
resistance to its motion through the second kind of gas. Since the same holds for the y and z
axes, this resistance is equal to the product of the partial densities of the two gases, their
relative velocity , the volume do of the

volume element, and the constant A3. It has the direction of this relative motion, and acts on
each kind of gas against the relative motion. If we set φ = ξ2 + η2 + ζ2 in Equation (187),
then we find that, according to the present approximations,

as soon as initially . Therefore the

temperature is not changed as a result of the diffusion process.
We shall apply these equations only to the gas-diffusion experiments of Prof.

Loschmidt.* These experiments were set up as follows: a vertical cylindrical container is
divided into two parts by a thin partition. The lower space is filled with the heavier gas, and
the upper with the lighter gas. The pressure and temperature are made equal in the two
gases, and when all mass motion has stopped, the partition is suddenly withdrawn as
smoothly as possible. After the gas has diffused for a certain time, the partition is again
inserted and the contents of both parts of the container are analyzed. Here the effect of
gravity can be ignored, hence we shall set X = Y = Z. Furthermore, the motion takes place
only in the axis of the cylinder. If we choose this as the abscissa axis, then

Finally, the motion takes place so slowly that it can be considered as stationary at each
point, so that du/dt can be neglected.

We can also justify this as follows: we have for the reciprocal relaxation time:

and according to Equation (256):
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A1 is a number less than twice as large as A2. ρ is of the same order of magnitude as ρ1,
and m is of the same order as m1. We also assume that the two constants K1 and K
appearing in the force laws for the interaction of m- and m1-molecules are of the same
order of magnitude. Then in Equation (257) the magnitude of the first term is to that of the
last as du/dt to (u – u1)/τ. This ratio can be set equal to zero since, because of the slowness
of the diffusion process, the time τ1 within which и can experience the increase и – u1 must
be enormously large compared to the relaxation time τ. We can therefore neglect the first
term in Equation (257) also, and we obtain:

Likewise:

From the two continuity equations, however, it follows that:

The temperature T should be held constant during the entire experiment. Hence,
according to Equation (253), p is proportional to ρ and p1 to ρ1, and one can therefore
write Equation (260) in the form:

If we set p + p1 = P, so that P is the total pressure, then it follows from (258) and (259)
that:
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Furthermore, from (261):

and on differentiating the last equation with respect to x:

therefore

Now no gas can flow in or out of the container, either at the top or bottom. Hence at the
abscissa values corresponding to the top and bottom we have u = u1 = 0, hence also pu +
p1u1 = 0.

Whence it follows that C1 = C2 = 0 and

If one uses this equation to eliminate u1 from Equation (258), then it follows that

hence, according to (253):

If one differentiates again with respect to x, and refers to Equation (261), then he obtains:
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where

This equation has the same form as the one established by Fourier for heat conduction.
Both natural processes therefore follow the same law. In our special case, the diffusion
takes place just as if instead of a cylindrical mass of gas one had a homogeneous metal
cylinder, whose upper half is maintained initially at a temperature of 100°C, and whose
lower half initially has zero temperature; through the entire surface of the metal cylinder, no
heat may enter or leave, either by conduction or radiation.

 is the diffusion constant. It is directly proportional to the square of the absolute
temperature T, and inversely proportional to the total pressure P. It is independent of the
mixing ratio, so that it is constant at all times during the diffusion process for all layers of
the container. If the molecules behaved like elastic spheres,  would be proportional to
the  power of T, and would depend on the mixing ratio. The dependence on P remains

the same in both cases.
A simple definition of the diffusion constant  can be obtained in the following way.

We multiply Equation (263) by  and obtain:

ρu is clearly the total amount of gas that goes through unit cross section in unit time. It is
proportional to the gradient ∂ρ/∂х of the partial density of the gas in the direction of the axis
of the container. The proportionality constant is just the diffusion constant.

If we retain the assumption of inverse fifth power forces, then we cannot draw any
conclusion about K from the force constants K1 and K2. Thus from the properties of two
gases by themselves, we can draw no conclusion about their interaction with each other.
However, we may be able to draw such conclusions if we imagine that the repulsive force
is transmitted by means of compressible ether-shells. We can then ascribe the value s to the
diameter of the ether-shell of an m-molecule, and the diameter s1 to the ether-shell of the
m1-molecule. In a collision, the centers of two m-molecules will approach up to a minimum
distance s, on the average. If we imagine one such molecule held fixed and the other one
moving toward it with mean kinetic energy , then the latter will have zero velocity at the

distance s. Then:

Pure Mathematical Physics



186

Likewise it follows that

A n m1-molecule will, however, approach an m-molecule up to a minimum distance
equal to the sum of the radii (s + s1)/2 on the average. If we again fix one molecule and let
the other approach it with the mean kinetic energy of all the molecules, then its velocity will
be annihilated at the distance (s + s1)/2, which gives:

From these equations it follows that:

Now we found (Eq. [256]):

The viscosity coefficient of the first gas was (Eq. [219]):

Likewise the viscosity coefficient of the second gas was:
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hence

This equation permits one to calculate the diffusion constant of two gases from their
molecular weights and viscosity coefficients. It agrees approximately with experiment.
However, one should not suppose that it is exactly correct. Nevertheless, it seems to have a
more rational basis than any other formula yet proposed for this purpose.

If in Equation (264) we set:

then

hence

Now we have
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hence

According to Equation (91),

Further, according to Equation (89):

if

Therefore:

One sees that the numerical coefficient is only insignificantly different.
The concepts of mean free path and number of collisions are not suited to the theory of

repulsive forces proportional to the inverse fifth power of the distance. In order to define
them, one must make a new arbitrary assumption. One must, for example, decide that an
encounter of two molecules is to be considered a collision if the relative velocity is
deflected through an angle greater than 1°.

It would be of the greatest interest to carry the approximation further in the calculation
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of diffusion, as well as to calculate the entropy of the two diffusing gases. In the first case
there would probably be fluctuations of temperature during the diffusion, whose calculation
according to the principles established would not be difficult; likewise, it would be easy to
calculate a new dissipation function, that of diffusion, by determining the entropy of the
two diffusing gases. However, we shall not pursue this matter any further.*

* Maxwell, Phil. Trans. 157, 49 (1867).
1 Likewise the assumption of an attraction proportional to the inverse fifth power of the distance

produces a similar simplification (cf. Wien. Ber. 89, 714 [1884]). However, one must then assume that
for distances small compared to the distance at which the interaction becomes strong, the force follows a
different law, according to which the attraction remains finite or is transformed to a repulsion, since
otherwise the molecules would not separate in a finite time after collisions. In the text we always assume
a repulsion inversely as the fifth power.

2 Maxwell, Phil. Mag. [4] 35, 145 (1868); Scientific Papers 2, p. 42.
* Here is Maxwell’s figure:

3 Likewise one finds easily:

* Later calculations of A2 were made by K. Aichi and T. Tanukadate, reported by H. Nagaoka,
Nature 69, 79 (1903), and by S. Chapman, Mem. Proc. Manchester Lit. Phil. Soc. 66, No. 1 (1922). The
values found were 1.3704 and 1.3700, respectively.

* Maxwell, Phil. Trans. 157, 49 (1867), esp. Eq. (130). Maxwell actually called it the “modulus of
the time of relaxation.”

* Now usually called the Navier-Stokes equations; however Boltzmann, following Maxwell (op.
cit.) has suppressed the second viscosity coefficient (bulk or dilatational viscosity). This point is
discussed in §23.

4 Maxwell, Phil. Trans. 170, 231 (1879); Scientific Papers 2, p. 681.
5 Heine, Handbuch der Kugelfunctionen (2d ed.), p. 322.
6 Heine, op. cit., p. 313.
7 I thank Prof. Gegenbauer for this proof of Maxwell’s theorem.
8 Cf. Kirchhoff, Vorlesungen über die Theorie der Wärme (Teubner, 1894), p. 118.
9 As a result of an error in calculation, Maxwell (Phil. Mag. [4] 35, 216 (1868), Scientific Papers 2,
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77, Eq. [149]) found for  only  of the above value, as I noted in Wien. Ber. 66, 332 (1872). Poincaré

made the same remark: C. R. Paris 116, 1020 (1893).
* The result of Maxwell and Boltzmann, that a gas does not have two independent viscosity

coefficients, is certainly not true in general for real gases, nor is it a strict consequence of the kinetic
theory except perhaps for certain idealized models. For a list of recent papers on “bulk viscosity” see S.
G. Brush, Chem. Revs. 62, 513 (1962).

* Maxwell, Phil. Trans. 170, 231 (1879).
* Rayleigh, Proc. London Math. Soc. 4, 357 (1873); Phil. Mag. [5] 36, 354 (1893).
† Natanson, Rozprawy Krakow 7, 273, 9, 171 (1895); Phil. Mag. [5] 39, 455, 501 (1895).
* Maxwell, Phil. Trans. 157, 49 (1867). According to the calculations of Aichi and Tanukadate,

reported by Nagaoka, Nature 69, 79 (1903), A1 = 2.6512; according to Chapman, Mem. Proc.
Manchester Lit. Phil. Soc. 66, No. 1 (1922), A1 = 2.6514.

* Loschmidt, Wien. Ber. 61, 367, 62, 468 (1870).
* Modern research on the properties of gases is reviewed by J. S. Rowlinson, J. E. Mayer, H. Grad, L.

Waldmann and others in Handbuch der Physik, Vol. XII (Berlin: Springer, 1958). Older work is
surveyed by J. R. Partington, Advanced Treatise on Physical Chemistry, Vol. I (London: Longmans,
Green, 1949).
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PART II

Van der Waals’ theory; Gases with compound molecules; Gas

dissociation; Concluding remarks.
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FOREWORD TO PART II

“The impossibility of an incompensated decrease of entropy seems to be reduced to an
improbability.”1

As the first part of Gas Theory was being printed, I had already almost completed the
present second and last part, in which the more difficult parts of the subject were not to
have been treated. It was just at this time that attacks on the theory of gases began to
increase.* I am convinced that these attacks are merely based on a misunderstanding, and
that the role of gas theory in science has not yet been played out. The abundance of results
agreeing with experiment, which van der Waals has derived from it purely deductively, I
have tried to make clear in this book. More recently, gas theory has also provided
suggestions that one could not obtain in any other way. From the theory of the ratio of
specific heats, Ramsay inferred the atomic weight of argon and thereby its place in the
system of chemical elements—which he subsequently proved, by the discovery of neon,
was in fact correct.* Likewise, Smoluchowski deduced from the kinetic theory of heat
conduction the existence and magnitude of a temperature discontinuity in the case of heat
conduction in a very dilute gas.†

In my opinion it would be a great tragedy for science if the theory of gases were
temporarily thrown into oblivion because of a momentary hostile attitude toward it, as was
for example the wave theory because of Newton’s authority.

I am conscious of being only an individual struggling weakly against the stream of time.
But it still remains in my power to contribute in such a way that, when the theory of gases
is again revived, not too much will have to be rediscovered. Thus in this book [this Part] I
will now include the parts that are the most difficult and most subject to misunderstanding,
and give (at least in outline) the most easily understood exposition of them. When
consequently parts of the argument become somewhat complicated, I must of course plead
that a precise presentation of these theories is not possible without a corresponding formal
apparatus.

I thank especially Dr. Hans Benndorf for collecting numerous literature citations during
my absence from Vienna.

Volosca, Villa Irenea, August, 1898

Ludwig Boltzmann

1 Gibbs, Trans. Conn. Acad. 3, 229 (1875); p. 198 in Ostwald’s German edition.
* In addition to the works cited in the footnote on p. 24, see: R. Mayer, Mechanik der Wärme
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(Stuttgart, 1867), p. 9. E. Mach, “Die ökonomische Natur der physikalischen Forschung, “ Wien.
Almanach 293 (1882); Über die Erhaltung der Arbeit (Prague, 1872); Monist 1, 48, 393 (1891), 5, 167
(1894); Die Prinzipien der Wärmelehre (Leipzig: J. A. Barth, 1896, 2nd ed., 1900), pp. 362–364, 429–
431. K. Pearson, The Grammar of Science (London: Scott, 1895), pp. 200, 214, 311. J. B. Stallo, The
Concepts and Theories of Modern Physics (New York: Appleton, 1882), chap, viii. P. Duhem, La
Théorie Physique, son Objet et sa Structure (Paris: Chevalier et Riviera, 1906). J. Ward, Naturalism and
Agnosticism (New York: Macmillan, 1899). A. Aliotta, La reazione idealistica contro la scienza
(Palermo, 1912). G. Hirn, Mem. Acad. Sci. Bruxelles 43 (1881), 46 (1886); C. R. Paris 107, 166 (1888).
W. Ostwald, Lecture at the 64th meeting of the Deutscher Naturforscher und Ärzte, Halle, 1891, in his
Abhandlungen und Vorträge, p. 34. H. Poincaré, Nature 45, 485 (1892); Thermodynamique (Paris:
Gauthier-Villars, 1892), p. xviii. F. Wald, Die Energie und ihre Entwerthung (Leipzig: Engelmann,
1889). V. Lenin, Materialism and Empirio-Criticism (Moscow, 1908), chap. 5.

* Ramsay and Travers, Proc. R. S. London 62, 316, 63, 437 (1898). Ramsay, Mem. Proc. Manchester
Lit. Phil. Soc. 43, No. 4 (1900); The Gases of the Atmosphere (London: Macmillan, 1896), pp. 207–232.

† Smoluchowski, Wien. Ber. 107, 304 (1898), 108, 5 (1899); Ann. Phys. [3] 64, 101 (1898); Prace
Mat.-Fiz. 10, 33 (1898).
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CHAPTER I

Foundations of van der Waals’ theory.

§1. General viewpoint of van der Waals.

When the distance at which two gas molecules interact with each other noticeably is
vanishingly small relative to the average distance between a molecule and its nearest
neighbor—or, as one can also say, when the space occupied by the molecules (or their
spheres of action) is negligible compared to the space filled by the gas—then the fraction of
the path of each molecule during which it is affected by its interaction with other molecules
is vanishingly small compared to the fraction that is rectilinear, or simply determined by
external forces. Then the Boyle-Charles law holds for the gas in question, whether the
molecules are simply material points or solid bodies, or when they are compound
aggregates. The gas is “ideal” in all these cases.

Gases found in nature only partly satisfy these conditions of the ideal gas state, and
hence a theory that takes account of the finite extension of the spheres of action of the
molecules is very much to be desired.

Such a theory was given by van der Waals,* who considered the molecules to be
negligibly deformable elastic spheres, as we did at the beginning of Part I. He generalized
the theory in two ways:

1. he does not assume that the space actually occupied by the elastic spheres
representing the molecules is vanishingly small compared to the total volume of the gas;

2. he assumes that, in addition to the instantaneous elastic forces that act during
collisions, there is also an attractive force between the molecules, which acts in the line of
their centers, and whose intensity is a function of the distance of centers. We call this
attractive force the van der Waals cohesion force.

The necessity of assuming an attractive force between molecules follows directly from
the possibility—now demonstrated for all gases—of liquefaction, since the simultaneous
existence of a liquid and a gaseous phase of the same substance at the same temperature
and pressure in the same container is understandable only if there is a force between
molecules that causes them to rebound at collisions, and also an attractive force.

This attractive force can be demonstrated directly by the following experiment. One
suddenly brings a container filled with a compressed gas into communication with another
container filled with the same gas in a dilute state. As it flows out, the gas in the first
container does work against the pressure and cools itself; in the latter container there is first
a visible streaming, which turns into heat as a result of viscosity. If there were only a
repulsive force between the molecules, then the heat finally created must be completely
equivalent to the cooling in the first container. If there is also an attractive force, then this
equivalence is not complete; rather there is a net loss of heat, since the average distance of
the molecules will be larger, and hence a definite amount of heat must be used to overcome
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the attraction.
The experiments conducted by this method by Gay-Lussac1 and later by Joule and Lord

Kelvin2 did not give a definite answer to the question of the presence of this attractive
force, but the latter two scientists have proved experimentally, by a more indirect method,
the existence of this attractive force, by expansion experiments with gases.3 They showed
that a gas which (without any addition of heat from outside) is pushed by pressure through
a porous stopper experiences thereby a small cooling, while calculation shows that a
completely ideal gas would not change its temperature.

The simultaneous existence of an attractive force and an elastic core for a molecule has
of course a certain improbability. In particular, it appears to be diametrically opposed to the
assumption made in Part I, Chapter III, that two molecules repel each other with a force
inversely proportional to the 5th power of their distance. Nevertheless, both assumptions
can provide a certain approximation to the truth, if the molecules actually exert a weak
attraction at great distance and repel each other at very small distances with an inverse fifth
power force. The attraction must then turn into repulsion as the distance decreases, so that
the former does not come into consideration in collisions, because of the greatly
predominating repulsion at very small distances.

We shall have to leave a more precise formulation of the possible assumptions to the
future, and in the following we shall not be concerned with the exact relation between the
hypotheses discussed in Part I and the assumptions of van der Waals. From the viewpoint
of our theory, the latter assumptions are considered to form a picture that is correct in many
but not all respects. Indeed, up to now, realizing our ignorance about the actual properties
of molecules, we have not pretended that our assumptions are precisely realized in nature.
On the other hand, we have laid the greatest weight on the requirement that the calculations
must be exactly correct—i.e., that the results must be logical consequences of the
assumptions. The resulting development of mathematical methods was our principal
purpose. If we know the consequences of various kinds of assumptions, it should be easier
to find experiments that will test them, and at the same time it should be made possible that,
as our knowledge progresses, mathematical methods for the investigation of newly
discovered laws should be readily available.

Unfortunately, van der Waals had to abandon mathematical rigor at a certain point in
order to carry out his calculations. Nevertheless, his theory has proved to be of great
practical value, for the resulting formula gives in general a sufficiently good description of
the behavior of a gas up to its point of liquefaction, even if it does not achieve complete
quantitative agreement with experiment. From this one is justified in concluding that its
foundations could hardly be replaced by completely different ones.

In this chapter I will derive the equation of van der Waals in the simplest and shortest
possible way, leaving further refinements to Chapter V.

§2. External and internal pressure.

A container of volume V contains n identical molecules, which are completely elastic,
negligibly deformable spheres of diameter σ. The space occupied by the spheres
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themselves will be fairly small but not completely negligible compared to the total volume
of the container. It will be shown that the formulas obtained are also approximately
applicable to the state of the substance when it is no longer a gas but rather a liquid.
Therefore in the following we shall call it simply a substance, not a gas, although we shall
still always have in mind such cases when its state approximates that of a gas.

Between the centers of two molecules there acts an attractive force (the van der Waals
cohesion force), which vanishes at macroscopic distances but decreases so slowly with
increasing distance that it may be considered constant within distances large compared to
the average separation of two neighboring molecules.* Consequently the van der Waals
cohesion forces exerted on each molecule in the interior of the container by the surrounding
molecules are very nearly equal in all directions in space, and they balance each other in
such a way that the motion of the individual molecule is like that of the usual gas molecule,
and is not noticeably modified by the cohesion forces. Hence even though we did not treat
such forces in Part I, we can still calculate the molecular motions by the same principles
established there.

The van der Waals cohesion force has an appreciable effect only on the molecules that
are very near to the surface of the substance. These molecules will thus be acted on by two
forces. The first is the counter-pressure of the wall on the gas; the second is the cohesion
force. The intensity with which the first force acts on the molecules lying on unit surface
we call p, while that of the latter we call pi, so that the total force on these molecules is

Now suppose that a part DE of the wall of the container has surface area Ω. The total
force

which acts on the molecules at the surface DE and which they exert back on the wall (in
the equilibrium state) is, according to §1 of Part I, equal to the total momentum (in the
direction of the normal N to the surface DE) that the molecules would carry-through this
surface in unit time, if it were placed in the interior of the gas, plus the momentum
corresponding to the velocities with which these molecules are reflected from the surface
back into the interior of the gas.

§3. Number of collisions against the wall.

We first pick out of all the molecules only those for which the magnitude of their

velocity, c, lies between c and c+dc, and the angle ϑ formed by the direction of the

velocity with the outwardly directed normal N at the surface DE lies between ϑ and ϑ+dϑ;

furthermore, the angle ∊ between a plane normal to DE containing the velocity direction

and a fixed plane normal to DE must lie between ∊ and ∊+d∊. We call the set of these
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conditions:

All molecules that satisfy (2) will be called molecules of the specified kind, and we ask
first: how many molecules of the specified kind collide with the surface DE during a very
short time dt?

Each molecule is to be considered a sphere of diameter σ, so that it collides with DE
when this sphere touches it. During the time interval dt, the centers of all the specified
molecules travel nearly the same distance, cdt, in nearly the same direction. We shall find
the number of collisions between molecules of the specified kind and the plane DE during
dt as follows:

We allow DE to touch, at each of its points, a sphere whose diameter is equal to the
molecular diameter σ. The centers of all these spheres lie in a second plane of surface area
Ω. Through each point of this second plane, we draw a line that is equal in length and
direction to the path travelled by the specified molecules during dt. All these lines fill up an
oblique cylinder γ of base Ω and height

and hence of volume Ωdh. One sees easily that the molecules that collide with DE during
dt are just the ones whose centers lie in γ at the beginning of the time interval dt.

§4. Relation between molecular extension and collision number.

In order to find the number dz of these latter molecules, we first determine quite
generally the probability that, for a given configuration of the other molecules, the center of
a particular molecule lies within the cylinder γ. This molecule cannot be less than a
distance σ from the center of any other molecule. We find the volume available to the
center of this molecule, when the positions of the other are fixed, as follows: we construct a
sphere of radius σ, which we call the covering sphere, around the center of each of the n –
1 other molecules. Its volume is 8 times the volume of the molecule, if it were considered as
an elastic sphere. The total volume, 4π(n – 1)σ3/3, of all these n – 1 covering spheres is to
be subtracted from the total volume V of the gas. We may also write n for n – 1, since n is a
very large number.

In order to find dz, we compare this space V – 4πnσ3/3 with the space available in the
cylinder γ. The latter is found by subtracting from the total volume Ωdh of γ the volume of
that part of it which lies within the covering sphere of any of the n – 1 other molecules. The
covering spheres of these n – 1 molecules will clearly be equally distributed throughout the
entire volume V of the gas, except for those regions very close to the wall of the container.
If γ were somewhere in the interior of the container, then that part A of the total volume
4πnσ3/3 of the covering spheres of all molecules which lies within γ would be in the same
ratio to the total volume of these covering spheres as the volume Ωdh of the cylinder γ is to
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the total volume V of the gas. Hence we would have

Of all the molecules whose covering spheres penetrate γ, one can ignore those whose
centers lie within γ, since the height dh of this cylinder is infinitesimal. The centers of all
molecules whose covering spheres penetrate γ would lie equally often on both sides of γ, if
it were inside the container.

Since γ is not inside the container but is rather at a distance  from the wall, the

centers of the n – 1 molecules can only lie on one side of it. Hence one must omit half of
the molecules enumerated above, so that the part of γ occupied by any of the n – 1
molecules is only:4

The total remaining volume,

o f γ is available to the center of the specified molecule, in case we wish to know the
probability that it lies in the cylinder γ.

This probability is the quotient of the available space in the cylinder γ divided by the
available space in the entire gas volume, namely :

for which we can write (since the quantities subtracted in the numerator and denominator
are very small)
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where

is half of the space filled by the covering spheres of all the molecules, hence four times the
volume of all the molecules.

§5. Determination of the impulse imparted to the molecules.

Since there are actually n molecules in the gas and not just the one specified molecule,
the total number of molecules whose centers lie in γ is:

Of these,

have a velocity that lies between c and c+dc, where

is the probability that the velocity of a molecule lies between c and c+dc, i.e., the number
of molecules whose velocities satisfy this condition divided by the total number of
molecules n. Among the v1 molecules we shall find

for which the angle ϑ lies between the limits ϑ and ϑ+dϑ,5 and among these
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for which ∊ lies between the limits ∊ and ∊+d∊. This is therefore the number of molecules
(previously denoted by dz) that lie in a cylinder of volume

and whose velocities satisfy the conditions (2) (see §3). These are the same molecules that
collide with the part DE of the wall of the container, of surface area Ω, during time dt, in
such a way that their velocities again satisfy the conditions (2). On substituting the values
(7) and (9), the expression for the number of these molecules becomes:

We now assume that the state is stationary. During any time t2 – t1, there will collide with
the surface DE a total of (t2 – t1)dz/dt molecules of the specified kind. Each of these has

momentum mc cos ϑ in the direction N before the collision, and acquires on the average the

same momentum in the opposite direction after the collision, so that momentum 2mc cos ϑ
in the direction of the normal inwards from DE must be imparted to it. This momentum is
part of the total impulse Ωpg(t2 – t1) supplied by the force Ωpg. All molecules of the
specified kind therefore provide a contribution

to the impulse Ωpg(t2 – t1). If one substitutes for dz the value (10) and integrates over all

possible values—i.e., over ∊ from 0 to ∞ — then he obtains the total impulse Ωpg(t2 – t1).

If we divide through by Ω(t2 – t1) in this equation, and perform the integration over ∊, we
find:

The integral over ϑ has the value , as is well known. Furthermore,  is

equal to the mean square velocity  of a molecule. One thus obtains:
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If the attractive force of the gas molecules (van der Waals’ cohesion force) were not
present, then pg would be just the external pressure of the gas. Because of this cohesion
force, however, the total pressure pg consists of two parts: first, the pressure p exerted by
the walls; and second, the attractive force exerted on those molecules near the wall by the
other molecules. If we denote the total intensity of the attractive force acting on each
molecule lying at the surface by pi, as before, then we obtain the equation already denoted
by (1) :

§6. Limits of validity of the approximations made in §4.

In deriving Equations (5) and (13) we neglected all terms of order B2/V2. Hence we
cannot expect that these equations will be valid for values of V comparable to B. In fact,
Equation (10) predicts an infinite pressure for V = B. Yet this volume is still 4 times larger
than the space actually filled by the molecules, so that the corresponding pressure is
certainly not yet infinite. On the other hand, the pressure can be infinitely large when the
molecules are so densely packed that one cannot put any more spheres into the space.

One of the densest arrangements of many equal spheres can be obtained by piling them
up in a pyramid like cannonballs. An easy calculation shows that the total volume that they
occupy, including the small spaces in between the spheres, is then  of the

volume occupied by the spheres themselves.
If the gas molecules were arranged in this way, then

Thus pg would first become finite when V is about ,6 whereas according to

Equation (13) it is already infinite when V = B.
We shall see in Chapter V, §58, that Equation (13) does not give the correct coefficients

even for the terms of order B2/V2.
From this viewpoint it appears that van der Waals has substituted for the exact formula

another one that is certainly wrong as soon as V is not large compared to B. Although there
may be an important quantitative difference between an expression that vanishes for V = B

and one that vanishes for , the correct formula must still follow a course

qualitatively similar to the one that van der Waals put in its place.* This fact helps to
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explain the beautiful qualitative agreement of the van der Waals equation with the actual
properties of gases and liquids; however, it also clarifies the essential quantitative
difference. Inasmuch as the calculation of the exact formula still encounters insuperable
mathematical difficulties, one must be satisfied with van der Waals’ approximation.

One has therefore to distinguish between the properties of a substance that exactly
conforms to van der Waals’ assumptions, and one that is represented by van der Waals’
equation; in the following we shall always discuss the latter.

§7. Determination of internal pressure.

In order to calculate pi, van der Waals assumes that the attraction between two
molecules acts only at short distances, which are still large compared to the average
distance between neighboring molecules of the substance. We now find the van der Waals
cohesion force pi that acts on unit surface in the following way: we choose any surface
element ds on the boundary surface of the substance, and construct inside the substance a
right cylinder which has this surface element as its base. We also construct two cross
sections of this cylinder at distances v and v+dv from the base ds. The volume between
these two cross sections is ζ = dsdv; the mass of the substance found in this volume is
therefore ρdsdv, if ρ is its density.7 Since m is the mass of a molecule, we see that ζ
contains

molecules. Each of these molecules is at nearly the same distance from the boundary
surface, and hence subjected to nearly the same conditions. It will be drawn toward the
surface by those molecules nearer the surface, and away from it by those molecules farther
from the surface. Since there are more of the latter, there remains a net resultant force away
from the surface.

If we select a particular molecule inside the cylinder ζ and any volume element ω near it,
then all molecules in ω will exert nearly the same force on our specified molecule. Their
total attractive force—and hence also its component normal to ds—will be proportional to
the number of molecules in ω, and hence to the density ρ of the gas. The proportionality
factor can depend only on the size of ω and its position relative to the specified molecule. In
particular, according to our assumptions, it is independent of temperature at a given density.
Temperature merely determines the rapidity of the molecular motion, whereas according to
our assumptions the attractive force between the molecules must be independent of their
motion. All these conclusions hold equally well for all the other volume elements ω1, ω2 · ·
· lying in the neighborhood of our specified molecule, and the sum of the components
normal to ds of all the forces exerted on it by the surrounding molecules must be
proportional to the density but independent of the temperature. We write this sum as ρC,
where C depends only on the distance of the molecule from the boundary surface. Since all
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the molecules in the infinitesimal cylinder ζ are subjected to the same conditions, and the
number of these molecules is ρdsdv/m, according to Equation (15), we see that the total
force that is exerted on all these molecules, normal to ds, is equal to

Since moreover the value of C does not depend on temperature or density but only on
the distance v of the cylinder ζ from the surface, we shall denote it by f(v). The total force
on all the molecules in the cylinder Z is

Since the value of the expression  depends neither on density nor

temperature but is a constant characteristic of the substance, we denote it by a. The total
force on all molecules in the cylinder Z is then aρ2ds. It is proportional to ds. The force that
pulls in the molecules lying on unit surface—which we have called pi—is therefore8 aρ2,
and we obtain, according to Equations (1) and (13) :

where nm is the total mass of the substance. V/nm = v is therefore the volume of unit mass
at the specified temperature and pressure, the so-called specific volume. Since the total
mass is nm = ρV, it follows that

and we can write Equation (17) as follows:

where
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This is also a constant of the gas; it is equal to half the volume of the covering spheres in
unit mass of the gas, or 4 times the volume of the molecules in unit mass.

§8. An ideal gas as a thermometric substance.

We shall now choose as a measure of the temperature, the pressure that an ideal gas (the
normal gas) would exert at various temperatures, at constant volume. By an ideal gas we
mean a gas of the kind considered in Part I, and defined in Part II at the beginning of §1 :
its molecules exert an appreciable force on each other only at distances that are vanishingly
small compared to the average distance of two neighboring molecules.

For a particular ideal gas we denote the mass of a molecule by M, the mean square
velocity of the center of mass of a molecule by , and the number of molecules in unit

volume by N. Then, according to §1, Part I, the pressure on unit surface is 
. At constant volume, N is also constant. According to our choice of

temperature units, the absolute temperature is therefore proportional to the quantity . In

agreement with Equation (51) of Part I, we shall set , where R is a constant

determined by the temperature unit.
In Chapter III, §35, and Chapter IV, §42, we shall give good arguments in favor of the

proposition that, at equal temperatures, the mean kinetic energy of the motion of the center
of mass of a molecule is generally the same for all bodies. We have already proved in Part I
that this is the condition for thermal equilibrium of two ideal gases with monatomic
molecules. The validity of that conclusion is not affected by the attractive force assumed by
van der Waals, since this acts at distances large compared to the distance between two
neighboring moelcules, so that it does not perturb the motion of molecules during
collisions. Hence the condition for thermal equilibrium between the normal gas and another
gas characterized by Equation (19)—assuming that the former is monatomic—will be the
equality of mean kinetic energy of the molecules in each gas. Hence at equal temperatures, 

. Since the latter quantity is equal to 3RMT, then at the same temperature

we also have  for the other gas. We shall now compare the molecular

weight of the other gas with that of the normal gas, and denote the quantity m/M by µ and
the quantity R/µ by r; then

and hence, according to Equation (19),
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This is the van der Waals relation between pressure, temperature, and volume of a gas.
r, a, and b are constants characteristic of the gas; R is a constant referring to the normal gas,
and is completely independent of the nature of the other gas.

In chemistry one usually understands by the molecular weight of a gas the ratio of the
mass of a molecule of that gas to the mass of a single hydrogen atom. Thus for ordinary
hydrogen, whose molecules are diatomic, µ = 2, and the gas constant is ,

where R would be the gas constant of hydrogen if its molecules were dissociated into single
atoms. If we do not wish to base our definition on such a dissociated gas, we have to define
R empirically as being twice the gas constant of ordinary hydrogen gas.

§9. Temperature-pressure coefficient. Determination of the constants of van
der Waals’ equation.

We now consider a gas for which the relation between pressure, density, and
temperature is sufficiently well expressed by van der Waals’ equation (22).

We first determine for this gas the temperature coefficient of the pressure at constant
volume—i.e., we shall heat it from T1 to T2 at constant volume, denote the pressure on unit
surface at these two temperatures by p1 and p2, and determine the quotient (p2 – p1)/(T2 –
T1). We find, from Equation (22):

whence it follows that:

Thus the pressure difference is proportional to the temperature difference, and the
proportionality factor is simply a function of the volume of unit mass. The pressure
difference of a gas following van der Waals’ law, at constant volume, is therefore always a
measure of the temperature difference. If we denote by p3 the pressure at a third
temperature T3—keeping the same volume per unit mass, v—then:

We next assume that we have a second gas, for example hydrogen, which can be
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considered ideal with sufficient accuracy. For this latter gas, therefore,

One can therefore determine absolute temperatures directly, if he establishes a unit for the
temperature degree—e.g., if he sets the difference between the temperature of boiling water
and that of melting ice (both at atmospheric pressure) equal to 100.

One can next test how well Equation (25) is satisfied for the first gas; in other words,
one can determine how well van der Waals’ law predicts the actual dependence of the
pressure on the temperature. If one calculates the temperature coefficient of the pressure,
r/(v — b), from Equation (24) for two different densities, then he can determine r and b for
the gas. If one knows the chemical constitution of the molecules of the gas, then he can test
whether the equation µr = R is accurately satisfied. One can also determine µ from the
empirically determined van der Waals constant r, instead of from the vapor density. If one
determines the temperature coefficient (24) of the pressure at constant volume for more than
two values of r, then he can test how well it is represented as a function of v by the van der
Waals formula.

One remark should be made here. According to §6, the expression r/(v – b) was found
by an approximation that is no longer permissible when v approaches the value b. For the
smaller values of v, one must replace b by (b/3). In fact, experiment shows that when 6 is
determined in the above way for different values of v, it is not actually constant, but
decreases with decreasing v. It does not by any means follow from this that the basic
assumptions of van der Waals are wrong for such substances. Indeed, if the equation of
state could be derived exactly from these basic assumptions, similar consequences would
follow. Unfortunately it has not yet been possible to find what function of v must replace
r/(v – b) in the exact equation of state, on the basis of the assumptions of van der Waals.*
In the following we must therefore limit ourselves to the discussion of Equation (22), and
keep in mind the fact that we cannot expect it to achieve any more than qualitative
agreement for small values of v. From Equation (23) it follows that

from which one may also determine the value of the constant a. If one calculates this value
for several values of v, he can find out how well the term added to p on the left side of van
der Waals’ equation (22) agrees with experience. Thus one can test the validity of van der
Waals’ assumption that the cohesion force extends to distances large compared to the
average distance of two neighboring molecules.

§10. Absolute temperature. Compression coefficient.

We can never actually determine the temperature by means of an ideal gas, since no
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known gas, not even hydrogen, possesses exactly the properties that we ascribe to an ideal
gas. The most rational definition of temperature is of course that based on Lord Kelvin’s
temperature scale. As is well known, this scale is derived from the maximum work that can
be gained by transforming heat from one temperature to a lower one. However, since the
direct experimental determination of this work is always performed very inexactly, one is
forced to calculate it from the equation of state of some body. Now the deviations of
hydrogen from the ideal gas state are rather small, so that if one treats these deviations on
the basis of van der Waals’ assumptions, one ought to be able to construct the absolute
Kelvin temperature scale with an accuracy that can hardly be surpassed at the present
time.9 One can then use the equations developed above for the determination of the
absolute temperature, except that one cannot assume that T1, T2, and T3 can be determined
by comparison with another more ideal gas. One can first express the temperature
differences in terms of numbers, by means of the proportion (25), if he merely chooses any
arbitrary temperature unit, for example as indicated above. As a control, one can determine
the temperature at several different densities. If one finds pressures p1, p2, p3, at
temperatures T1, T2, T3 for specific volume v, and pressures  at the same

temperatures for specific volume v′, then the pressure must satisfy the relation

if the gas is to satisfy van der Waals’ equation with sufficient accuracy.
If  and  are the pressures corresponding to temperatures T1 and T2 at a specific

volume v′, then one can write Equation (26) as follows:

If one defines T1 to be the temperature of melting ice, and T2 to be the temperature of
boiling water, and sets T2 – T1 = 100, then all the other quantities in the last two
expressions in this equation are accessible to observation, and one can therefore calculate
T1. Moreover, one can determine the value of the constant a for hydrogen.

Since one now knows the absolute temperature, he can immediately determine the
values of r and b for hydrogen, according to the method given earlier. Here the following
remarks must be made: when we consider the van der Waals equation (22) as simply a
given fact of experience, then we must write on its right-hand side, instead of T, some
function f(T) of Kelvin’s absolute temperature. The absolute temperature itself would not
then be determinable without some empirical information about specific heats or Joule-
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Thomson cooling, etc.10

In order to test the relation between p and v at constant temperature T—i.e., the pressure
coefficient of density—we write the van der Waals equation in the form

As long as v is large compared to b, and also to a/rT, Boyle’s law is nearly valid; pv is
almost constant at constant temperature. The gas is far from the region of liquefaction. As
long as a>rbT, the correction to Boyle’s law resulting from the van der Waals cohesion
force will dominate that due to the finite extension of the molecular cores, and pv = p/ρ will
increase with increasing volume. The pressure coefficient of density, dρ/dp, decreases with
decreasing pressure. For any gas at very high temperatures, a<rbT, hence the latter
correction must dominate the former, and therefor pv will decrease with increasing v. This
is already the case for hydrogen at ordinary temperatures.

In addition, the differential quotient of specific volume, v, at constant pressure with
respect to temperature, which we shall call the temperature coefficient of the volume, is, as
our formula shows, not constant.

§11. Critical temperature, critical pressure, and critical volume.

We shall now examine more closely the relation between pressure, temperature, and
specific volume represented by Equation (22). We see that the pressure is infinite when v =
b, for any temperature. For a substance that exactly conforms to van der Waals’
assumption, we saw that the pressure would not actually be infinite until the volume
decreases to about . We shall not pursue this matter further, since the object of our

present investigations is not the original assumptions of van der Waals but rather Equation
(22), insofar as that equation is approximately correct for large volumes and gives at least a
qualitatively correct expression for small volumes.

The volume v = b is therefore impossible; and likewise any smaller volume, since for a
stable equilibrium state the pressure must increase as the volume decreases, and it would
therefore have to be even greater than infinity.

We now seek the isotherms—i.e., the relation between pressure and volume at constant
temperature. Since T is constant, it follows from Equation (22) that
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Here the right-hand side is negative for the smallest possible values of v (those which
are only slightly larger than b) and likewise for very large values of v. Furthermore, it
changes in such a way that its derivative with respect to v is continuous for all values of v
considered. The right-hand side of (27) can vanish only for

In this equation, the expression on the right side has a very small positive value for volumes
slightly greater than b, and also for very large volumes. It is continuous in between, and has
a single maximum value: Tk = 8a/27rb for v = 3b. Hence when T>Tk, dp/dv cannot vanish,
and hence cannot become positive; the isotherm falls off with increasing v. When T < Tk,
dp/dv goes through zero to a negative value, and then again goes through zero to a positive
value. The ordinate of the isotherm has a minimum and a maximum. For T = Tk, dp/dv is
always negative; it is only once equal to zero, when v = 3b. Hence p decreases with
increasing v, but at this point only by an amount that is an infinitesimal of higher order than
the infinitesimal increase in volume. This point is called the critical point. We give the
values of v, p, and T corresponding to this point the index k and call them the critical
values,* thus:

For the corresponding value of p, the critical pressure, one finds from Equation (22):

vk, Tk and pk are therefore three real positive values. The former is larger than the minimum
volume b of the substance. From Equation (27) one finds (with T constant) :

and one easily sees that for the critical values, d2p/dv2 vanishes, as was to be expected,
since we have seen that for the critical values the isotherm has a completely regular
maximum-minimum [point of inflection].

In addition I shall describe an algebraic property of the critical quantities. If we bring all
the quantities to the same side of the equality sign in Equation (22), eliminate the fractions,
and collect powers of v, then this equation becomes
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For given values of p and T, this is a third-degree equation for v. We shall denote its left-
hand side by f(v). If not only f(v) but also f′(v) and f″(v) vanish for a particular set of values
of p, T, and v, then this third-degree equation has three equal roots for v; here f′(v) is the
first derivative, and f″(v) the second derivative of f(v) at constant p and T.

If one keeps only T constant, then it follows from Equation (30) that

The quantities dp/dv and d2p/dv2 are the same ones mentioned above, which we have
proved vanish for the critical values of p, v, and T. For these values, therefore, not only f(v)
but also f′(v) and f″(v) vanish—i.e., Equation (30) has three equal roots for v, if one
substitutes the critical values for p and T. Now the coefficient of v2, taken negative and
divided by p, is equal to the sum of the roots. The coefficient of the term that does not
contain v, likewise taken negative and divided by p, is equal to the product of the roots.
Finally, the coefficient of v, taken positive and divided by p, is equal to the sum of the
products of each pair of roots.* Hence one finds for the values pk and Tk (for which Eq.
[30] has three equal roots, whose common value we denote by vk) the three equations

from which follow the values of vk, pk, and Tk already found. For those values of the
temperature for which the ordinate of the isotherm has no minimum, there corresponds to
each value of p only one value of v, so that Equation (30) has only one real root, which is
greater than b; however, for any temperature for which the ordinate of the isotherm has a
minimum p1 and a maximum p2, Equation (30) has three real roots for v, greater than b,
when p lies between p1 and p2, as one can perceive at once from the form of the isotherms.

Up to now we have made no particular stipulation about the units of pressure and
volume. The formula will become especially simple if we choose the critical volume vk and
the critical pressure pk of each substance as the units of volume and pressure, in discussing
the properties of that substance. We shall also ignore the empirical unit of temperature
derived from the freezing and boiling points of water, and choose for each gas its absolute
critical temperature Tk as the unit of absolute temperature. We therefore set:
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Thus we measure the volume by ω (the ratio of the volume to the critical volume) and
likewise the pressure and temperature by π and τ.

These three quantities ω, π, and τ we call the reduced volume, reduced pressure, and
reduced temperature, or—when there is no question of comparison with another system of
units—simply the volume, pressure, and temperature of the substance.

We have of course introduced different units for each gas—which we shall call the van
der Waals units—but this disadvantage is outweighed by the advantage that the equations
become much simpler. Since we can calculate a, b, and r, and hence also vk, pk, and Tk for
each gas from its empirical properties, we can transform from van der Waals’ units to any
other units whenever we wish. If in Equation (22) we replace p, v, and T by π, ω, and τ,
then we obtain (after dividing through by a factor that can never be zero)

All the constants characterizing the gas have dropped out of this equation. If one bases
measurements on the van der Waals units, then he obtains the same equation of state for all
gases. Van der Waals believes that this equation is valid up to the liquefaction of the gas,
and indeed even into the liquid region. Only the values of the critical volume, pressure, and
temperature depend on the nature of the particular substance; the numbers that express the
actual volume, pressure, and temperature as multiples of the critical values satisfy the same
equation for all substances. In other words, the same equation relates the reduced volume,
reduced pressure, and reduced temperature for all substances.

Obviously such a broad general relation is unlikely to be exactly correct; nevertheless,
the fact that one can obtain from it an essentially correct description of actual phenomena is
very remarkable.

§12. Geometric discussion of the isotherms.

In order to gain some insight into the relation represented by Equation (32), we shall
draw on the positive abscissa axis ΟΩ from the origin of coördinates O the reduced volume
ω as the abscissa OM. Over the point M we erect the ordinate MP, representing the reduced
pressure π, parallel to the ordinate axis OП. Then each state of the gas, characterized by its
pressure and volume, is represented by a point P in the plane. The corresponding reduced
temperature is the value of τ that would be obtained from Equation (32) for the assumed
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values of ω and π. If one assumes than van der Waals’ equation is correct, the reduced
pressure would become infinite at  for any positive τ. As we pointed out earlier,

one can compress the substance to the volume  only by exerting an infinite

pressure, and since the pressure must increase as the volume decreases, the smaller volumes
for which the formula gives negative pressures are impossible.

We must therefore limit our considerations to abscissas .

By an isotherm we mean the locus of all points representing those states of our
substance for which the temperature has a fixed value. The equation of an isotherm is any
relation between π and ω that follows from Equation (32) if we substitute any arbitrary
constant value for τ. We obtain the set of all possible isotherms by letting τ take all possible
values from a very small positive value to + ∞. From Equation (32) it follows that for each
τ, π has a very large positive value when ω is slightly larger than . On the other hand, π

has a very small positive value when ω is very large. Moreover, at constant τ it follows that

Since this expression is finite for  < ω < ∞, all isotherms between  and ω = ∞

must be continuous curves. As ω approaches the limit , they approach asymptotically the

line AB, which is parallel to the ordinate axis at a distance  from it, on the side of positive

ordinates. As ω becomes very large, the isotherms likewise approach the abscissa axis on
the side of positive ordinates. In the former case π has a very large positive value, while
dπ/dω has a very large negative value; in the latter case, π is small and positive, while
dπ/dω is small and negative. All isotherms have two branches, going to infinity on the
positive side of the abscissa axis. On the other hand, it is possible for π to be negative
between  and ω = ∞; the curve representing Equation (32) for constant τ can dip

down below the abscissa axis.
In order to form a picture of this behavior, we note first that, as a glance at Equation (32)

shows, smaller values of τ will always correspond to smaller values of π, when ω is the
same. Therefore each isotherm must lie below the isotherms corresponding to higher
temperatures, so that for each abscissa ω the isotherm at the higher temperature has a larger
ordinate than the isotherm at the lower temperature; two isotherms can never intersect.

We now discuss the expression for dπ/dω, Equation (33). It is a continuous function of
ω for ω between  and + ∞. For very large values of ω, and also when ω is slightly larger

than , the second term dominates, so that dπ/dω is negative, as we mentioned before,

dπ/dω cannot become positive within this interval without going through zero. The latter
event can happen only for
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according to Equation (33). Not only when ω is slightly larger than  but also when ω is

very large, the right hand side of this equation has a very small positive value. Its value
changes continuously with ω in this interval; as one can find by well-known methods, it has
a single maximum value, 1, for ω = 1. Thus there are three cases to be distinguished:

1. For τ > l, Equation (34) cannot be satisfied, and dπ/dω cannot vanish but must be
negative in the entire region considered, so that the isotherm (marked 0 in Fig. 1) sinks
continuously toward the abscissa axis as ω increases.

2. Let τ = 1, so that the isotherm corresponds exactly to the critical temperature. Then,
according to what we have said about the right-hand side of Equation (34), dπ/dω vanishes
only for ω = 1. According to Equation (32), then π = 1 also. The substance therefore has its
critical temperature, volume, and pressure. This state (the critical state) is represented by the
point K of Figure 1, whose abscissa and ordinate are both equal to 1. On taking the
derivatives at constant τ, it follows from Equation (33) that:

FIG. 1.
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For the critical state we therefore have also d2π/dω2 = 0 (as was to be expected since we
know that d2p/dv2 vanishes for the critical state). However, d3p/dω3 is negative. The
isotherm therefore has an inflection point. Its tangent is parallel to the abscissa axis, but the
ordinate decreases with increasing ω on both sides. The same isotherm has a second point
of inflection at ω = 1.87; it therefore turns its concave side downwards between this value
and the abscissa 1, but for other abscissas it turns its convex side downwards. Curve 1 in
Figure 1 represents the critical isotherm.

The two inflection points first appear for isotherms corresponding to a reduced
temperature τ = 37 · 2–11 = 1.06787, where they both occur at .11 For smaller τ

they separate from each other. For larger τ, the isotherms fall to the positive abscissa axis
without inflection points, and dπ/dω decreases steadily.

3. Suppose the temperature is below the critical temperature: 0 < τ < 1. Then, as one
sees from Equation (33), dπ/dω is positive for ω = 1, while for large values of ω and for
values near  it is negative. Hence dπ/dω must vanish for a value of ω greater than 1, and

also for a value between 1 and . For none of these values can d2π/dω2 also vanish, since

from Equation (35) it follows that dπ/dω and d2π/dω2 can simultaneously vanish only
when ω = 1. This follows also from the fact that Equation (30), which differs from the
present equation only in the choice of units, must then have three equal roots for v, and as
we saw this is possible only at the critical pressure, volume, and temperature. For the value
of ω between  and 1, at which dπ/dω changes from a negative to a positive value as ω

increases, and d2π/dω2 is positive according to Equation (35), π therefore has a minimum,
while for the other value of ω it has a maximum. dπ/dω cannot vanish for a third value of
ω, since Equation (34), which gives the condition for this, can be written in the form

The polynomial is negative for ω = 0 and positive for , so that its third root must lie

somewhere between these two values of ω, and hence in the interval that we do not
consider. For all isotherms corresponding to temperatures below the critical temperature,
the ordinate π has a minimum for one abscissa ω between  and 1, and a maximum for one

abscissa greater than 1. Curve 3, Figure 1, shows its general form.

§13. Special cases.

We now consider two special cases of the third case.

3a. Let τ be slightly smaller than 1, say 1 – ∊. The two ordinates for which π has an
extremal value are then close to 1, and we can write them in the form l + ξ. Substitution of

τ = 1 – ∊ and ω = 1 + ξ into Equation (36) yields (retaining only terms of the first order of

magnitude) , while Equation (32) yields π = 1 – 4∊. Therefore τ and π

differ from 1 by an infinitesimal of order ∊, while the difference between ω and 1 is an
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infinitesimal of order . The isotherms just below the critical isotherm are therefore

almost horizontal in the neighborhood of the critical point K, as would also follow from the
fact that they have both a minimum and a maximum near this point. The locus of the
maxima and minima of all the isotherms (the dotted curve in Fig. 1) therefore has its
maximum at K where it touches the critical point.

3b. Let τ be very small, so that the temperature is near absolute zero. Then one easily
finds, from Equation (36), the following value for the root near :

The other root in which we are interested is very large, and one finds for it

The minimum of π therefore corresponds to an abscissa slightly greater than .

The value of this smallest ordinate is

The isotherm in question (5a in Fig. 1) thus sinks infinitely close to the downwards
extension of the line BA, to the ordinate –27 below the abscissa axis. It comes back again
(Curve 5b, Fig. 1, where the branch going upwards is shown increasing much too steeply
at first, and is drawn too close to the origin of coördinates) and cuts the abscissa axis once
again. If we denote by ω3 the abscissa for which it cuts the abscissa axis again, then:

The transformation to the latter equation is permissible since we are not interested in values
of ω3 lying near ; indeed we already know that there is such a solution of the equation,

corresponding to the intersection of the descending branch 5a with the abscissa axis.
Instead we now want the solution for which ω3 is large, and we see that in this case ω3 will
be approximately 9/8τ. Thus for very low temperatures, the ordinates of the curve 5b do
not become positive until the volume is very large. At ω = ω2 = 9/4τ (in other words, for an
abscissa twice as far from the origin) this ordinate attains its maximum, which is only a very
small value: π2 = 16τ2/27. After this, the curve again approaches the abscissa axis.

Between this extreme isotherm and the isotherm 3 of Figure 1, which has only positive
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values, there are of course numerous isotherms that go under the abscissa axis; curve 4 of
Figure 1 is an example. One can understand the situation more clearly by drawing a third
coördinate axis perpendicular to OΩ and OП. In the various planes parallel to the plane
ΩΟΠ one constructs the various isotherms corresponding to a sequence of increasing
temperatures, and one models in gypsum the surface formed of all these isotherms.

* J. D. van der Waals, Over de continuiteit van den gas- en vloeistoftoestand (Dissertation, Leiden,
1873); Amsterdam Verslagen [2] 10, 321, 337 (1876), and many other papers (see the Royal Society
Catalogue of Scientific Papers for a list up to 1900).

1 Gay-Lussac, Mem. soc. d’Arcueil 1, 180 (1807); cf. Appendix to Mach’s Prinzipien der
Wärmelehre.

2 Joule and Thomson, Phil. Mag. [3] 26, 369 (1845) ; Joule’s Scientific Papers, 171; German
translation by Sprengel. [Boltzmann is incorrect in listing Thomson as a co-author of this paper.—TR.]

3 Joule and Thomson, Phil. Trans. 144, 321 (1854); 152, 579 (1862).
* See the remarks by van der Waals on this point, mentioned at the end of §61.
4 This formula can also be derived in a more complicated way. We call the end-surface of the

cylinder γ that faces the wall of the container its base. A center of one of the covering spheres can
naturally lie only on the side of the base away from the wall of the container. We now construct on this
side two planes parallel to the base of γ, both of surface area Ω, at distances ξ and ξ+ dξ from the base.
The space between these two planes will be called the cylinder γ1 its volume is γ1 = Ωdξ. The number of
covering-spheres whose centers lie in γ at any given time is:

Since the term we are now calculating is only a small correction, we can write this as

Each covering sphere cuts a circle of area π(σ2 – ξ2), hence a space of volume π(σ2 – ξ2)dh from the
cylinder γ. If we multiply this by the number of covering spheres, nΩdξ/V, and integrate over all
possible values of ξ—i.e., over ξ from 0 to σ—then we obtain for the total space cut out by the covering
spheres from the cylinder γ—and thus for the space not available for the center of the specified
molecule—the value:

in agreement with the formula in the text.
5 Cf. Part I, Eqs. (38) and (43).
6 Then we have the relation  between the quantities appearing in Eq. (19), and the quantity

ω introduced in Eq. (32) would be equal to .

* The recent work of Alder and Wainwright (J. Chem. Phys. 27, 1208 (1957), 31, 459 (1959); Phys.
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Rev. 127, 359 (1962)) on phase transitions in small systems of elastic spheres throws doubt on the
validity of this assertion. See also Brush, Am. J. Phys. 29, 603 (1961).

7 The van der Waals cohesion force will of course produce a variation in density near the wall of the
container, which we neglect in the text, following van der Waals. We would still be led to the same
formula if we assumed only that when the pressure or temperature changes, the densities at different
distances from the boundary surface change in the same proportion. Then there would appear in Eqs.
(15) and (16) a factor F independent of ρ and T, and we could set FC equal to f(v), instead of C = f(v) as
in the text.

Furthermore, the calculation of the collision number performed in the text is certainly correct when
the cohesion force is not present. When it is present, however, one might doubt whether it is permissible
to leave this calculation unchanged and simply add the cohesion force to the external pressure, as we
have actually done, following van der Waals, in §4. Finally, we have considered the wall of the container
to be impenetrable, without any adhesive force with respect to the substance within.

In chap, v, I will give a derivation of van der Waals’ formula against which none of these objections
can be raised.

8 This expression still needs to be corrected if the wall is curved. Indeed it is by this correction that
van der Waals explains capillary phenomena in a manner similar to that of Laplace and Poisson (cf.
§23). According to van der Waals, therefore, the pressure of a gas is not absolutely independent of the
curvature of the wall. Nevertheless, this correction becomes negligible when the sphere of action of the
cohesion force becomes larger compared to the diameter of a molecule.

* One way to obtain a more accurate function is to calculate the available space taking account of the
possible configurations of groups of two, three, or more other spheres, to obtain what are now called the
third, fourth, and higher virial coefficients. Boltzmann discusses this approach in chap, v, but does not
claim that the exact high-density equation of state can be obtained in this way. Van der Waals himself
later adopted the position that the observed variation of b with density cannot be explained in this way,
but is rather due to an actual compression of the molecule itself: see Boltzmann-Festschrift, p. 305
(1904); Amsterdam Verslagen [4] 21, 800, 1074 (1912–1913).

9 For all temperatures that are not too low, the properties of air satisfy van der Waals’ assumptions
with greater accuracy. One can therefore also use air (which is more convenient for experiments) instead
of hydrogen.

10 Boltzmann, Mun. Ber. 23, 321 (1894); Ann. Phys. [3] 53, 948 (1894).
* German kritische = critical, hence the subscript “k.”
* For proof of these three statements see any algebra textbook.
11 d2π/dω2 vanishes for τ = (3ω – 1)3/8ω4. The expression on the right side is positive and

vanishingly small for very large values of ω as well as for values slightly larger than . It is continuous

between these limits and has a single maximum 37 · 2–11 for . For τ > 37 · 2–11, therefore, d2π/dω2

cannot vanish.
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CHAPTER II

Physical discussion of the van der Waals’ theory.

§14. Stable and unstable states.

Let us now consider the physical meaning of the diagrams in Figure 1. Each point P of
the quadrant bounded by the two infinite lines AΩ, and AB represents a certain volume and
a certain pressure, and thus a certain state of the substance, since Equation (32) provides the
corresponding pressure. We call this state simply the state P. Each curve PQ lying in this
quadrant (which, like the point P, is not shown in the figure) therefore represents a
variation of state, in particular the sequence of different states corresponding to different
points on the curve. We say that the substance experiences the state variation PQ as it
passes through all the states represented by the different points on this curve.

The isotherm 0 in Figure 1 represents, for example, a compression of the substance at a
constant temperature τ0 > l, starting from a very large volume. The pressure increases
continuously as the volume decreases, and for large volumes it is nearly inversely
proportional to the volume, since then the quantities b and a/v2 in Equation (22) are
relatively very small. The substance then behaves almost like an ideal gas. On the other
hand, if ω is slightly larger than 1/3, then the volume is nearly equal to 1/3 of the critical
volume; then the isotherm rises very rapidly and approaches the line AB asymptotically. In
this case, a very small decrease in volume results in a very large increase in pressure; the
substance is almost incompressible, and behaves like a liquid. The transformation from the
gaseous to the liquid state takes place very gradually; no break in the continuity of the
transition is ever noticeable. This is also true for the isotherm 1 corresponding to the critical
temperature, in Figure 1, except that at the critical point the tangent of the isotherm is
parallel to the abscissa axis, so that an infinitesimal isothermal change in volume
corresponds then to a higher order infinitesimal change in pressure.

FIG. 2.
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Now suppose that we compress the substance at a temperature below the critical
temperature. Then we follow an isotherm for which τ < l, for example isotherm 3 in Figure
1, which corresponds to the temperature τ3. We draw this isotherm again in Figure 2, and
denote by C and D the points whose ordinates CC1 and DD1 have the minimum and
maximum values, respectively. The lines drawn from C and D parallel to the abscissa axis
intersect the isotherm again at E and F, respectively. Let the projections of the latter two
points on the abscissa axis be E1 and F1, respectively. As long as the pressure is less than
EE1, we find ourselves on the branch LE of the isotherm. At a given temperature, only one
state of the substance is possible for each pressure, and Boyle’s law is obeyed with greater
and greater accuracy as the pressure decreases. On the other hand, as soon as the pressure
becomes equal to EE1 two completely different states (phases of the substance) are possible
at the same temperature and pressure, represented by the two points E and C on the
isotherm, which have equal ordinates. The phase represented by the point E (or simply, the
phase E) corresponds to a larger specific volume, hence to a smaller density, while the
phase C corresponds to a larger density. The former phase is the vapor, the latter the liquid.
If the isotherm corresponds to a temperature that is only slightly below the critical
temperature, then the two points C and E will be very close together, and the substance will
have only slightly different properties in these two states. Far below the critical temperature,
however, the liquid and vapor phases are completely different.

As soon as the pressure becomes equal to DD1, there are again two points D and F on
the isotherm, each of which represents a possible phase at that temperature and pressure.
However, if the pressure is between EE1 and DD1 say GG1, then we have three points on
the isotherm: G, H, and J, to which this pressure corresponds. One easity convinces himself
that the state corresponding to the middle point H is unstable.

Suppose the substance is in a cylindrical container closed with an easily displaceable
piston, and it is initially in the state H, so that at equilibrium the pressure HH1 is exerted in
the piston. Now if we push the piston in a little bit, without changing the external pressure,
then the volume will decrease somewhat. We assume that the substance is surrounded by a
good heat conductor, so that its temperature remains constantly equal to that of its
surroundings. Then, as the nature of the isotherm near H shows, the pressure of the
substance on the piston will decrease; the piston will therefore be pushed in by the external
pressure until the volume becomes equal to OC1. Since the same thing would happen for
an infinitesimal isothermal expansion, the least motion of the piston will cause the volume
to change by a finite amount from its original value. Hence for any pressure between EE1
and DD1 only two stable phases are possible at the temperature τ3 corresponding to
isotherm 3.

§15. Undercooling. Delayed evaporation.

What would happen if the critical volume of unit mass of the substance were between
OC1 and OD1 at temperature τ3? Such a volume does not correspond to any stable state of
the substance at temperature τ3, yet it must be a possible volume since there must be some
kind of transition between the smaller volume of the liquid phase and the larger volume of
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the vapor. This paradox is resolved by the possibility that one part of the substance may be
in the liquid phase, while simultaneously another part is in the vapor phase, so that the
points representing the two coexisting phases must lie on the same isotherm if there is to be
thermal and mechanical equilibrium, and must have the same distance from the abscissa
axis, since the temperature and pressure must be equal for the two phases. Under the
influence of gravity, the heavier liquid phase will of course collect at the bottom of the
container and the vapor will stay on top.

Coexistence of the liquid and vapor phases can also occur if the volume is between OF1
and OC1, or between OD1 and OE1. If the substance first undergoes the state variation LE
and then its volume decreases still further isothermally, then there are two possibilities,
according to our present considerations. The further state variation can be represented by
the curve ED, so that all of the substance is in the same state at every instant. However, at
any moment it can happen that, while one part of the substance continues along the curve
DE, another part can go from a state G over to a state J having the same temperature and
pressure. Further decrease in the volume can then cause a larger amount of the substance to
pass from G to J, instead of continuing along the curve GD. In fact, if there is no dust or
other substance present that can initiate condensation, a vapor can be compressed without
condensation, even though under other circumstances—especially in the presence of a
small amount of the same substance in the liquid state—it would already have started to
condense. Since this state is more often reached by cooling than by compression, it is called
the undercooled vapor. When condensation finally occurs, a larger amount of it suddenly
liquefies irreversibly (i.e., the liquid-vapor mixture thereby produced cannot be transformed
back into undercooled vapor in such a way that it goes through the same sequence of states
in reverse).

The same thing happens of course with evaporation. The substance first passes through
the states on the curve MF, so that it is initially a highly compressed liquid. When the
volume has increased isothermally to the state F, it can continue along the curve FJC; or, at
any point, the coexistence of two phases can begin, so that from then on a part of the
substance is transformed into the vapor state. On further expansion, one part of the
substance will remain at the state J on the branch FC, while the other will go over to the
state G, which has the same height, on the curve DE. Evaporation may be delayed when
the liquid and the wall of the container are free of air. However, on further expansion or
heating, a large amount will suddenly evaporate (evaporation- or boiling-delay). The latter
process is likewise not reversible.

If we find ourselves on an isotherm which, like isotherm 4 in Figure 1, dips below the
abscissa axis, then the pressure may even become negative. Mercury extracted from a
barometer tube provides a good example of this. If one gradually draws the mercury out of
a barometer tube (which is sealed at the top) then the pressure at the upper end continually
decreases; the mercury itself goes through the sequence of states MFJC in Figure 2. The
mercury column still does not break apart, even after it has become higher than the
barometer position, which shows that the point C, where the ordinate of the isotherm has its
minimum, lies below the abscissa axis, like isotherm 4 in Figure 1. Finally the column
breaks and the mercury quickly evaporates; of course this is barely noticeable because of
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the small tension of mercury vapor. However, if distilled water is placed in the barometer
tube above the mercury, then the copious evolution of vapor in the water is visible to the
eye.

A negative pressure can also occur in distilled water at room temperature. Hence for
water the isotherm corresponding to room temperature also dips below the abscissa axis,
like isotherm 4 in Figure 1. On the other hand, for ether the isotherms do not go below the
abscissa axis for easily observable temperatures. If one had put ether above the mercury in
the experiment described above, then he could make the mercury column so long that the
pressure in the ether would be smaller than the saturation pressure of ether vapor, though
not so low that it would be negative.

In processes that one usually calls boiling-delay (superheating), the substance is in
contact with its own vapor. The state is not then an equilibrium state, but on the contrary
violent evaporation takes place on the upper surface of the liquid; the temperature is equal
to the boiling temperature corresponding to the pressure of the vapor standing over it. It is
hotter in the interior, where the same state as in evaporation-delay is found, and this state
can be maintained only by continuous evaporation at the surface and heat conduction
through the interior.

§16. Stable coexistence of both phases.

It appears that our description of the nature of state variations is not uniquely
determined. However, it is to be expected that a unique determination can be achieved if
we exclude irreversible transitions, such as undercooling and delayed evaporation.

For this purpose we consider a certain sample q of our substance, whose mass shall be
equal to 1. It is initially in the state L (Fig. 2), and it will be compressed isothermally. As
soon as it reaches E, it will from time to time be brought into contact with liquid at the same
temperature and pressure. Initially, when q is still near the state E, this liquid will be in the
state of delayed evaporation. It will explosively evaporate into q. Nevertheless we shall
restore the previous state of q, compress it again a little bit, and again bring it into contact
with the liquid at the same temperature and pressure. We repeat this process until eventually
we come to a state in which, when q is brought into contact with the liquid at the same
temperature and pressure, none of the liquid evaporates into q, and none of q condenses;
thus liquid and vapor are in equilibrium. At this temperature the liquid is in the state J in
Figure 2, and the vapor is in the state G.

This equilibrium state cannot depend on the mixing ratio of the two phases, but only on
the state at the surface of contact, for the molecules at the surface of contact are the only
ones that are in equilibrium with the other phase. However, the size of the surface of
contact cannot be important, since each part is subjected to similar conditions.1 Hence any
arbitrary quantity of the substance in phase J can be in equilibrium with any arbitrary
quantity of the same substance in phase G, as soon as equilibrium between the two phases
is possible at all.

The state G then forms the boundary between the normal and the undercooled vapor,
while J forms the boundary between the normal and superheated liquid.
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If one compresses q, excluding bodies that can effect condensation, then it can pass
through states along the curve GD. In each such state, however, if it is brought into contact
with the liquid at the same temperature and pressure, it will suddenly condense in an
irreversible way. But if it is compressed while in contact with the liquid, starting from the
state G, then it will condense more and more until it is completely transformed into the
liquid state, and this process is reversible, since the substance can be evaporated again in
the same way, if one increases the volume at constant temperature.

The positions of the points G and J, which form the boundary between the normal and
the superheated or undercooled states for a given isotherm, were found by Maxwell in the
following way, by introducing a hypothesis.2 As is well known, for any reversible cyclic
process one has ∫dQ/T = 0, where dQ is the added heat and T the absolute temperature. The
heat is to be measured in mechanical units. Maxwell assumes that this equation still remains
valid even when unstable states intervene between the initial and final states, for example
those states represented by the branch CHD in Figure 2.

If the cyclic process takes place at constant temperature, then the factor 1/T can be taken
outside the integral sign, and one is left with ∫dQ = 0. dQ is equal to the excess dJ of the
internal energy of the substance over the externally performed work. The latter is equal to
pdv when, as assumed here, the external force is just the normal pressure force whose
intensity on unit surface is equal to p for all surface elements.

Since ∫dJ vanishes for any cyclic process, one has therefore ∫pdv = 0, for which one can
also write ∫πdω = 0, since the choice of units is completely arbitrary. We now consider unit
mass of the substance. It undergoes the following cyclic process at constant temperature.
Initially all its parts are in the phase J, then it is transformed bit by bit into phase G. The
pressure remains constant and equal to JJ1, but the volume increases from OJ1 to OG1.
The external work thereby performed, ∫πdω, is equal to the product of the pressure and the
volume increase, hence it is equal to the area of the rectangle JJ1G1G = R. Now we
imagine that we return to the original state by following the curve GDHCJ. The volume
will decrease, so that external work is done on the substance. This work is equal to the
negative of the integral ∫πdω taken along the entire state variation. Since ω is the abscissa
and π the ordinate of the curve, the integral is equal to the area J1JCHDGG1J1 = Φ, which
is bounded above by the curve JCHDG, below by the abscissa axis, and on the right and
left by the two ordinates JJ1 and GG1. At the end of the process the substance returns to its
original state K; ∫πdω extended over the entire state variation is therefore equal to the
difference R – Φ, which is equal to the difference JCH – HDG of the two shaded areas in
Figure 2. If one makes the Maxwell hypothesis that the second law must be valid even
though part of the imaginary path goes through unstable states, then he finds the following
result: the line GHJ, which connects the two phases G and J, which are in contact at
equilibrium (the two-phase line) must be drawn in such a way that the two shaded areas in
Figure 2 turn out to be equal. If this condition is not satisfied, then the two phases G and J
cannot be in equilibrium, even though they lie on the same isotherm and are at the same
distance from the abscissa axis. (Concerning the equation that expresses this condition, cf.
§60.)
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§17. Geometric representation of the states in which two phases coexist.

If in the future we always mean by GHJ a line parallel to the abscissa axis, for which
the two shaded areas are equal, then the results concerning the behavior of a substance
under isothermal compression at a temperature τ3 can be expressed as follows. As long as
the volume is greater than OE1 it is in the vapor state. If the volume is between OE1 and
OG1, the liquid phase still cannot coexist with the vapor phase. Condensation can occur
only when a salt, or rather a body whose particles attract the particles of the substance more
strongly than they attract each other, is present. The liquid thereby formed will dissolve the
salt or cover the body, and, if an infinite amount is not present, the vapor pressure drops as
this process continues (premature condensation). If no such body is present, the substance
will remain gaseous until its volume becomes equal to OG1. Here, if it is brought into
contact with the least amount of the same substance in the liquid state, further isothermal
compression causes condensation, and the vapor pressure does not increase until all of the
substance has liquefied, since vapor of a higher pressure cannot exist over the liquid phase
(normal condensation). If no body is present to facilitate normal condensation, then the
substance can be still further compressed without condensation, so that its states are
represented by the curved line GD (under-cooled vapor). However, if condensation sets in
—which must happen in any case if the volume becomes less than OD1—then a finite
amount of the substance suddenly liquefies, and the pressure drops to the value GG1 if the
temperature is held constant. The substance behaves in a similar way if it is initially liquid
and is gradually expanded; instead of bringing a small amount of liquid in contact with the
vapor, one now creates in the liquid an empty or vapor-filled cavity.

We must omit from each isotherm the section CHD, since it corresponds to states that
cannot be physically realized. Moreover, we shall consider neither delayed evaporation
(superheating) nor undercooled or prematurely condensed vapor, but only normal
condensation, which represents the directly reversible transition from the liquid to the vapor
state. We then have to retain only the parts MJ and GL for each isotherm, in Figure 2. In
the intermediate region one part of the substance will be liquid, in a state represented by the
point J, while the other will be gaseous, in the state (?, both parts being at the same
temperature and pressure. Each such intermediate state can be represented by the two
points G and J simultaneously, each point having a weight corresponding to the fraction of
the substance in that state. It is preferable to represent these states by different points on the
line JG (the two-phase line). The ordinate NN1 (Fig. 2) of an arbitrary point N on this line
represents the pressure, which is the same for both coexisting phases. The abscissa ON1
should be chosen so that it is equal to the total volume of the substance, i.e., the sum of the
liquid and gaseous parts. The larger the liquid fraction, the closer to J will lie the point
representing the state, and conversely. If we denote by x the mass of the liquid, and by 1 –
x the mass of the vapor, in the state N, then x has the following property: since OJ1 is the
specific volume of the liquid, and OG1 that of the vapor, then x · OJ1 is the volume of the
liquid and (1 – x) · OG1 that of the gaseous part of the state represented by N. Since the
sum of the volumes is equal to the abscissa ON1, one has the equation
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from which it follows that:

If one imagines that the mass x of the liquid is concentrated at the point J, and that of the
vapor, 1 – x, at the point G, then N is the center of gravity of the system formed from the
two masses. The rule that the reciprocal of the abscissa always represents the density does
not of course hold for points on the two-phase line. On the contrary, if ρ1 is the density of
the liquid, and ρ2 that of the gas, then the abscissa is

If we represent the states where liquid and gas coexist in this way, and ignore the
undercooled vapor as well as the superheated liquid, then the isotherms will have the form
shown in Figure 3 instead of that in Figure 1. The isotherm labeled 3 in Figures 1 and 2 is
likewise marked as 3 in Figure 3. The part JG is a straight line, and a point N on this line
represents a state in which a part x of the substance is liquid, while the remainder 1 – x is
gaseous, and the two parts are both at a pressure NN1, while the sum of their volumes is
ON1 · x and 1 – x are then given by Equations (37). Also, for those isotherms for which the
part representing delayed evaporation sinks below the abscissa axis, there is a line JG,
always lying above the abscissa axis, for which the two shaded areas in Figure 2 are equal;
for the area between the abscissa axis and the part of the isotherm that goes below the axis
is always finite, while the area between the part of the isotherm corresponding to larger
abscissas and the abscissa axis becomes logarithmically infinite as the abscissa goes to
infinity. Hence equating the two shaded areas in Figure 2 always leads to a two-phase line
lying above the abscissa axis.
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FIG. 3.

§18. Definition of the concepts gas, vapor, and liquid.

We may denote the region lying above the critical isotherm 1, shaded horizontally in
Figure 3, as the gas region. The points in this region that have large abscissas will in fact
represent states close to the ideal gas state. The smaller abscissas, corresponding to points
lying near the line AB, represent of course states in which the substance behaves like a
liquid, but since these states can be transformed isothermally without discontinuity into
states that are undoubtedly gaseous, we shall count them as belonging to the gas region. An
example is provided by compressed air at ordinary temperatures.

The region filled by two-phase lines will be called the two-phase region; it is shaded
vertically in Figure 3. Since the dotted curve of Figure 1, which is the geometrical locus of
all maxima and minima of the isotherms, lies entirely within the two phase region in any
case, the curve bounding this region has a smaller curvature than the dotted curve at the
critical point, and in any case it has no cusp.

Beneath the gas region and to the right of the two-phase region lies the vapor region, in
which the substance behaves like a gas; on the left of the two-phase region is the liquid
region (bounded by the line AB) in which we call the substance a “condensable fluid.”
These two last-named regions are shaded with slanted lines in Figure 3. They are
characterized by the property that no state of one can be transformed isothermally into a
state of the other without condensation.

A typical isotherm going through these regions is curve 3 of Figure 3. If one starts from
the low-density region, he can make the following statements about the properties of the
substance under isothermal compression : in the vapor region, as long as the volume is
large, Boyle’s law is obeyed approximately. If one decreases the volume, deviations from
this law become more and more appreciable. As soon as one reaches the two-phase region,
the pressure remains constant on further compression, and an increasing proportion of the
substance becomes liquid. After all the substance has been liquefied, the pressure increases
rapidly on further compression.

Two extreme cases are illustrated by isotherms 2 and 5. The first lies near the critical
isotherm. Here the liquid phase differs but little from the vapor. Condensation lasts only a
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short time, so that it has only the character of a temporary irregularity in the compressibility.
Isotherm 5, on the other hand, corresponds to a temperature far below the critical; in
general the vapor exerts only a vanishingly small pressure, and indeed it is hardly
noticeable at all. As soon as the pressure reaches an appreciable value, and no other
substance is mixed with the one considered, then it can exist only as a liquid, which has a
definite volume that can be altered only slightly by pressure. The compressibility of the
liquid at temperatures far below the critical temperature is therefore very small. Of course,
according to our diagram, the vapor pressure can only approach asymptotically to zero. A
trace of vapor must always be present even at the lowest temperatures.

§19. Arbitrariness of the definitions of the preceding section.

We have based our definitions of the concepts gas, vapor, and liquid on isothermal state
variations. This is of course an arbitrary procedure, which can at best be justified by saying
that in practice one usually tries to keep the temperature equal to that of the surroundings,
and thus as nearly constant as possible. We could also consider state variations such that the
substance is in a cylindrical container closed by an airtight, easily movable piston, subject
to a constant pressure. Suppose the temperature is initially very high. As heat is lost, the
volume decreases. We call such a state variation an isobaric one; it is represented by a line
parallel to the abscissa axis (the isobar). If the constant pressure acting on the substance is
greater than the critical pressure, then it goes over from an approximately gaseous state to
an approximately liquid state, without discontinuity. If, on the other hand, the pressure is
smaller than the critical pressure, then the temperature drops with increasing volume only
until the two-phase region is reached. Since the isobar then coincides with the isotherm, the
temperature remains constant until all of the substance is liquefied. If one wanted to base
the definition of the concepts “vapor” and “gas” on isobaric compression, then the
separating line between the two states would be a line parallel to the abscissa axis passing
through the critical point, since above this line, isobaric transformation of any state into any
other state never involves any condensation, whereas below it, isobaric compression
always goes through the two-phase region.

One would obtain yet another distinction between vapor and gas if he used adiabatic
variations, i.e., variations not involving addition or loss of heat. In order to compute these,
one must set the differential of the added heat, dQ, equal to zero (cf. §21). We shall not
pursue this further, and we remark only that if one does not adopt some definite criterion—
isothermal, isobaric, or adiabatic—for state variations, then a distinction between states that
can or cannot be continuously transformed into other states is not in general possible. For
one can go from any state into any other state without passing through the two-phase
region, and thus without condensation or evaporation. One can see this in the following
way: let points in the two-phase region have the significance that their ordinates are equal
to the pressure, and their abscissas are equal to the total volume of the liquid and vapor
states combined, so that any point of the quadrant ΒΑΩ in Figure 3 represents a possible
state of the substance. Let two arbitrary states of the substance be given. In each of these
states, let the entire substance be in the same phase, so that the two points, called P and Q,
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are both outside the two-phase region. We can always connect them with a curve that goes
above K from P to Q without going through the two-phase region. This curve represents a
continuous sequence of states by which the substance can be transformed from the state P
to the state Q without any part of the substance ever being in a phase different from the rest.
However, we can also draw a curve from P toward the left boundary line AJK of the two-
phase region, then across this region from left to right, and finally above it to Q. This curve
would represent a state variation in which the substance starts out in the liquid phase,
gradually evaporates, and then when it has completely vaporized, passes continuously to
the final state Q. Conversely, a curve might go from P, above the two-phase region to a
point lying on the right-hand boundary curve KGΩ of the two-phase region, then across
this region to a point on the curve AJK, and then above the two-phase region to Q. Such a
curve would represent a state variation in which the substance is transformed from the state
P continuously to a vapor state, then condenses, and finally ends up in the state Q.

A substance can even be transformed from a liquid state to a vapor state, not by
evaporation, but rather by condensation. One merely needs to start with a small volume,
heat the substance above the critical temperature, then expand it to a large volume, cool it
below the critical temperature, then condense it, then again heat the liquid above the critical
temperature, and then transform it to the desired final state. Likewise one can transform a
vapor to a liquid by evaporation.

Obviously one would call a substance a liquid, vapor, or gas, when its state is
represented by a point near the lower part of the line AB, or near the curve KGΩ, or above
the critical isotherm far from AB, respectively. In the intermediate region, however, these
states can gradually transform into each other, so that if one desired a sharp boundary he
would have to establish it by some arbitrary definition.

§20. Isopycnic changes of state.

If we enclose a fixed amount of a substance (say unit mass) in a tube closed on both
sides, and gradually warm it, then we produce very nearly a change of state at constant
volume (isopycnic change of state). If the volume is exactly equal to one-third of the critical
volume (in general it cannot be any smaller than that) then the pressure is always infinite,
except at absolute zero temperature. At any other volume, we would always find ourselves
in the two-phase region at sufficiently low temperatures. Hence some of the substance will
be found as a liquid in the lower part of the tube. Above it stands the vapor of the same
substance, whose pressure is nearly zero at very small temperatures, and increases with
temperature. The boundary between liquid and vapor is called the meniscus. Since we
assume that the volume is constant, the change of state must be represented by a line
parallel to the ordinate axis, passing through the two-phase region—for example, the line
N1N in Figure 3. In the state represented by the point N, the mass of the liquid part of the
substance is, according to Equation (37),
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and that of the vapor part is

We now have to distinguish three cases: 1. The line N1N representing our state variation
lies to the right of the line KK1, which is parallel to the ordinate axis and goes through the
critical point. The chosen constant volume is then larger than the critical volume. Then, as
the temperature increases, NG becomes smaller and smaller relative to JG. The amount of
liquid in the tube decreases with increasing temperature, and the meniscus drops. Finally,
when the line N1N has reached the boundary of the two-phase region, the entire substance
becomes vapor. 2. The line NN1 lies to the left of ΚΚ1. Then JN will instead decrease
relative to NG, the meniscus will rise, and the entire substance becomes liquid at the
moment when the boundary of the two-phase region is reached. 3. When the substance has
precisely the critical volume OK1, the ratio of JN to NG always remains finite as the
substance is heated at constant volume, until the critical point is reached. The meniscus
always stays between the upper and lower ends of the tube, until finally it vanishes at the
critical temperature, since the liquid and vapor both have the same properties then.

We saw that the boundary of the two-phase region becomes nearly horizontal in the
neighborhood of the critical point. Therefore the meniscus almost vanishes if NN1 lies in
the neighborhood of ΚΚ1. Theoretically it must remain in the interior of the tube until the
temperature is almost equal to the critical temperature, and then it moves very quickly to the
upper or lower end of the tube.* This cannot be observed, since it has previously already
become so indistinct that one can no longer see it. Moreover, small impurities in the
substance cause significant perturbations at the critical point.

§21. Calorimetry of a substance following van der Waals’ law.

Since we have adopted a definite mechanical model, there is no difficulty in determining
an expression for the differential of the added heat, dQ. As in Equation (19) and in Part I,
§8, let  be the mean square velocity of the center of mass of a molecule (progressive

motion), so that  is the mean kinetic energy of the motion of the center of mass of the

molecules found in unit mass of the substance. If the temperature of unit mass is raised by
dT, then the part of the added heat used to increase this kinetic energy is (in mechanical
units)
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The latter relation follows from Equation (21).
Although in the derivation of van der Waals’ law we assumed that the molecules behave

almost like elastic spheres in collisions, in general we shall not exclude intramolecular
motion; we set (as in Part I, §8) the work done against intermolecular forces by the applied
heat equal to

Since the van der Waals cohesion force acts on each molecule almost equally in all
directions, it will not influence the internal motion. The same results that we shall derive in
§§42–44 for an ideal gas of compound molecules will therefore be valid for this internal
motion. It does not depend on how often the molecules collide with each other, but only on
the temperature, so that β can only be a function of temperature. If the molecules are rigid
solids of revolution, then, as we shall see, ; but if they are rigid solids of some other

shape, then β is equal to 1. If intramolecular motions are present, and if f is the number of
degrees of freedom of a molecule, then the corresponding fraction of the average kinetic
energy will be . One may also add a contribution for the work done by

intramolecular forces, which can be a function of temperature.
At present we shall not go into these details, but simply consider β to be some function

of temperature in Equation (37a).
The specific heat of unit mass at constant volume is therefore:

If the volume simultaneously increases by dv, then the work done to overcome the
external pressure is pdv, while that done to overcome the internal molecular pressure is
adv/v2. Hence the total heat added to unit mass is

Since van der Waals’ kinetic hypothesis not only determines the equation of state but also
permits one to make statements about the specific heat, it is clear how one can determine
the specific heat by using a substance that satisfies the conditions of the hypothesis, but not
for a substance that merely satisfies empirically the van der Waals equation of state. The
entropy is:
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which, if β is constant, reduces to :

where l means the natural logarithm. Setting this quantity constant yields the equation for
adiabatic changes of state. The specific heat of unit mass at constant pressure is

and the ratio of specific heats is

If the gas suddenly expands into a vacuum (as in Gay-Lussac’s experiment) so that the
specific volume and density have initially the values v and ρ, and afterwards the values v′
and ρ′, then the work done against molecular attraction, per unit mass of the gas,

is therefore independent of temperature.
However, if the gas expands adiabatically in a reversible manner, then it follows from

Equation (38) that

Let unit mass of the substance be originally in the liquid state, and then evaporate at
constant temperature T, at the saturation pressure p of the vapor, corresponding to this
temperature. Then one has to set dT = 0 in Equation (38). The total heat of vaporization is
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therefore :

where v and ρ are the specific volume and density of the liquid, and v′ and ρ are the same
quantities for the vapor at the same temperature.

The last term of this equation represents the work needed to overcome the external
pressure on the vapor. If one neglects the density of the vapor compared to that of the
liquid, then:

is the work of separation of the liquid particles.
One can now calculate the constant a from the deviations of the dilute heated vapor

from the Boyle-Charles law. From this, one obtains for the liquid state of the same
substance the co-called internal or molecular pressure (i.e., the difference between the
pressure in the interior of the liquid near the surface, and that on the outside of the surface):
aρ2. The heat of vaporization of the liquid, measured in mechanical units (more precisely,
the heat of separation of its particles) is aρ, a quantity that can be compared with
experiment.

The latter result is independent of the assumption from which we have obtained van der
Waals’ equation, and depends only on the form of that equation, so that it would remain
correct if one one were simply given this equation as an empirical law.

§22. Size of the molecule.

By calculating the constant b from the deviations of a gas from the Boyle-Charles law,
one can improve Loschmidt’s determination of the size of a molecule (see §12 of Part I).
We can now calculate the amount of space actually occupied by the molecules in unit mass,
since this is equal to 1/4b, whereas in Part I we had to use the assumption that the volume
of the molecules in the liquid state cannot be smaller than the total volume of these
molecules themselves, and should not be more than ten times that volume.

From Equations (77) and (91) of Part I, one obtains for the viscosity coefficient of a gas
the value , where, according to Equation (89) of Part I, k can

differ only slightly from , if one understands by c the mean velocity of progressive motion
of the gas molecule.* σ is the diameter of a molecule, ρ is the mass in unit volume, n is the
number of molecules in unit volume, so that ρ/n = m  is the mass of a molecule. One can
therefore write also
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further, we have:

hence

where the mean velocity c can be calculated with sufficient accuracy from Equations (7)
and (46) of Part I.

I will abstain from giving numerical values, since the choice of the most reliable
numbers would not be possible without an analysis of the experimental data, and this
would be completely out of place in the present book.

§23. Relations to capillarity.

Van der Waals obtained the term a/v2 in his formula by a route somewhat longer than
the one we used in §7; he employed the arguments by which Laplace and Poisson had
derived the basic equations of capillarity.* Since this connection with capillarity is of some
importance, I will summarize here the original derivation of van der Waals.

The following considerations are applicable to both liquids and gases, but more
especially to the former, wherefore we shall call the substance under consideration “the
fluid” for short. We assume that the attraction of two mass particles m and m′ acts in the
direction of their line of centers, and is a function of their distance f, which we call mm′F(f).
We set:

so that mm′x(f) is the work required to bring the two particles m and m′ from the distance f
to a much larger distance. In any case F(f) will have a value different from zero at
molecular distances. We assume that it decreases more rapidly than the inverse third power
of f as f increases, so that not only F(f) but also x(f) and ψ(f) always vanish when f does not
have a very small value. From our hypothesis it follows that the force acting between m
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and m′ is equal to – mm′dx(f) / df.
We now construct a sphere K of radius b in the fluid,3 denote by do a surface element of

K, and further construct the right cylinder Z, situated outside this sphere on the surface
element do, which has a very great length B – b. The center O of the sphere is chosen as
origin of cöordinates, and we place the positive abscissa axis along the axis of the cylinder.

We now pose the problem of finding the attraction dA exerted by the fluid in K on the
fluid contained in the cylinder Z.

For this purpose, we construct in Z the volume element dZ, which lies between the cross
sections with abscissas x and x+dx. Its volume is dodx, hence it contains mass ρdodx of
fluid (the density ρ is assumed to be constant everywhere).

We then cut out from the sphere K a concentric spherical shell S, which lies between
spherical surfaces of radii u and u+du, and from this shell we cut out a ring R, for which

the line connecting it with the origin of coördinates makes an angle between ϑ and ϑ+dϑ

with the positive abscissa axis. The volume of R is 2πu2 sin ϑdudϑ. When multiplied by ρ,
this is the mass contained in the ring.

Any fluid particle of mass m′ that lies in R and has abscissa x′ exerts on any other fluid
particle m that lies in the cylinder Z and has abscissa x the attraction

whose component in the direction of the negative abscissa axis is

The total fluid mass contained in the ring R therefore exerts an attraction

on the mass in dZ. The total attraction of the fluid in the sphere K on the fluid in the
cylinder Z can be found by choosing the following order of integration, which is the most
convenient one for this calculation:

In carrying out the integration over ϑ we consider just the spherical shell S, so that we
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can consider u constant. Substituting f for u as the variable of integration, we therefore
obtain

and the limits for f will be x – u and x+u. Hence:

where ψ is the function defined at the beginning of this section. The integration over x will
now be performed by setting x = B in this expression and subtracting from this the value
obtained by setting x = b in the same expression.

It is to be recalled that the function ψ always vanishes if the argument of the function is
not very small. B and b are very large compared to molecular dimensions, and therefore
also larger than all values of u that come into consideration. Hence ψ(Β+ιι), ψ(Β–u) and
ψ(b+u) vanish. Only ψ(b – u) can take a value different from zero, and one obtains:

hence

If one introduces the variable z = b – u in the definite integral, then it is transformed to

Since ψ(z) vanishes for large values of z, one can write ∞ instead of b for the upper limit of
the integral. If one sets

then
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If the cylinder Z is surrounded by fluid on all sides, then clearly all the forces acting on it
are neutralized. Hence the fluid surrounding the sphere K must exert a force on the fluid in
the cylinder exactly equal and opposite to that which the fluid in K exerts. Now if the fluid
i n K is taken away, then there remains only a fluid mass whose outer surface is the
spherical surface K. dA is then the traction exerted by this fluid mass on the cylinder Z
placed over one of its surface elements do, in a direction toward the inside, which was
denoted in §2 by pido.

If the surface is plane, or if its radius of curvature is so large that 1/b can be neglected,
we obtain the value already found in §7: pi = aρ2. However, according to Equation (39)
the constant a can be expressed in terms of the law of attraction of the molecules.

The term –2αρ2/b shows that this expression requires a small correction if the surface is
curved. This correction gives rise to capillary phenomena, as is well known; when the
surface is not spherical, it takes the form

where ℜ1and ℜ2 are the two principal radii of curvature of the surface.

§24. Work of separation of the molecules.

We shall now express the heat of vaporization in terms of the function x. We construct
around a fluid particle of mass m a spherical shell S, which is bounded by two spherical
surfaces of radii f and f+df, in which therefore the amount of fluid mass is 4πρf2df. Since
mm′x(f) is the work that must be done in order to bring the fluid particles m and m′ to
infinite separation, if they are initially at a distance f, then the work required to bring m
from the midpoint of the spherical shell S to a great distance is:

The total work needed in order to bring m from the interior of the fluid to a point far away
from all other fluid particles is therefore:
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If unit mass of the fluid contains n particles, we have mn = 1. If one assumes that in the
vapor each particle is already far away from the sphere of action of all the others, then the
work done in evaporating unit mass of the fluid, to overcome the cohesive force, is

To this we must of course add the work ∫pdv done against the external pressure in
evaporation.

 is therefore only half of nB, since in the expression for nB the work of separation of
each particle from each other one is counted twice. In §21 we found the value aρ for the
work of separation , where a is given by the first of Equations (39). Partial integration of
the right hand side of this equation gives in fact:

The value of  obtained previously therefore agrees with the one found here.
One would obtain the work of separation directly by integration of the first of Equations

(39), if he first calculated the work of separation of a particle at a distance h from another
one in a plane layer of thickness dh in the fluid. This would be:

When multiplied by n and integrated over h from zero to infinity, this gives the total work
of separation .

By means of a similar formula we can solve the following problem. Let there be given a
cylinder of cross-section 1; we draw through it anywhere a cross-section AB and ask for the
work necessary to separate the fluid on one side from the fluid on the other side.

We first calculate the work of separation of a layer of thickness dx at a distance x from
the bottom of the container, lying below AB, from another layer of thickness dh above AB.
We set m = ρdx in Equation (41). Then the work of separation is equal to

Here h is the distance between the two layers. We keep this fixed for the moment, and
integrate over all allowed values of x. If c is the distance between AB and the bottom, then
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when h is constant we have to integrate from x = c – h to x = c, which gives:

If one integrates h over all possible values from zero to ∞, he obtains for the total work of
separation of the fluid above AB from that below AB the value :

Since in this process of separation the surface area of the fluid increases by 2 units, the
work required to increase the surface area of the fluid by 1 is just half of this, and is
therefore equal to αρ2.4 However, this quantity is at the same time the coefficient of

in the basic equation of capillarity, (40). In fact it is well known that this coefficient
represents the work required to increase the fluid surface by 1 unit.

These equations would be considerably more complicated if one introduced the
improvement that Poisson made in the old Laplace theory of capillarity, by taking account
of the variation of density during the transition from the interior to the surface of the fluid.
Yet the form of the equations obtained remains the same; only the expression for the
constant in terms of a definite integral is different. Since capillarity theory is only of
incidental interest here, I will not go into this further, and merely refer to Stefan’s
treatment.5

1 The curvature of the surface of contact will have an effect, if this is very small. Over a concave
upper surface (as at the meniscus in a capillary tube) the vapor pressure is less than the hydrostatic
pressure of the vapor column that lies between the level of the meniscus and that of the plane liquid-
surface outside the capillary tube. Over a surface that is convex to the same degree, it would be larger by
the same amount. (Cf. end of §23.)

2 Maxwell, Nature 11, 357, 374 (1875); Scientific Papers 2, 424. See also Clausius, Die Kinetische
Theorie der Gase (Braunschweig, 1889–1891), p. 201.

* See van der Waals’ remark on this point, mentioned at the end of §61.
* According to the Chapman-Enskog theory, the correct value of k in this formula is 0.499.
* Laplace, Traité de mécanique célèste (Paris: J. B. M. Duprat, 1798–1825), Supplément au Xe

Livre. Poisson, Nouvelle Théorie de l'action capillaire (Paris: Bachelier, 1831).
3 This is not to be confused with the constant earlier denoted by b.
4 α is the quantity given by the second of Eqs. (39).
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5 Stefan, Wien. Ber. 94, 4 (1886); Ann. Phys. [3] 29, 655 (1886).
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CHAPTER III

Principles of general mechanics needed for gas theory.

§25. Conception of the molecule as a mechanical system characterized by
generalized coördinates.

In all calculations up to now (except for the specific heat) we have treated the gas
molecules as completely elastic spheres or as centers of force, without any internal
structure. Many circumstances show that this assumption cannot exactly conform to reality.

All gases can be made luminous, and their light then sometimes provides a wonderfully
complicated spectrum. This would be impossible for simple material points; moreover, the
vibrations of elastic spheres could scarcely produce the observed spectral phenomena, even
if one took account in the calculations of the internal motions of the elastic substance,
which we have so far ignored.

Furthermore, the facts of chemistry compel the assumption that, in chemically
compound gases, the molecules consist of many heterogeneous parts. One can show that
even the molecules of the chemically most simple gases must consist of at least two
separate parts. For example, if Cl and H are bound into C1H, then the C1H gas occupies at
equal temperature and pressure exactly the same space that the Cl and H gases did together.
Since, according to Avogadro’s law (Part I, §7), there are the same number of molecules in
all gases at equal temperatures and equal pressures, a molecule of chlorine and a molecule
of hydrogen must combine to form two molecules of C1H; hence both the chlorine and the
hydrogen molecules must have been composed of two parts. One half of the chlorine
molecule combines with one half of the hydrogen molecule to form a C1H molecule; the
other two halves of the two original molecules combine to form another C1H molecule.

In order to take into account this undubitable composite structure of the gas molecule,
one will have to consider it as an aggregate of a definite number of material points, held
together by central forces. One does not obtain very good agreement with experiment in
this way; on the contrary, for many gases the thermal phenomena, at least, are better
interpreted by assuming that the molecules are rigid nonspherical bodies. Thus it appears
that the connection of the parts of these molecules is so intimate that they behave like rigid
solids with respect to thermal phenomena, even though in other cases the constituents
appear to vibrate against each other.

In view of this circumstance it would be best to make our assumptions about the
properties of molecules so general that all these possibilities can be included as special
cases. We shall therefore obtain a mechanical model that will have the greatest possible
capacity to explain new experimental results.

We shall consider the molecule as a system of whose nature we know no more than that
its changes of configuration are determined by the general mechanical equations of
Lagrange and Hamilton. It is then a question of studying those properties of a mechanical
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system that will later be needed in the most general way.
Let the state of an arbitrary mechanical system by given. The positions of all its parts

will be uniquely determined by µ independently variable quantities p1, p2, ..., pµ, which we
call the generalized coördinates. Since the geometric nature of the system, and the masses
of all its parts, are given, we also know the kinetic energy L of the system as a function of
the velocity-changes of its coördinates. This is a homogeneous quadratic function of the
derivatives  of the coördinates with respect to the time, whose

coefficients can be any functions of the coördinates. The partial derivatives of the function
L with respect to p′ are the momenta q, so that one therefore has for each value of i:

The q are therefore linear functions of the p′, and the coefficients in these functions can
again be functions of the p. Conversely, one can express the p′ as functions of the q. If one
substitutes the appropriate values into L(p, p′), then he obtains L as a function of the p and
q. This function L(p, q) is therefore also determined by the geometric nature of the system.*

The forces acting on the various parts of the system should likewise be exactly
specified. They should be derived from a potential function V, which is a function only of
the p, and whose negative partial derivatives with respect to the coördinates give the force,
so that for each arbitrary displacement of the system, the increase dV of this function
represents the work done by the system. If the kinetic energy of the system increases by dL
at the same time, then according to the conservation of energy, we have dV + dL = 0.

Not only the geometric nature of the system in question but also the forces acting on it
are given. The equations of motion of the system are thereby determined. If one wishes to
calculate the actual values of all the coördinates and momenta at some time t, then the initial
state of the system must also be given. One might be given the values of the coördinates
and their time-derivatives at the initial time (time zero). However, one might equally well
be given the values of the coördinates and momenta at time zero, since the momenta are
given as functions of the p′. We shall denote the values of the coördinates and momenta at
time zero by P1, P2, ... , Ρµ, Q1, Q2, ... , Qµ. The values p1, p2, ... , pµ, q1, q2, ..., qµ of the
coördinates and momenta at time t are to be considered as given functions of these values
and of the elapsed time t.

Since L and V are given as functions of the p and q, we can calculate L and V for each
instant of time as functions of P, Q, and t. When we put these into the integral

then it is also a function of the initial values P, Q, and of the elapsed time t, since the entire
motion is determined by P and Q, and the integral can be calculated as soon as we are
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given the limits of integration.
We saw just now that the 2µ quantities p, q are given as functions of P, Q, and t—i.e.,

there are 2µ equations between 4µ+l quantities p, q, P, Q, and t. From these 2µ equations
we have to determine the 2µ quantities p, q as functions of the others. However, we can
also imagine that we have solved these equations for the 2µ quantities q, Q, so that the q
and Q are expressed as functions of the 2µ+1 other quantities p, P, t. For the moment we
shall indicate a function of these latter variables by putting a bar above it. Thus  means

that the quantity qi is to be considered expressed as a function of p, P, and t. Since we can
find W as a function of P, Q, and t, we can also express therein the Q as functions of p, P,
and t, so that W itself (now denoted by ) becomes a function of p, P, and t. It is well

known1 that

Whence it follows at once that

where the bar means that in the differentiation with respect to any one p, all the other p, all
the P and the time are to be considered constant; similarly in the differentiation with respect
to any one of the P. i and j can take any integer values from 1 to µ, independently of each
other.

§26. Liouville’s Theorem.*

When one wishes to discuss any curve whose equation contains an arbitrary parameter,
it is customary to consider simultaneously all the curves obtained by giving this parameter
all its possible values. We are now dealing with a mechanical system (characterized by
given equations of motion) whose motion depends on the values of the 2µ parameters P, Q.
Just as one can represent a curve infinitely many times, each time with a different value of a
parameter, so we can represent our mechanical system infinitely often, so that we obtain
infinitely many mechanical systems, all of the same nature and subject to the same
equations of motion, but with different initial conditions. Among this infinite number, or
family, of mechanical systems, we are given certain ones for which the initial values of the
coördinates and momenta are specified within infinitesimally close limits, e.g.,
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After these systems have moved for the same time t, according to their equations of motion,
the coördinates and momenta will lie between the limits

Our problem is to express the product

in terms of the product

We know that we can express the q as functions of the p, P, and t. We can therefore
introduce the variables p and P instead of p and q in the differential expressions (45). The
time t is considered a constant. Thence follows next, according to the well-known theorem
of Jacobi on the so-called functional determinants :

where
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Likewise, we can also introduce the variables p and P in the expression (46) by expressing
the Q as functions of the P, p, and t, whereby we then obtain:

where

The partial derivatives in the functional determinant D are to be understood in the same
sense as the quantities previously denoted by a bar; the q are considered to be functions of
the p, P, and t. Similarly for the partial derivatives in the functional determinant Δ, in which
the Q are to be considered as functions of the same variables p, P, and t. However, we can
apply Equations (42), and since a determinant does not change its value when one
permutes the horizontal and vertical rows, and conversely, we have
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Since only the magnitude and not the sign is important, it follows from Equations (47),
(49), and (51) that

which is the desired relation. Indeed, we obtain in general the correct sign if we take
account of the changes of sign resulting from the changes in the orders of differentials in
going from Equation (47) to Equation (49).

Suppose one introduces, in place of 2µ arbitrary variables x1, x2, ... , x2µ in some
differential expression, 2µ other variables ξ1, ξ2, ... ,ξ2µ which are related to the former set
by the following equations :

then it follows from the theorem on functional determinants that:

where
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Now since permutation of two horizontal rows changes the sign of the determinant, we
have

If one sets

then

hence

and it follows from (47) that

hence, according to Equation (51),
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which, in conjunction with Equation (49), gives Equation (52) with the correct sign.

§27. On the introduction of new variables in a product of differentials.

Equation (52) is the fundamental equation for the following. Before I proceed to its
application, I shall mention a difficulty that often arises in the theory of definite integrals,
and is not always completely clarified.

I consider the most general case. Let there be given n arbitrary functions ξ1, ξ2, ... , ξn
of the n independent variables x1, x2, ..., xn, the functions being single-valued and
continuous in a specified region. Conversely, let the x be single-valued continuous
functions of the ξ. If we set

then the differentials are related by the equation

The meaning of this equation is perfectly clear if ξ1 is only a function of x1, ξ2 is only a
function of x2, etc. If then only x1 changes by dx1 and all the other ξ remain constant, then
only ξ1 will change by dξ1, and all the other ξ will remain constant. Likewise a definite
increment dξ2 of ξ2 will correspond to a definite increment dx2 of x2, and so forth.
Equation (53) will then give the relation between the increments of x and the increments of
ξ.
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If x1 runs through all its possible values between x1 and x1+dx1, while x2 has a constant
value somewhere between x2 and x2+dx2, and likewise all the other x have constant
values, then in general not only ξ1 but also all the other ξ will change at the same time.
Likewise, in general all the ξ will change when x2 runs through all values between x2 and
x2+dx2, while all the other x remain constant; and each ξ will experience in general a
completely different increment in the second case. We have therefore to consider n different
increments of ξ1; none of them is equal to the quantity denoted by dξ1 in Equation (53).
Neither does one obtain Equation (53) by assuming that dξh means the largest increase that
ξh can experience when each variation of x1 between x1 and x1+dx1 is combined with
each variation of x2 between x2 and x2+dx2, and each such pair of values of x1 and x2 is
combined with each variation of x3 between x3 and x3+dx3, and so forth.

In order to present clearly the meaning of Equation (53) in the general case, we must
examine the matter more closely. This equation in general has a meaning only when it
refers to the transformation of a definite integral which is to be extended over a certain set
of values of all the x, to another integral in which the variables ξ replace the x. We shall use
the following notation. Let the value of each of the variables x be given; the corresponding
values of all the ξ are thereby determined. We call them the values of £ corresponding to
the given x. A region G of values of the x means the aggregate of the set of values of these
variables bounded in the following way: we first include all values of x1 that lie between
two arbitrary given limits  and . Those values of x1 that lie between these limits are to

be associated with all values of the second variable x2 that lie between arbitrary given limits
 and , where however  and  can be continuous functions of the values of x1 that

are to be associated with the value of x2. Likewise, each pair of values of x1 and x2
satisfying the above conditions will be associated with all values of x3 that lie between 

and , where  and  can be continuous functions of x1 and x2, and so forth.2 It is

then well known what one means by the definite integral

extended over the entire region G. This region of values is then said to be of infinitesimal
extent with respect to all n dimensions —or briefly, n-fold infinitesimal—when the
difference  −  is infinitesimal, and also the difference  –  is infinitesimal for all

values of x1, the difference  −  is infinitesimal for all pairs of values of x1 and x2, and

so forth. When n = 2, x1 and x2 can be represented as the coördinates of a point in the
plane; each region of values then corresponds to a bounded part of the surface in the plane;
for n = 3, each region of values can be represented by a bounded volume in space.

Each set of values of the x that lies in the region G corresponds to a set of values of the
ξ. The region g of the ξ, which corresponds to the region G of the x, means the aggregate
of all sets of values of the ξ that correspond to all sets of values of the x lying in the region
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G.
According to the way we have formulated our definitions, Jacobi’s theorem on

functional determinants can be expressed in the following completely unambiguous way.
Let there be given an arbitrary single-valued continuous function of the independent

variables x1, x2, ... , xn. We denote it by f(x1, x2, ... , xn). If we express therein x1, x2, ..., xn
in terms of ξ1, ξ2, ..., ξn, then the function f(x1, x2, ..., xn) is transformed to F(ξ1, ξ2, ..., ξn)
so that we have identically

However, it is by no means the case that

when the former integral is extended over an arbitrary region G of the x, and the latter over
the corresponding region g of the ξ. If we again denote the functional determinant

by D, then the definite integral extended over the region G,

is always equal to the definite integral extended over the corresponding region g:3
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If G is infinitesimal, then, if the values of ξ in question are continuous functions of the x,
the region g is also infinitesimal, and the values of the functions ƒ and F, as well as the
functional determinant, will be considered constant throughout the region. Since the values
of the two functions are the same, one can divide through by these values and it follows
that :4

Indeed, Kirchhoff writes the equation in this form.5 It is customary to write (as we did in
the previous paragraph) simply

Here dx1dx2 ... dxn means strictly the n-fold integral of this quantity over an arbitrary n-fold
infinitésimal region G, and dξ1dξ2 ... dξn means the n-fold integral of the latter quantity
over the corresponding region g. Since the theorem will only be applied to the calculation
of definite integrals extended over a finite region, and these can always be decomposed into
an infinite number of integrals extended over infinitesimal regions, one always obtains the
correct result if he writes the equations as follows :

hence

and hence finally

Pure Mathematical Physics



250

The first of these equations has the following meaning. Each n-fold definite integral
extended over all x can be decomposed into infinitely many integrals over n-fold
infinitesimal regions. If one wishes to introduce the ξ as new variables of integration, then
in each of the latter, and hence also in the entire region of integration, he has to replace the
product dx1dx2 ... dxn by

§28. Application to the formulas of §26.

If one wishes to use these more correct expressions in §26, then, instead of saying “for a
certain system the initial values of the coördinates and momenta lie between

he must say instead, “each initial value lies in the 2µ-fold infinitesimal region

Instead of saying “then at time t the values lie between p1 and p1+dp1, ... , qµ and qµ+dq ,”
he must use the corresponding expression, “they lie in the corresponding region

Here the integration over the entire appropriate region is indicated by a single integral sign
for the sake of brevity. The region g corresponding to the region G includes all
combinations of values that the variables assume after the time t (considered constant), if
they initially have a set of values lying inside the region G. All the conclusions of the
preceding section will then remain valid, except that in place of the simple product of
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differentials there will always occur the integral of this product of differentials over a region
infinitesimal on all sides. Equation (52) then runs, in this more precise formulation:

One therefore sees that the conclusion is not in the least changed, except that one has an
integral sign in front of each differential expression, expressing the integration over a
corresponding infinitesimal region.

If an example is needed, one can think of the x as the spatial polar coördinates r, θ, φ
and the ξ as the rectangular coördinates x, y, z of a point. The region of values for which x,
y, z lie between

is determined by a parallelepiped. We shall assign different pairs of values to the variables v
and φ, corresponding to all points lying within this parallelepiped. The limits r and r+dr,
between which r must lie for all points in the parallelepiped, will by no means be the same
for all these pairs of values. In the equation

which is not valid if one understands by dr the greatest difference of the values of r for
points lying inside the parallelepiped, which of these possible values of dr is meant? The
same problem arises for dv and dφ. The equation has the following meaning: the definite
integral
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extended over an arbitrary triply infinitesimal region, has the same value as the integral

extended over the corresponding region; in particular, both are equal to the volume filled by
all the points of the region, so that it would obviously be completely wrong to set

if the two integrals are extended over corresponding regions.
The special examples that have been worked out to clarify the meaning of the

mechanical equations (52) and (55) will only be briefly discussed here.6 A material point
with mass 1 moves in the abscissa direction under the influence of a constant force, which
likewise has the abscissa direction, and imparts to it the acceleration γ. The variables called
x at the beginning of this section will now be the initial abscissa X and the initial velocity U
of the material point; the ξ will be the abscissa x and velocity u after a fixed time t has
elapsed. We have therefore

Since we now have only two variables, we can represent their initial values as well as their
values at time t by points in the plane, whose abscissas are equal to the abscissas, and
whose ordinates are equal to the velocities, of the material point. All points of a rectangle
with sides dX and dU represent a double infinitesimal region of x, i.e., they represent all
possible material points for which the coördinates and velocities initially lie between the
limits

The region g of the ξ corresponding to this region G contains the coördinates x and
velocities u that all these material points have after a fixed time t has elapsed. According to
Equation (56), u is simply larger than U by a constant γt. On the other hand, the difference
x–X is greater the larger U is. One sees easily from this that the region g is an oblique-
angled parallelogram, whose base is equal to dX, and whose height is equal to dU; it
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therefore has the same area as the rectangle G = dXdU, as it must according to Equation
(52).

§29. Second proof of Liouville’s theorem.

We shall now give a second proof of Equation (52) or (55), in which, instead of going
directly from time zero to time t, we first go from time t to an infinitesimally close time t+dt.
However, we shall somewhat generalize the theorem at the same time, in that we shall not
assume that our independent variable (denoted by s) is necessarily the time; we shall leave
it unspecified, though for purposes of illustration we can still imagine that time is the
independent variable. The arbitrary dependent variables s1, s2, ..., sn will be determined as
functions of the independent variable s for the following differential equations:

The σ will be given explicitly as functions of s, s1, s2, ... , sn. Since we wish to reserve the
letter d for another kind of increment, we have denoted the increment of the independent
variable by δs, and the corresponding increments of the dependent variables by δs1, δs2, ...
, δsn.

For a system of material points, δs would be identified with the increment of the time,
δt. By δs1, δs2, ... , δsn we mean the increments δx1, δy1, ... of the coördinates as well as
the increments δu1, δv1, ... of the velocity components during time δt. For example, δx1 =
u1δt.

The values of the dependent variables s1, s2, ... , sn will be determined by their
corresponding initial values at a definite s, e.g., s = 0:

and by the differential equations (57), given once for all times, as single-valued functions of
the independent variable s.

We can now keep in mind all the values of the dependent variables that correspond to
all possible values of the independent variable s, for given initial values. We wish to call the
set of all these values a series of values. This corresponds to the entire course of motion of a
mechanical system starting from a specified initial state.

In the particular series of values that starts from the initial values (58), the dependent
variables have the values

for a specified value of s, and for an infinitesimally different value s+δs they have the
values
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We call (59) the values of the dependent variables “corresponding to the initial values (58)
after s.” The values (60) will similarly be called the values of the dependent variables
corresponding to the initial values (58) after s+δs. According to the differential equations
(57), the values (59) and (60) are related by the equations

where the values (59) of the dependent variables and the corresponding values of the
independent variable are to be substituted in the given functions σ1, σ2, ... , σn.

Now we shall go even further and imagine all possible series of values that can arise
from all possible initial states. Of all these series of values, however, we consider only
those for which the initial values lie between the limits

or lie in some otherwise bounded n-fold infinitesimal region G,7 in which the values (58)
also lie. Those values of the dependent variables to which all the initial values lying in G
“correspond after s” form again an n-fold infinitesimal region, which will be the region g.

On the other hand, we shall denote by g′ the region that includes all values of the
dependent variables that “correspond after s+δs” to all the initial values lying in g. The
integral of the product ds1ds2 ... dsn of the differentials of all dependent variables, extended
over the entire region g, will be denoted simply by

while the same integral extended over the region g′ will be denoted by

These integral signs therefore indicate an integration over all series of values that originate
in the infinitesimal region G. Then according to Equation (54) :
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where D again means the functional determinant

In forming the partial derivatives in this functional determinant, we should consider s to be
constant as well as s+δs and δs, since s has the same value for all series of values over
which we shall integrate, as does δs. Hence it follows from Equation (61) that

If one ignores the terms multiplied by higher powers of the infinitesimal quantity δs, then
he obtains

where

The prime always means that the value corresponds to s+δs, while the initial values are
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those given in Equation (58). Hence one can write Equation (62) in the form:

Similarly, just as we go from s to s+δs, we can go from s+δs to s+2δs, and so forth, and
also from s − δs to s. We shall denote all values corresponding to s+2δs, starting from the
initial values (58), by two primes.

Let g″ be the region that includes all values of the dependent variables corresponding to
initial values lying in G, after s+2δs, and let

be the integral of the product of differentials of all dependent variables over the region g″.
Then one finds, in the same way that was used to obtain Equation (64), that

Since a similar equation holds for all preceding and following increments of s, one has in
general :

Here σ0 and τ0 denote the values of σ and τ for s = 0; ∫dS1dS2 ... dSn is the integral of the
product of the differentials of all dependent variables extended over the region G.

One sees at once that Equation (55) is that special case of Equation (65) which one
obtains when s means the time and s1, s2, ..., sn are the generalized coördinates p1, p2, ... ,
pµ and momenta q1, q2, ... , qµ of an arbitrary mechanical system. If in particular, as in §25,
L and V are the kinetic and potential energies of the mechanical systems, and if one sets
L+V = E, then the Lagrange equations for the mechanical system run as follows :8
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The symbol d has the same meaning that δ had previously. We have to specialize our
previous formulas to the case n = 2µ, σ = 1, s = t,

Hence

and Equation (65) goes over directly into Equation (55).
Arguments completely analogous to those of this section were first made by Liouville,9

then by Jacobi10 (by the latter in his lectures on dynamics, for the purpose of deriving the
theorem of the last multiplier). They were first applied to statistical considerations on the
temporal course of motion of a system, and a family of simultaneously existing systems, by
the author of this book and then by Maxwell.11

§30. Jacobi’s theorem of the last multiplier.

Since we have the required equations directly at hand, we shall derive the theorem of
the last multiplier, though to be sure it is not otherwise very closely related to our subject.

We denote by

the n integrals of the differential equations (57). The initial values (58) should correspond to
the values a1, a2, ... , an of the constants of integration, so that therefore

All the initial values of the dependent variables that lie in G (see last section) will

Pure Mathematical Physics



258

correspond to certain values of the constants of integration a, which again form an n-fold
infinitesimal region, which we shall call the region A. Let

be the integral of the products of the differentials of the constants of integration, extended
over the entire region. On the other hand, as in the preceding section we shall denote by s1,
s2, ... , sn the values of the dependent variables that correspond to the initial values (58)
“after the value s of the independent variable.” Hence

where the a have the same values as in Equation (67). Likewise as in the preceding section,
we denote by g the region formed from all values of the dependent variables that
correspond to all initial values lying in G after the value s of the independent variable, and
by

the integral of the product of differentials of the dependent variables extended over g, while

is the corresponding integral over G. Since the a are related to the S by Equation (67) and
to s1, ..., sn by Equations (68), and in the latter s is to be considered constant, then one has:

where
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and Δ0 is the value of Δ for s = 0. Hence, according to Equation (65),

Since Δ0, τ0, and σ0 are expressions that depend only on the initial values of the dependent
variables—or, if one wishes, on the constants of integration a—but not on the values of the
s, then likewise C depends only on these quantities.

We now assume that we already know all the integrals up to the one φ1 = a1. The
equation

holds for each value of s. We imagine that s has an arbitrary constant value, and introduce
into both definite integrals on the right- and left-hand sides the variables s1, a2, a3, ... , an—
which, since s is considered as a given constant, are unique functions both of a1 a2, ... , an
and of s1, s2, ... , sn. We thus obtain:

where in
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s and s1 are always to be considered constant during the partial differentiation. In the
integral on the left-hand side of Equation (69) one must set:

Since the region of integration is n-fold infinitesimal, the last factor can come out in front of
the integration sign and one obtains, on dividing through by ∫ds1da2da3 ... dan:

However, if all the integrals up to φ1 are known, and are used, in the last of the differential
equations to be integrated,

to express the quantities s2, s3, ... , sn in terms of s, s1 and the constants a2 a3, ... , an, then
the expression (70) is the integrating factor of this last differential equation. On multiplying
by this factor, its left-hand side is transformed to

and hence the right-hand side must be transformed to
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This is Jacobi’s theorem of the last multiplier. Since C depends only on the integration
constants, likewise σ/Δ1τ is an integrating factor of the differential equation (71).
σ is given. Δ1 can be calculated if all the integrals up to φ1 are known. τ is of course in

general unknown; still, it can often be found by accident, as for example in the case of
mechanical problems, where it reduces to a constant.

If the equations of motion (66) of a material system do not explicitly contain the time,
then they also have the form (57) after one has eliminated the differential of the time
variable ; s is now one of the coördinates, say p1. Then

and the equation

from which it follows that τ = const., always holds. Hence one can find directly the
integrating factor of the differential equation, which expresses the differential of the last
coördinate in terms of the others and the momenta, if the other coördinates and the
momenta have already been found as functions of the constants of integration and the two
last coördinates. In most applications that Jacobi makes of the principle of the last
multiplier, the general equations are applied in this way.

§31. Introduction of the energy differential.

Before we pass to the special applications to gas theory, we shall develop still one more
general theorem.

We return to the infinite family of equivalent mechanical systems already considered in
§26. The state of each system will again be determined by the variables introduced in §25.
As before, let L be the kinetic and V the potential energy, and let E = L+V be the total
energy of one of the systems. We assume that the system is a so-called conservative one—
i.e., E remains constant during the entire motion for each system. We must therefore
exclude dissipative forces like viscosity, internal resistance, etc.; we must require that only
internal forces may be present in each system, or, if external forces are present, they must
be produced by fixed masses that do not change with time. The force should in general
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depend only on position, so that V is a function (and indeed a single-valued function) only
of the coördinates p1, ... , pµ.

The values

which the coördinates and momenta assume at time t, when initially (at time zero) they
have the values

we call the values corresponding to the initial values. The energy E of the system is also
determined by the initial values (73), and this will similarly be called the value of the
energy corresponding to the initial values. Since the system is conservative, the energy has,
for a particular system at each arbitrary later time t, the same value E as at the initial time.

We shall consider next all systems that start from initial values filling some 2µ-fold
infinitesimal region enclosing the values (73). The region filled by the values of the
coördinates and momenta of all these systems after a definite time t will be called the region
g. The integral of the product of differentials of the coördinates and momenta, extended
over G, we denote by

and the same integral extended over the region g is denoted by

Then, according to Equation (55),

In each of these integrals we can replace one of the differentials, e.g., the differential of the
first momentum q1, by the differential of the energy E. Here we have to consider that all the
coördinates and all the other momenta are constants. We obtain therefore
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where, in the partial differentiation, the above-mentioned quantities (and of course the time)
are to be regarded as constant. Now we have:

Since V is a function only of the coördinates, the first term vanishes immediately;
furthermore, it is well known that if we express the time-derivative by a prime, then12

Therefore

and

Likewise,

where  represents the value of the time derivative of p1 at the initial time. Substitution

of this value into Equation (76) yields:

This equation is valid, whatever may be the region over which the integration is
extended, provided only that it is 2µ-fold infinitesimal, and that g is the region
corresponding to G. We can therefore choose the region G such that for all values of the
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other variables the energy lies between the same limits E and E+dE, while the other
variables, namely

lie in some arbitrary (2µ − l)-fold infinitesimal region G1, which includes the values

One of the momenta, Q1, is omitted, since it is already determined by the values of the
variables (78) and the energy.

For all systems satisfying these initial conditions, the energy will lie between the same
limits after time t; the (2µ − l)-fold infinitesimal region, which will be filled by the values
that the variables (78) have for this system, will be called the region g1. It encloses, of
course, the values of the coördinates and momenta corresponding to the initial values (79)
after time t. If one chooses the region in this way, then he sees that dE comes out in front of
the integral sign on both sides of Equation (77), so that this equation can be divided
through by dE, whereby one obtains:

Here the integral on the left is to be extended over g1, and that on the right over G1,
while E is constant. Equation (80) therefore has the following meaning : we consider many
systems, for all of which the energy has the same value, while the values of the variables
(78) lie initially in the (2µ − l)-fold infinitesimal region G1, and the missing momentum
variable q1 is determined by E. For all these systems, the energy will have the same value E
after time t, but the region filled by the values of the variables (78) after time t will be
denoted by g1 and will be the region corresponding to G1 after time t. Equation (80)
always holds then, if one extends the integral on the right over G1, and that on the left over
g1.

§32. Ergoden.*

We now imagine again an enormously large number of mechanical systems, all of
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which have the same properties described earlier. The total energy E will have the same
value for all of them. On the other hand, the initial values of the coördinates and momenta
will have different values for different systems. Let

be the number of systems for which, at time t, the variables (78) lie between the limits

while of course q1 is determined by the assumed value of the energy. The number of
systems for which the values of the variables (78) fill a (2µ − l)-fold infinitesimal region g1
enclosing the value

is therefore, at time t,

where the integration is to be extended over the region g1.
Instead of saying that the values of the variables (78) lie within the region g1 for a

certain system, we shall often use the expression: this system has the phase pq. We can
therefore say also : the expression (82) gives the number of systems that have phase pq at
time t.

The region within which, for all systems that have the phase pq at time t, the values of
the variables (78) lie at time zero, shall be the region G1. Since g1 includes the values (81),
G1 will of course include the initial values of the variables

corresponding to the values (81). Instead of saying that the values of the variables lie in G1
for a system, we shall use the expression: the system has the phase PQ. By analogy with
the notation used in Equation (82), the integral of the product of differentials of the
variables (78) extended over G1 shall be denoted by
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Since t can have any arbitrary value in Equation (82),

will be the number of systems that initially have phase PQ. Since these are the same
systems as the ones that have phase pq at time t, (82) and (84) must be equal to each other;
whence, taking account of Equation (80), it follows that:

The distribution of states among the systems will be called a stationary one if the
number of systems having any arbitrary phase pq does not change with time. Since the
number of systems that have phase pq at time t is given by the expression (82), one can
express the condition that the distribution of states be stationary by saying that for any
arbitrary values of the variables and for an arbitrary region g1 the value of the expression
(82) is completely independent of time, as long as g1 and the values of the variables (78)
remain the same. Thus if one equates the value of (82) at time zero to its value at some
other time t, he can divide by the integral over g1, and the condition that the state
distribution be stationary takes the form

in which the variables p, q can have any arbitrary values but must be the same on both
sides. Therefore one can also denote them by the corresponding capital letters, so that
Equation (86) takes the form:

Using the last equation, Equation (85) becomes13

Since the function ƒ no longer contains the time, it is better to omit t from the function sign
and to write :

Here, P1, P2, ... , Ρµ, Q2, ... , Qµ are completely arbitrary initial values; p1, p2, ... , pµ,
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q2,·... , qµ are the values of the coördinates and momenta that a system would acquire,
starting from these initial values, after an arbitrary time t.

Thus if we imagine a system S, starting from some initial values of the coördinates and
momenta, then in the course of its motion the coördinates and momenta will take various
different values. The coördinates and momenta are therefore functions of the initial values
and of the time. But in general there will be certain functions of the coördinates and
momenta (known as invariants) that have constant values during the entire motion: for
example, for a free system these would include the velocity components of the center of
gravity, and the components of the total angular momentum. Now suppose that we

substitute into the expression 

first the initial values and then the values of the coördinates and momenta at later times. In
order that the distribution be stationary, it is necessary and sufficient that the value of 

remain unchanged—or in other words,  should contain only those functions of the

coördinates and momenta that remain constant throughout the entire motion of a system and
depend only on the initial values, but not on the elapsed time. Thus  should be a

function only of the invariants.
The simplest case of a stationary state distribution is obtained by setting 

 equal to a constant; then

is the number of systems for which the variables (78) lie in the region g1 over which the
integration is to be extended. I once allowed myself to call the distribution of states among
an infinite number of systems described by this formula an ergodic one.

§33. Concept of the momentoid.

The state distribution mentioned at the conclusion of the preceding section will be
considered further in the following, and indeed we shall introduce other variables in place
of the momenta.

The kinetic energy L of a system is a homogeneous quadratic function of the momenta;
therefore

where in general the coefficients a are functions of the generalized coördinates p. As is well
known, a linear substitution of the form
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can always be found, for which one obtains

The exceptional cases where L cannot be brought into this form can never occur in
mechanical systems, and none of the coefficients α (which in general of course are
functions of the coördinates) can be zero or negative, since if they were the kinetic energy
would be zero or negative for some motions of the system. By multiplying all the r by the
same factor (which may also be a function of the coördinates) one can make the
determinant of the b equal to 1. In the following we shall denote by r the quantities that
have already been multiplied by such a factor. Of course they can conversely be expressed
linearly in terms of the q. I have proposed to call them the momentoids corresponding to the
coördinates p.

We shall imagine a µ-fold infinitesimal region H marked off in the q, and in the integral
over this region

by means of Equations (90) we introduce the r in place of the q as variables of integration.
We consider the p constant. Since the determinant of the b is equal to 1, it follows that

where the latter integral is to be extended over the region of the r corresponding to the
region H—i.e., over that region which includes all combinations of values of the r that (by
Eqs. [90]) correspond to all combinations of the values of the q contained in the region H.

We shall now introduce, in the integral on the right-hand side of Equation (76), the r
instead of the q as integration variables. This integral becomes, according to Equation (91),
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The latter integral is to be extended over the region corresponding to the region of
integration of the former (previously called g).

Now we shall introduce in this equation (just as we did in the derivation of Equations
(77) and (80) from (76)) the integration variable E on the left-hand side instead of q1 and
on the right-hand side instead of r1. Since

if follows that

Just as in deriving Equation (80) from (77), we can now choose the region in such a
way that, for all possible values of the other variables, E lies between the same limits E and
E+dE. Then we can divide through by dE, and we find that, for constant E,

If we substitute this in Equation (89), we find that for an ergodic distribution of states the
number of systems for which the variables

lie in an arbitrary (2µ − l)-fold infinitesimal region surrounding this value is equal to

where the integration is to be extended over this region.
The demarcation of this region is arbitrary. In the following, we shall specify it in the

simplest way possible so that the variables (92) will lie between the limits
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The number of systems for which these conditions are satisfied is, according to (93),

If we denote the product of the differentials dp1dp2 ... dpµ by dπ, and the product
drk+1drk+2 ... drµ by dk, then

is the number of systems for which the coördinates lie between the limits (94) and rµ is
between

while the other r can have all possible values consistent with the equation of kinetic energy.
The number of systems that are subject to the condition that their coördinates lie between
the limits (94) while their momenta are subject to no other condition than the constancy of
total energy is

The total number of all systems is

where, everywhere that a product of several differentials is expressed by a single
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differential sign, the integration over all values of these differentials is likewise expressed
by a single integral sign.

§34. Expression for the probability; average values.

The expressions 1. dN/N; 2. dN1/N; and 3. dN2/N are the definitions of the following
probabilities: 1. that for a system, the coördinates and momentoids lie between the limits
(94) and (95) ; 2. that the coördinates lie between the limits (94) and the momentoid rµ lie
between the limits (98); 3. that the coördinates lie between the limits (94).

For all systems whose coördinates and momenta lie between the limits (94) and (95), the
kinetic energy  corresponding to the first momentoid is the same. (The number of

such systems is given by Eq. [96].) The mean value of this quantity for all systems whose
coördinates remain subject to the conditions (94) is therefore

where the integral sign expresses simply an integration over all possible values of the
momentoids. The mean value of  for all systems is in general

The mean value of the potential function V for all systems, however, is
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The integration over the momentoids can easily be performed as follows. If we let A and α
be constants, then one finds by the substitution

the following equation :

B and Γ denote the well-known Euler [beta and gamma] functions.
We next use this formula to calculate the integral
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We denote the quantity

by Ak and the quantity E — V by Αµ. Then

hence

The momentoid r2 takes its most extreme possible values when r1 = 0, in which case 
. The integration over r2 is therefore to be taken between these

limits. If one performs this integration using Equation (104), he finds:
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If one also performs the integration over r3 according to Equation (104), then it follows
that:

From this result we can find the integral of (97) by leaving out the last differential,
performing the other integrations exactly, as we have already done in the expression for JK,
and then setting K = − 1. Then it follows that
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If one denotes the last expression by γ, then the mean value of  in all systems

for which the coördinates lie between the limits (94) is

Evaluation of the integral yields

If one allows κ to be arbitrary in Equation (105) and performs all the integrations, then it
follows that :
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By means of the last two formulas the integrations over the r in all the previous
expressions can be written down immediately, and dN1, dN2, and  will be

calculated in closed form. To perform the integrations over the p, a knowledge of the
potential function V would of course be required. One obtains, for example, for the
probability that, for a system that satisfies the conditions (94), rµ lies between rµ and
rµ+drµ, the value

If one sets , then

hence the probability that, for a system satisfying the conditions (94), rµ is positive and 
 lies between x and x+dx, is:
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Since for negative τµ an equal value of  is equally probable, the probability that 

 lies between x and x+dx for either positive or negative rµ is equal to

Here rµ may be any arbitrary momentoid. If µ is very large, and one sets Αµ = μξ, then the
above expression approaches the limit

From the general formulas one finds, furthermore:

in agreement with Equation (105a). Since the same holds of course for the part of the
kinetic energy corresponding to the other momentoids, it follows that :

Thus however the limits (94) may be chosen, the following theorem will always hold in the
case of our assumed (ergodic) distribution of states: we pick out of all systems those for
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which the coördinates lie between the limits (94). We denote by  the kinetic energy

corresponding to some one momentoid, and calculate the average of its values for all
specified systems at some time t. This average always comes out to be the same for all
times and all values of the index i. It is equal to the µ’th part of the energy E − V, which has
the form of a kinetic energy in this case.

The integration over the coördinates can of course only be indicated formally, and one
finds for the mean value of  for all systems, for all values of the index i,

Of course this equality of the mean values of the kinetic energy corresponding to each
momentoid has only been proved for the assumed (ergodic) distribution of states. This
distribution is certainly a stationary one. In general there can and will be other stationary
distributions for which this theorem does not hold.

In the special case that V is a homogeneous quadratic function of the coördinates, as L is
of the momenta, the integration over coördinates can be performed by the same method as
that used for the momenta. Then one obtains from Equation (103)

if one determines the additive constant in the potential in such a way that V vanishes when
all the material points are at their rest positions.

Before I proceed to the application of these theorems to the theory of gases with
polyatomic molecules, I will first adduce a completely general argument which is irrelevant
from a mathematical viewpoint, but calls on experimental evidence; it may perhaps justify
the supposition that the significance of these theorems is not restricted to the theory of
polyatomic gas molecules.

§35. General relationship to temperature equilibrium.

We now consider an arbitrary warm body as a mechanical system obeying the laws we
have deduced up to now—in other words, as a system of atoms, or molecules, or rather
some kind of constituents whose positions are determined by generalized coördinates.

Pure Mathematical Physics



279

Experience shows that whenever a body has the same thermal energy and is subjected
to the same external conditions, it eventually comes to the same state, no matter what its
initial state may have been. In the sense of the mechanical view of nature, it thus happens
that only certain average values—the mean kinetic energy of a molecule in a finite part of
the body, the momentum that a molecule transports on the average through a finite surface
in a finite time, and so forth—are accessible to observation. However, these average values
are the same in by far the greatest number of possible states. We call each state that has this
particular average value a probable state.

Thus if the initial state is not a probable state, the body will εοοη pass over to a probable
state if the external conditions remain fixed, and it will persist in this state during further
observations, so that although its state changes progressively and occasionally (within a
very long time period exceeding all possibility of observation) it will indeed deviate
considerably from a probable state, nevertheless it gives the appearance of having attained a
stationary final state, since all observable mean values remain fixed.

The mathematically most complete method would be to take account of the initial
conditions from which a given warm body happened to evolve to a particular thermal state,
which then persists for a long time. However, since the mean values will always be the
same no matter what the initial state may have been, we can also obtain the same mean
values if we imagine that instead of a single warm body an infinite number are present,
which are completely independent of each other and, each having the same heat content
and the same external conditions, have started from all possible initial states. We thus obtain
the correct average values if we consider, instead of a single mechanical system, an infinite
number of equivalent systems, which started from arbitrary different initial conditions. Now
these mean values must be the same at all times, as is certainly the case if the average state
of the aggregate of all systems remains stationary, and the state that we consider should not
be an individual singular state, but rather all possible states must be included.

These conditions are satisfied if we imagine infinitely many mechanical systems, among
which there is initially a state distribution such as the one we called ergodic in §32. We saw
there that this state distribution is stationary, and that it includes all possible states consistent
with the given kinetic energy.

There is therefore a certain probability that the mean values found in §34 are valid not
only for the aggregate of systems but also for the stationary final state of each individual
warm body, and that in particular in this case the equality of the mean kinetic energy
corresponding to each momentoid is the condition of temperature equilibrium between the
different parts of the warm body. That the condition of temperature equilibrium of warm
bodies has a very simple mechanical meaning independent of their initial state will thereby
be made probable, in that compression, expansion, displacement, etc. of the individual parts
does not affect this equilibrium.

If we substitute for our general system a system formed from two different gases
separated by a solid heat-conducting dividing wall (which is clearly a special case of the
general system considered earlier) then we can interpret one of the r as the velocity
component of a molecule multiplied by its mass. According to Equation (110) the mean
kinetic energy of the center of gravity of a molecule must be equal for both gases, whence
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Avogadro’s law follows.
This mean kinetic energy must be equal to the average kinetic energy corresponding to

an arbitrary momentoid which determines the molecular motion of any body in thermal
equilibrium with the gas. Hence, if we use a perfect gas as thermomet-ric substance, the
increment of kinetic energy corresponding to each such momentoid must be equal to the
temperature increment multiplied by a constant that is the same for all momentoids. The
heat present in the form of kinetic energy of molecular motion in any such body would
therefore be equal to the product of the absolute temperature and the number of
momentoids determining the molecular motion, multiplied by a constant that is the same for
all bodies and all temperatures.

If we substitute for one of the mechanical systems a pure gas with compound molecules,
which is again a special case, then it follows that for each molecule the mean kinetic energy
of the center of gravity must be equal to three times the mean kinetic energy corresponding
to any one of the momentoids determining the internal motion of the molecules. We shall
derive this theorem (insofar as it concerns gases) in another way in the following sections.

We can assign six of the momentoids r of a system subjected only to internal forces to
the three components of total momentum and the three components of total angular
momentum, referred to three perpendicular axes. For ergodic systems, the mean kinetic
energy corresponding to each of these is equal to that for any other momentoid, and hence
is vanishingly small when the system consists of many atoms. Our considerations are
therefore relevant to the case of nonrotating bodies at rest, subject to internal forces only.

Just as we have restricted ourselves in §32 to systems in which the energy has the same
value, we can still further restrict ourselves to systems in which other quantities that are
constant during the entire motion of a system have the same values, for example the
velocity components of the center of gravity or the components of total angular momentum,
as long as the system is subject only to internal forces. One then has to introduce the
differentials of these quantities in place of the differentials of momenta, just as we
introduced the energy differential in §31. One thus obtains other stationary state
distributions which are not ergodic. The corresponding theorems are not necessarily of no
mechanical interest ; however, we shall not go into them here, since we shall not need them
for the sequel.14

* The reader accustomed to modern notation should note that Boltz-mann uses p for position and q
for momentum, not the other way around.

1 Jacobi, Vorlesung. üb. Dynamik, 19th lecture, Equation 4, p. 146.
* For references see the footnotes for §29.
2 Exceptions to the continuity must be limited to individual points.
3 Naturally we have similarly
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where

All the integrals over x are to be extended over an arbitrary region G, and those over ξ are to be
extended over the corresponding region g.

4 Or

5 Kirchhoff, Vorles. über Theorie d. Wärme (Teubner, 1894), p. 143.
6 Boltzmann, Wien. Ber. 74, 508 (1876); Bryan, Phil. Mag. [5] 39, 531 (1895).
7 The meaning of this expression was discussed in §27.
8 Jacobi, Vorlesungen über Dynamik, 9th lecture, p. 71, Eq. (8). Thomson and Tait, Treatise on

Natural Philosophy, new edition, Vol. I, Part I, p. 307, Art. 319; German edition, p. 284. Rausenberger,
Mechanik (Leipzig, 1888), Vol. I, p. 200.

9 Liouville, J. de Math. 3, 348 (1838).
10 Jacobi, Vorlesungen über Dynamik, p. 93.
11 Boltzmann, Wien. Ber. 63, 397, 679 (1871), 58, 517 (1868). Maxwell, “On Boltzmann’s theorem,”
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Trans. Camb. Phil. Soc. 12, 547 (1879), Scientific Papers 2, 713.
12 Jacobi, Vorlesungen über Dynamik, 9th lecture, p. 70, Eq. (4).
* This word is left untranslated since the English equivalent, “microcanonical ensemble,” had not yet

come into use when Boltzmann wrote this book. (See Gibbs, Elementary Principles in Statistical
Mechanics [New York, 1902], chap, x.) Ergoden should not be confused with “ergodic systems,” i.e.,
hypothetical mechanical systems that have the (impossible) property that their coördinates and momenta
eventually take on every value consistent with their fixed total energy. Boltzmann never used the word
Ergoden for such systems, but “ergodic” came to be applied to them following the discussion published
by P. and T. Ehrenfest in the Encyklopädie der mathematischen Wissenschaften (1911). Although the
Ehrenfests made a valuable contribution by their critical analysis of the foundations of gas theory, they
unfortunately misrepresented the opinions and even the terminology of Boltzmann and Maxwell.
Boltzmann did discuss ergodic systems without calling them that (Wien. Ber. 63, 679 [1871], J. r. ang.
Math. 100, 201 [1887]), but he did not make the foundations of gas theory depend on their existence, nor
did he even make a clear distinction between going through every point on the energy surface, and going
infinitely close to every point. Ergoden were first introduced explicitly in 1884 (Boltzmann, Wien. Ber.
90, 231 [1884]; J. r. ang. Math. 98, 68 [1885]) although both Maxwell and Boltzmann had previously
used the same device in making calculations. Boltzmann used the word “isodic” for the systems that we
now call ergodic. Their impossibility was proved independently by Plancherel and Rosenthal, Ann.
Physik [4] 42, 796, 1061 (1913).

13 This (or the equivalent Eq. [88]) is a necessary condition that the distribution be stationary; it is
also sufficient, since from it and Eq. (85) one can derive Eq. (87) for any P, Q, or Eq. (86) for any p, q;
and these latter two equations are the mathematical expression of the fact that the distribution is
stationary.

14 Cf. Boltzmann, Wien Ber. 63, 704 (1871). Maxwell, Trans. Camb. Phil. Soc. 12, 561 (1878),
Scientific Papers 2, 730.
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CHAPTER IV

Gases with compound molecules.

§36. Special treatment of compound molecules.

We shall now return to the general equations of §26, which are based on no hypotheses
other than those from which the principles of mechanics are derived. We apply them to the
following special case : a gas is found in a container enclosed on all sides by elastic walls.
The molecules themselves need not all be of the same kind; thus we do not exclude the
case of a mixture of several gases.

Each molecule will be considered as a mechanical system, as defined in §25. In gas
theory, it is usually assumed that the centers of any two molecules are, on the average, so
far apart that the time during which a molecule interacts with another one is small compared
to the time during which it is subject to no such interaction. However, we shall not exclude
here the possibility that two or more molecules may interact for a longer time, as would
happen in the case of partially dissociated gases, as long as the number of molecules
simultaneously interacting at one place is very small compared to the total number of
molecules in the container. One always must conceive of only small individual groups of
molecules interacting with each other, whose distance from all other molecules is very large
compared to their spheres of action. Consequently each molecule will traverse a very long
path between successive interactions, so that the frequencies of different kinds of collisions
can be calculated by probability theory.

The position of a molecule of a certain kind, which we shall call the first, as well as the
relative positions of its constituents, will be determined by µ generalized coördinates.

We call these coördinates, and the corresponding momenta q1, q2, ... , qµ,

The corresponding momentoids will be r1, r2, ... , rµ.
Three of the coördinates will determine the absolute position of some point in the

molecule, for example its center of gravity. These will be the three coördinates p1, p2, and
p3. In order to have a definite representation, we assume that they are the rectangular
coördinates of the center of gravity of the molecule in question. The rotation of the
molecule about its center of gravity, and the relative positions of its constituents, are
therefore determined by the other coördinates.

If there is no external force, each place within the container is equivalent. Hence all
possible values of the three coördinates p1, p2, and p3 are equally probable.
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However, in order to make the problem as general as possible, we shall not exclude the
presence of external forces. Then, aside from the forces between the molecules and the wall
of the container, we still have three other kinds of forces: 1. the internal forces of a
molecule, i.e., the intramolecular forces which act between different parts of the same
molecule; 2. external forces, for example gravity, exerted from outside the container on the
molecules of the body; 3. the interaction force which acts between two, or eventually more
than two, different molecules, if these come unusually near each other.

The force function of the first two kinds of force should depend only on the coördinates
of the molecules concerned; the force function of the third kind of force will depend on the
coördinates of all the interacting molecules. We assume that the external forces vary very
slowly from point to point inside the container, so that we can decompose this interior
region into volume elements dp1dp2dp3 with the following property: although each such
volume element always contains a large number of molecules of each kind, the external
force on a molecule does not change appreciably as it moves around inside this volume
element. Just as, when there are no external forces at all, all places inside the container are
equivalent, so in this case all places inside each such volume element are equivalent.

§37. Application of Kirchhoffs method to gases with compound molecules.

At the initial time (which we again call time zero) let the number of molecules of the
first kind whose centers of gravity are found in any parallelepiped dP1dP2dP3, for which
the values of the variables

lie between the limits

and which are not interacting with any other molecules be:

Here A1 is a constant that is different for the different kinds of molecules, while h is a
constant that has the same value for all kinds of molecules. Let E1 be the value of the sum
of the kinetic energy of a molecule and the potential energy of the intramolecular and
external forces acting on the molecule at the initial time. The negative partial derivatives of
the potential energy function with respect to the coördinates give the components of the
force, so that E1 represents the total energy of a molecule, whose value remains constant as
long as the molecule does not interact with others.

The number of molecules of the first kind not interacting with others, for which the
variables (112) (defined in the previous section) initially lie in a 2µ-fold infinitesimal region
G that includes the value
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is therefore

where the integration is to be extended over the region G. The center of gravity should
have enough room to move around in G so that, although all variables are confined within
very narrow limits, the expression (115) is still a very large number.

When a molecule of the first kind moves under the influence of internal and external
forces, without interacting with other molecules, and the variables (112) start from the
initial values (114), then after time t they will have the values

These will be the actual values of these variables, whereas (112) only gives the names of

the variables. Let ∊1 be the value of the total energy at time t, so that according to the
conservation of energy principle

If, furthermore, all molecules for which the values of the variables (112) initially fill the
region G move without interacting with other molecules, then the values of these variables
after time t will fill a region which we call the region g. It includes of course the values
(116).

If there were no interaction between the molecules at all, then the molecules whose
variables lie in G at time zero must be the same ones whose variables lie in g at time t. If we
denote the number of the latter by dn1, then dn1 would be equal to the expression (115),
hence

But according to Equation (55),

where the latter integration is to be extended over the region g, corresponding after time t to
the region G. Taking account of this fact, and of Equation (117), one finds:
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This expression differs from (115) only in that the values of the variables (116) appear in

places of the values (114), ∊1 in place of E1 and g in place of G. However, since Equation
(115) should be valid for any values of the variables and any regions enclosing them, (118)
must also represent the number of molecules of the first kind for which the values of the
variables (112) were initially in g. Hence the number of molecules of the first kind for
which the values of the variables (112) lie in g has not changed during this time. Since,
finally, the region G and hence also the region g are chosen completely arbitrarily, this must
hold for any arbitrary region. In other words, the number of molecules for which the
variables (112) lie in any arbitrary region does not change during an arbitrary time t. The
distribution of states remains stationary, as long as only the intramolecular motion is
considered.

§38. On the possibility that the states of a very large number of molecules can
actually lie within very narrow limits.

We have assumed up to now that the regions G and g are very narrowly bounded, and
yet at the same time we have assumed that the values of the variables for a very large
number of molecules lie within these regions. If there are no external forces, this involves
no difficulty. For then all points within the entire gas, when chosen as the position of the
center of gravity of a molecule, are equivalent. The region

within which the center of gravity of a molecule lies does not then need to be infinitesimal,
but rather it can be chosen arbitrarily large, since indeed we may set it equal to the entire
volume of the container, and this can be chosen arbitrarily large. It is only the region within
which the other variables p4, ... , qµ are enclosed—which we call symbolically the region
G/Г—which must be (2µ − 3)-fold infinitesimal.

We have therefore two quantities, one of which (namely the region Γ) can be chosen
arbitrarily large, whereas the other (G/Г) has to be made very small; and there is no relation
between the size of these two regions. Indeed, the differential dp4 ... dqµ expresses the fact
that we can choose G/Г to be as small as we wish. However, for any particular such
choice, we can choose Γ so large than a large number of molecules will always lie in G.

However, if external forces are present, then there is an upper limit to the size of the
region Γ. In particular, this region must be chosen so small that the external force can be
considered constant inside it. Then G and g are to be considered 2µ-fold very small; and the
condition that the number of molecules for which the values of the variables lie within one
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of these regions must be very large can be satisfied only if the number of molecules in unit
volume is infinite in the mathematical sense. Hence the satisfaction of the above conditions
in this case remains merely an ideal; yet we still expect agreement with experience, for the
following reasons.

In the molecular theory we assume that the laws of the phenomena found in nature do
not essentially deviate from the limits that they would approach in the case of an infinite
number of infinitesimally small molecules. This assumption was already made in Part I, for
reasons given in §6. It is indispensable for any application of the infinitesimal calculus to
molecular theory; indeed, without it, our model which strictly deals always with a large
finite number, would not be applicable to apparently continuous quantities. This
assumption will seem best justified to those who have carefully considered experiments for
the direct proof of the atomic constitution of matter. Even in the smallest neighborhood of
the tiniest particles suspended in a gas, the number of molecules is already so large that it
seems futile to hope for any observable deviation, even in a very small time, from the limits
that the phenomena would approach in the case of an infinite number of molecules.

If we accept this assumption, then we should also obtain agreement with experience by
calculating the limit that the laws of the phenomena would approach in the case of an
infinitely increasing number and decreasing size of the molecules. In calculating the latter
limit, we again have in fact two quantities, which can independently be made arbitrarily
small: the size of the volume element, and the dimensions of the molecules. For any given
choice of the former, we can always choose the latter so small that each volume element
still contains very many molecules, whose properties are closely defined within the given
narrow limits.

If, with Kirchhoff, one interprets the expressions (115) and (118) as simply statements
of probabilities, then one can allow them to be fractions or even very small quantities; yet
one thereby loses their perspicuousness. We shall come back to this point at the end of the
book (§92).

§39. Treatment of collisions of two molecules.

Up to now we have not considered the interactions of two molecules, and we still have
to seek the conditions under which the initial distribution of states will not be altered by
collisions. For this purpose we must seek the probability of the occurrence of groups of
several molecules. We shall first restrict ourselves to the case that the simultaneous
interaction of more than two molecules occurs so extraordinarily seldom that it is
completely negligible. We can then limit ourselves to the consideration of molecule pairs.

The number of molecules of the first kind for which the variables (112) initially lie in the
region G enclosing the values (114), when none of the molecules are assumed to interact
with each other, will again be given by Equation (115).

Similarly the coördinates and momenta that determine the position and state of a
molecule belonging to another type (called the second) will be denoted by
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We shall ignore other kinds of molecules for the present. Nevertheless, the extension of our
results to simultaneous interactions of several molecules does not offer any difficulty,
though the expressions would become more complicated.

The number of molecules of the second kind for which the variables (119) initially lie in
a region H enclosing the values

and of which none are assumed to interact with other molecules, is equal to

where the integration is to he extended over the region H. A2 is a constant. E2 is the total
energy of the molecules of the second kind considered.

The centers of gravity of all these molecules of both kinds shall lie within a space in
which the external force can be considered constant, and will be completely randomly
distributed. Thus in the probability calculation we can treat as completely independent the
two events, that for a molecule of the first kind the variables lie in the region G, and that for
a molecule of the second kind they lie in the region H. Hence the number of molecule pairs
for which one molecule belongs to the first kind and has its variables in G, while the other
belongs to the second kind and has its variables in G, is the product of the two expressions
(115) and (121) :

We shall express the integration by a single integral sign, and we call the entire region of
integration the region J, comprising the aggregate of G and H.

Expressions similar to (122) will of course hold when both molecules belong to the
same kind.

The orders of magnitude of the various regions are to be chosen very different. When no
external force acts, the region

within which the center of gravity of the first molecule lies will be chosen equal to the
entire interior space of the container enclosing the gas—in other words, arbitrarily large.
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Then Ρµ+1 means the difference of the x-coördinates of the centers of gravity of the two
molecules, and similarly Ρµ+2 and Ρµ+3 are the differences of the corresponding y- and z-
coördinates. The validity of Equation (121) is not hereby affected, since in that equation
Ρµ+1, Ρµ+2, Ρµ+3 were simply the coördinates of the center of gravity of a molecule of the
second kind, for which any place in space is equally probable. With this extension of the
region Γ, Equation (115), namely

gives the number of molecules of the first kind in the entire container, for which the
variables (113) lie in the (2µ − 3)-fold infinitesimal region ∫dP4 ... dQµ To each of these
molecules corresponds a volume element, similarly situated with respect to its center of
gravity,

the number of these volume elements is therefore equal to the number dN1 given by
Equation (115), and their total volume is equal to dΝ1∫∫∫dΡµ+1dΡµ+2dΡµ+3.

The total number of molecules of the second kind lying in all these volume elements for
which the other variables lie in the region

is therefore, according to Equation (121),

However, this is equal to the number dN12 of molecule pairs for which all variables lie in
the region J, which agrees with Equation (122). This formula, which we derived earlier
from the law of probability of combinations of several events, is therefore obtained again
by a simple enumeration.

If external forces act, then the region
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must be chosen so small that the external force does not change noticeably therein; on the
other hand, it must be larger than the entire space that the spheres of action of two
interacting molecules occupy, so that it contains an enormous number of molecule pairs, for
which the variables lie in the region J.

The region for the center of gravity of the two molecules must however be considered
infinitesimal compared to Γ.

If all regions are infinitesimal, and there is only a finite number of molecules in unit
volume, then of course it is impossible for a large number of molecules to have the values
of their variables in this region, defined by mathematically infinitesimal narrow limits. We
therefore set ourselves the problem of finding the limiting laws of the phenomena for an
infinite number of molecules in unit volume, in the presence of external forces, and then
assume that the actual phenomena will not noticeably deviate from these limits.

By pµ+1, pµ+2, pµ+3 we mean, instead of the coördinates of the center of gravity of the
second molecule, the differences of the coördinates of the centers of gravity of the two
molecules. As remarked before, this change does not affect the validity of Equation (121).
Then, just as earlier in the absence of external forces, we have to calculate the number
dN12, for which one again obtains the result (122).

Since we are at present ignoring the case where more than two molecules interact
simultaneously, we have to consider only all molecule pairs that are initially interacting. We
first consider a pair in which one molecule belongs to the first kind and the other to the
second. The number of such pairs initially interacting, for which the positions and velocities
lie in a 2(µ+v)-fold infinitesimal region J, will be given by the expression

This region J will include certain given values of the variables (112) and (119), which we
call as before P1 ... Qµ and Ρµ+1 ... Qµ+v, and as before we call these the values (114) and
(120), although of course they do not agree numerically with the values thus denoted
earlier, since now there is an interaction where there was none before. In Equation (123)
the integration is to be extended over the region J. Ψ is the value of the potential function of
the interaction force—i.e., the interaction that occurs during this time between the
constituents of the two molecules. The additive constant in Ψ is to be chosen such that this
function vanishes for all distances of the molecules at which there is no interaction. We
denote by pµ+1, pµ+2, and pµ+3 the differences of the centers of gravity of the two
molecules.

For any molecule pair considered, the position of the center of gravity of the first
molecule will be equally likely to be at any point within a part of the volume of the
container, as long as this part is so small that the external forces can be considered constant
within it.

§40. Proof that the distribution of states assumed in §37 will not be changed
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by collisions.

The formula (123) is to be considered as the most general one, which also includes
(122), since if the two molecules are not interacting initially, Ψ = 0 and the region J
decomposes into two separate regions G and H, so that (123) reduces to (122).

A formula similar to (123) will likewise hold if the two interacting molecules belong to
the same kind.

We now allow an arbitrary time t to elapse, which however should be so short that one
may neglect the possibility that a molecule interacts more than once with another one
during this time.

If, for a pair of unlike molecules, the position of the first is initially (114) and the
position of the second is (120), then after a time t has elapsed, these same variables will
have the values

The corresponding values of the total energy (excluding the interaction energy) will be

denoted by ∊1 for the first molecule, and ∊2 for the second. The value of the interaction
potential function is ψ. The values (124) are of course again numerically different from the
values (116) and (119) although they are denoted by the same letters.

The region filled by the values of the variables characterizing the state of the two
molecules at time t, when they originally filled the region J, will be called the region i.

We can consider the aggregate of the two molecules as one mechanical system, for
which therefore the equation analogous to Equation (55) holds, so that one has

where the second integral is to be extended over the region J, and the first over the
corresponding region i. The validity of this equation is independent of whether the
molecules are interacting either initially or at time t. It is also valid if the molecules never
interact during t, in which case each of the two regions J and i decomposes into two
separate regions, the former into G and H, the latter into g and h. Furthermore, in general,
according to the principle of conservation of energy,

The latter equation also holds independently of whether an interaction takes place or not,
since if there is no interaction the potential function of the interaction force simply vanishes.

The number of molecule pairs for which the values of the variables determining the
positions and states initially fill the region J is given in general by the expression (123).
This expression reduces, when one takes account of Equations (125) and (126), to
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where the integration is to be extended over the region i corresponding to the region J.
However, the molecule pairs for which the values of the variables fill the region J at

time t are identical with those for which these values fill the region i at time t. Equation
(127) therefore gives also the number of the latter type of molecule pair. The calculation of
the number of molecule pairs for which the values of the variables initially fill the region i
can again be performed with the generally valid formula (123). One simply has to replace

E1, E2, Ψ and J by ∊1, ∊2, ψ and i. One thereby obtains again just the expression (127),
regardless of whether there is any interaction at time zero or at time t or within this interval.
However, since the region J, and hence also the region i determined by J, are completely
arbitrary, we see that for an arbitrarily chosen region the number of molecule pairs for
which the values of the variables lie within the region is the same at the initial time and at
time t. The state distribution therefore remains stationary when one takes account of
collisions.

One sees at once that he can apply completely analogous considerations to molecule
pairs in which both molecules are of the same kind ; and that the same considerations can
be extended to the case where more than two kinds of gas are present in the container.

Up to now we have chosen the time t so small that we could ignore molecules that
interacted with others twice during this time. But, since we saw that exactly the same
distribution of states holds at time t as at time zero, the same method of reasoning can be
applied again to another time interval of length t, over and over again. One therefore sees
that the state distribution must remain stationary. Also, our assumption that in calculating
the probability of a particular kind of encounter of two molecules, the two events that the
two molecules are found in certain states can be considered independent, must also be true
at all later times. For, according to our assumptions, each molecule moves past a very large
number of molecules between successive interactions, so that the state of the gas at the
place where the molecule experiences one interaction is completely independent of the state
of the gas at the place of its previous interaction, and is determined only by the laws of
probability. Naturally one has to remember that laws of probability are just that. The
possibility of fluctuations hardly comes into consideration; yet when the number of
molecules is finite, the probability of a fluctuation, while very small, is not zero; it can
actually be calculated numerically in any particular case by the laws of probability, and it
vanishes only for the limiting case of an infinite number of molecules.

§41. Generalizations.

We have still imposed a restriction on ourselves by the assumption that the case when
more than two molecules interact plays no role. However, one perceives that this restriction
was made only in order to simplify the proof, whose validity is completely independent of
it. Likewise, just as we have discussed the probability of occurrence of certain molecule
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pairs, we can also try to calculate the probability of occurrence of groups of three and more
molecules, and it will be found that such interactions of three or more molecules do not
change the law that the state distribution represented by a formula similar to (123) is a
stationary one. Also, the effect of the wall (not previously mentioned) cannot disturb the
stationary character of this state distribution, in the case where the molecules rebound
directly from it as if it were another identical gas. Any other assumed property of the wall
would of course require new calculations. Yet it is manifest that even then, if the container
is large enough, its effect would not extend into the interior.

Of course we have not yet proved that the state distribution expressed by Equation (123)
is the only possible stationary one under all circumstances. Indeed such a general proof
cannot be given, since in fact there are other special state distributions which can likewise
be stationary. Such cases would for example, be encountered if all the gas molecules
consisted of material points that all originally move in a plane or in a straight line, and the
wall is everywhere perpendicular to this plane or line. But these are special distributions in
which all variables take only a relatively small number of their possible values, whereas
Equation (123) provides a distribution for which all variables take all their possible values.

It appears scarcely conceivable that there could be any other distributions which are
stationary and for which all variables can run through all their possible values. In addition,
there is a complete analogy between the state distribution represented by Equation (123)
and that for a gas of monatomic molecules. This analogy has a definite foundation.

Just as in the game of Lotto, any particular quintuple is not a hair less probable than the
quintuple 12345; the latter is distinguished from the others only by having a definite
sequential property lacking in the others. Likewise, the most probable state distribution has
this property only because it shares the same observable average value with by far the
greatest number of equally possible state distributions.1 Hence that state distribution is the
most probable which, without altering this mean value, allows the greatest number of
permutations of the individual values among the individual molecules. I have already
shown in Part I, §6, how the mathematical condition for this property leads to Maxwell’s
distribution in the case of monatomic gas molecules. Without going into that further, I will
remark that the validity of the considerations established there is in no way limited to the
case of monatomic molecules; on the contrary, similar considerations can also be used in
the case of compound molecules. In this case the momentoids corresponding to the
generalized coördinates play exactly the same role that was played by the velocity
components of the center of gravity in the case of monatomic molecules; the potential
function of the internal and external forces plays the same role as was played earlier by the
potential of the external forces alone, so that we obtain Equation (123) directly as a
generalization of the formulas found in Part I.

That the formula (123) is the only one corresponding to thermal equilibrium, we shall
try to make probable on several grounds in Chapter VII; we shall also give a direct proof in
one of the simplest special cases. At this point, however, in order not to exhaust ourselves
by too long a sojourn with abstract matters, we shall be content with the arguments here
advanced in favor of Equation (123), and draw from it the most important consequences.

Pure Mathematical Physics



294

§42. Mean value of the kinetic energy corresponding to a momentoid.

We shall next consider a mixture of several gases, none of which is considered to be
partly dissociated. At any time the number of molecules interacting with each other will be
vanishingly small compared to the rest, and it is therefore permitted to take account of only
the noninteracting molecules in calculating average values.

If we introduce instead of the momenta q1, q2, ..., qµ the corresponding momentoids r1,
r2, ... , rµ, then the number of molecules for which the coördinates and momentoids lie in
any region K enclosing the values

is given by the expression

which is valid for any kind of gas in the container, since the determinant for the
transformation from the variables q to the variables r is equal to 1. The constant h must
have the same value for all gases present in the same container. The constant A, however,

can have a different value for each kind of gas. ∊ is the sum of the kinetic energy and the
potential energy of intramolecular and external forces of a molecule; the potential function
will be called V.

For the kinetic energy of a molecule one has, as we saw, the expression

where we again denote by the first term the part of the kinetic energy corresponding to the
first momentoid.

If we choose the region K in the simplest way—i.e., so that it includes all combinations
of values for which the coördinates lie between the limits

and the momentoids between the limits

—then
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This is the number of molecules of any particular kind for which the values of the variables
are enclosed between the limits (130) and (131).

The mean value of the part  corresponding to the momentoid ri has for arbitrary

i the value

where the single integral sign indicates an integration over all possible values of the
differentials.

If one integrates over ri in both numerator and denominator, then he can bring outside
the ri integral in both cases a factor not depending on ri. These factors cancel in numerator
and denominator. The integral over ri in the numerator is

while that in the denominator is

In order to find the limits of integration, we recall that for the velocity p′ each coördinate
may go through all values from −∞ to + ∞. The r are linear functions of the p′ and can
therefore run through all values from −∞ to +∞ likewise. These are therefore the limits of
integration for ri, and one obtains

as can be seen by integrating by parts in the first integral, or by calculating both integrals
using Equation (39), §7 of Part I. One can now put the factor  in front of all the integral

signs in the numerator, and the factor 2 in the denominator. The expressions multiplying
these factors are the same in both numerator and denominator, so one can cancel them and
obtain :
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 means the average value of the total kinetic energy of a molecule of the kind considered.

Hence the kinetic energy corresponding to each momentoid has the same value on the
average, and indeed this value is equal for all kinds of gas, since h has the same value for
all kinds of gas. Similarly, as in Part I, §19, this theorem can also be extended to gases that
are in thermal equilibrium with each other by means of a heat-conducting partition.

Since we have everywhere integrated over each p and r independently, and in general
we have always considered the p as independent variables, we have continually assumed
that there is no relation between the generalized coördinates p1, p2, ..., pµ. µ is therefore the
number of independent variables required to determine the absolute position of all
constituents of a molecule in space, as well as their positions relative to each other. One
calls µ the number of degrees of freedom of the molecule, conceived as a mechanical
system.

One can always choose three of the r to be the three velocity components of the center
of gravity of a molecule in the three coördinate directions, since the total kinetic energy of a
system is always the sum of the kinetic energies of the motion of the center of gravity and
of the motion relative to the center of gravity.2 The product of half the total mass of a
molecule and the mean square of one of these velocity components of its center of gravity-
is then the mean kinetic energy corresponding to this momentoid; according to Equation
(134), it has the value  for each of the coördinate directions. The sum of the three

average kinetic energies for the three coördinate directions is however equal to the product
of half the total mass of the molecule and the mean square velocity of its center of gravity.
This latter product we shall call the mean kinetic energy of the motion of the center of
gravity, or of the progressive motion of the molecule, and denote it by . Therefore

The mean kinetic energy of the motion of the center of gravity of a molecule is therefore
the same for any gases in thermal equilibrium with each other. From this there follows, as
we saw in §7 of Part I, the Boyle-Charles-Avogadro law, which therefore appears to have
a kinetic foundation for gases with compound molecules as well.3

§43. The ratio of specific heats, κ.

We shall now assume for a moment that only one kind of gas is present in the container,
and that the external forces can be ignored, so that the intramolecular and intermolecular
interaction forces, and the opposing pressure of the wall of the container against the gas, are
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the only forces that need be considered.
As in Part I, §8, we denote by dQ2 the amount of heat used to raise the kinetic energy of

motion of the centers of gravity of the molecules, and by dQ3 the heat used to increase the
kinetic and potential energy of the intramolecular motion, when the gas experiences a
temperature increase dT. The ratio dQ3/dQ2 will be denoted by β, as in Part I, §8. The heat
will always be measured in mechanical units.

The quantity dQ3 can be decomposed naturally into two parts: a part dQ5, which is used
to increase the kinetic energy of intramolecular motion, and a part dQ6, which is used to
increase the value of the potential function of the force acting between the constituents of a
molecule (intramolecular force).

We have denoted by  the mean kinetic energy of the motion of the center of gravity of
a molecule. If n is the total number of molecules in the gas, then the total kinetic energy of
the progressive motion of the molecules is ; hence . Since we have

denoted by  the total mean kinetic energy of a molecule, then  is the mean

kinetic energy of intramolecular motion of a molecule. The kinetic energy of the
intramolecular motion of all molecules in the gas is therefore  or, according to

Equation (135), , whence it follows that

If we denote the average value of the potential for a molecule by , then

The latter quantity cannot be calculated unless we make some special assumption about
V. We shall therefore simply set

in order not to restrict the degree of generality, and we then obtain:

The ratio of specific heats of the gas κ will therefore be, according to Equation (56) of §8,
Part I,
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§44. Value of κ for special cases.

If the molecules are single material points, then they have no other motion besides the

motion of the center of gravity; hence ∊ = 0. To determine their position in space, three
rectangular coördinates are sufficient; hence µ = 3, .

Now suppose that the molecules are smooth undeformable elastic bodies; then no

variation of the potential of the intramolecular force is permitted; hence ∊ = 0.
If each molecule is constructed absolutely symmetrically with respect to its center of

gravity—or, still more generally, if it has the form of a sphere whose center of gravity
coincides with its midpoint—then indeed each molecule can make arbitrary rotations
around an arbitrary axis passing through its midpoints; but the velocity of this rotation
cannot be altered in any way by collisions between molecules. If all molecules were
initially not rotating, then they would remain so for all time. On the other hand, if they were
initially rotating, then each molecule would retain its rotation independently of all the
others, although this rotation would exert no observable action.

Of the variables determining the position of a molecule, only the three coördinates of the
center of gravity come into consideration for collisions, and one has again4

It is otherwise when the molecules are absolutely smooth undeformable elastic bodies
that have either the form of solids of revolution differing from the spherical form, or the
form of spheres in which the center of gravity does not coincide with the midpoint. In the
former case, it will be assumed that either their mass is completely symmetrically arranged
around the axis of rotation, or this axis is at least a principal axis of inertia, that the center of
gravity lies on it, and that the moment of inertia of the molecule with respect to each line
passing through the center of gravity perpendicular to the axis of rotation is the same. If the
bodies are spheres with eccentric centers of gravity, the moments of inertia of the molecule
with respect to any line through the center of gravity perpendicular to the line connecting
the center of gravity and the midpoints must be the same. Then, only the rotation about the
axis of rotation will be without effect on the collisions. All other rotations will be changed
by collisions, so that their kinetic energy must be in thermal equilibrium with the kinetic
energy of progressive motion.

Five variables are now needed to determine the position of a molecule in space: the
three coördinates of its center of gravity and two angles determining the position of its axis

of rotation in space. Hence µ = 5 and since ∊ is again zero, one has κ = 1.4.* If the
molecules are absolutely flat undeformable bodies, not constructed by either of the above
methods, then their rotation about all possible axes will be modified by collisions. Then, to
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determine the position of a molecule, three angles determining the total rotation around the
center of gravity are necessary as well as the three coördinates of its center of gravity, and
one gets

§45. Comparison with experiment.

It is remarkable that for mercury vapor—whose molecules have long been considered
monatomic on chemical grounds— according to the researches of Kundt and Warburg,* κ
is in fact very nearly equal to the value obtained for simple molecules, If. Also for helium,
neon, argon, metargon [xenon], and krypton, Ramsay found almost the same value of κ. †
The limited chemical activity of these gases is likewise consistent with their being
monatomic.

For many gases with very simply constructed compound molecules (possibly for all
those for which a variation of κ with temperature has not yet been verified) observation
gives values of κ that lie very near to the two other ones that we found, 1.4 and .

Of course the problem is still far from being solved. For many gases, κ has yet smaller
values; moreover, Wüllner found that often—and indeed just for these latter gases—κ

varies strongly with temperature.‡ Our theory predicts that κ should vary with temperature
as soon as the potential of the intramolecular forces, V, becomes important; yet it is easy to
see that much remains to be done on the theory of specific heats.

If the molecules are spheres filled with mass symmetrically around their midpoints, then
of course there is no possibility that they can be set into rotation by collisions, nor that any
initial rotation can be lost. Nevertheless it is improbable that such molecules would remain
rotationless throughout all eternity, or that they would always preserve the same amount of
rotation. It seems more likely that they possess this property only to a very close
approximation, so that their rotational state does not noticeably change during the time in
which the specific heat is determined, even though over a long period of time rotation will
be equilibrated with other molecular motions, so slowly that such energy exchanges escape
our observation.

Similarly one can assume that in gases for which κ = 1.4, the constituents of the
molecule are by no means connected together as absolutely undeformable bodies, but rather
that this connection is so intimate that during the time of observation these constituents do
not move noticeably with respect to each other, and later on their thermal equilibrium with
the progressive motion is established so slowly that this process is not accessible to
observation. In any case, for air at temperatures where noticeable heat begins to be radiated,
it is found that in addition to the five variables determining the state of a molecule, another
one begins to participate in the thermal equilibrium during the time of observation, so that κ
varies with temperature and becomes smaller than 1.4; the same must be true for all other
gases.

Naturally, because of the obscurity of the nature of all molecular processes, all
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hypotheses about them must be expressed with the greatest caution. The hypotheses
proposed here would be confirmed experimentally if it were to be shown that, for any gas
for which κ varies with temperature, observations extended over a longer period of time
give a smaller value of κ than those of shorter duration.

In spite of the appearance of a potential function for intramolecular forces, κ remains
independent of temperature in the case that the constituents of the molecule have fixed rest
positions relative to each other, and that the force acting on them when they move away
from these rest positions is a linear function of the distance. If then λ is the number of
variables on which the relative positions of the constituents of a molecule depend, the
coördinates can always be chosen such that the potential function takes the form:

The quantity  should then be the intramolecular potential energy corresponding to

the coördinate pi. Its mean value can be calculated just as we calculated the mean value of
the quantity  above, and one obtains likewise the value  for each i. Hence

Since these equations are completely similar to Equations (135), then5

As an example we consider a molecule consisting of two simple material points, or of
two absolutely smooth spheres filled with mass distributed completely symmetrically
around their midpoints. These should exert no force on each other at a certain distance, but
at greater distances they attract and at smaller distances they repel each other, the force
being proportional to the change of distance in both cases. Then this distance is the only
coördinate determining the relative positions, hence λ = 1.

Five other coördinates are needed to determine the absolute position in space. The total
number µ of the p, or the number of degrees of freedom, is then six, and therefore 

.

Treatment of further special cases would not be difficult, but it seems to me to be
superfluous as long as more comprehensive experimental data are not available.

§46. Other mean values.
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In the previous sections we have calculated the average kinetic energy for a momentoid
obtained by averaging over all values for all molecules of a certain kind in the container.
This mean value does not change if we impose at the same time restrictions on one or more
of the coördinates, for example when we take only those values of all molecules of this
kind whose centers of gravity lie within an arbitrarily small region ∫∫∫dP1dP2dP3: the
temperature is the same everywhere in the gas. This theorem, which is self-evident in the
absence of external forces, also holds if external forces of any kind are present.

Nor does this mean value change when we include in the averaging only those
molecules for which some other coördinates are restricted to lie within some arbitrary limits.
The mean value in question will again be given by Equation (133); except that the
integration is to be extended not over all values of the coördinates but only over the
specified region, which is of course the same in both numerator and denominator. Then just
as in §42 the entire factor independent of the integration over dri comes out in front of the
integral sign, and after performing the integration over dri in both numerator and
denominator, one can divide through by this factor, so that one obtains again the value 

for the integral.
If the α are constant then, as Equation (132) shows, the relative probability that the

value of any momentoid lies between any limits whatever and that it lies between any other
limits is completely independent of the position of the molecule in space, and of the relative
positions of its constituents. We shall call this theorem, which we shall use later, the S-
theorem. It refers to the case where the r are quantities proportional to the velocity
components of material points or the angular velocities of a rigid body around its principal
moments of inertia.

For those kinds of gas to which Equation (129) pertains, one finds the number dn′ of
molecules for which the values of the coördinates lie between the limits (130), when the
values of the momenta are not subjected to any restrictive conditions, by integrating
Equation (129) over all the r from − ∞ to + ∞. One obtains in this way

The mean value  of the potential function is ∫Vdn′/∫dn′, where the integrations are to be
extended over all possible values of the coördinates.

The number of molecules for which the coördinates lie in any one µ-fold infinitesimal
region is then in the same ratio to the number of molecules for which they are in a likewise
µ-fold infinitesimal region F′ without any restriction on the values of the momenta, as
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where the letters without primes indicate the values for the region F, and those with primes
indicate those for F′; the first integral is over the former region, and the second one over the
latter region.

When there are no intramolecular and external forces, and the molecules consist purely
of simple material points, then this is the ratio of the product of the volumes of all volume
elements available to the material points in the region F, to the analogous product for the
region F′. Then the exponentials are equal to 1, so that

is always equal to the ratio of these products of volume elements.

§47. Treatment of directly interacting molecules.

In the last section we always proceeded from Equation (129) —i.e., we assumed that the
interaction of two molecules lasts so short a time that we can ignore molecules that are
momentarily interacting with others when calculating average values. Yet the theorems
developed in this and the preceding sections are also valid for interacting molecules. For
example, we consider all pairs of unlike molecules for which the coördinates of the two
molecules lie within any (µ + v)-fold infinitesimal region, without any restriction on the
momentoids. If no external forces act, then the region available for the center of gravity of
one of the molecules can be extended over the entire interior of the container. If we
integrate over all the r in Equation (127) (in which we have previously substituted the r in
place of the q) we find the following expression for the number of these molecule pairs:

Here V is the potential of intramolecular and external forces for the first molecule, and V1 is
the potential for the second molecule, ψ is the potential of the force of interaction. The sum
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pertains to all the momentoids of both molecules. The p integrals are to be extended over all
coördinates of both molecules, in the region D, while the r integrals are over all possible
values of these variables from − ∞ to + ∞. The evaluation of the integral over the r gives

One can now calculate the mean value of the kinetic energy  for one of the

momentoids, for all molecules of the first kind in those pairs whose total number is denoted
by dN. This again comes out to be . I will not write out the explicit formula from which

this follows, since it is completely analogous to the corresponding formulas developed in
§42 for single molecules. For all these molecule pairs, the mean kinetic energy of the
motion of the center of gravity of each molecule pair is again equal to .

I will only derive one more theorem, which we will need in the theory of dissociation of
gases. We shall consider, besides the region D, another arbitrary (µ + v)-fold infinitesimal
region D′ for the coördinates of the two molecules, and denote with primes all the values of
the variables pertaining to this second region, so that now the p′ are not time derivatives but
are other values of the p.

The number of pairs of unlike molecules for which the variables lie in the region D,
without any restriction on the values of the momentoids, is (according to Eq. [141]) :

Therefore

This formula and Equation (140) are nothing but generalizations—remarkable for their
simplicity and symmetry—of Equation (167), Part I, i.e., the completely trivial formula for
the barometric measurement of height, according to which the numbers of molecules found
in unit volume at different heights z behave like
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Since this formula permits one to calculate the pressure of the saturated vapor and the law
of dissociation (cf. §60 and §§62–73) it must be regarded as one of the fundamental
formulas of gas theory.

If, other things being equal, the molecule pairs exert no forces on each other, either in D
or D′, then one has the same expression as before for the quotient dN′/dN, except that he
has to set ψ = ψ′ = 0. If it is possible to compute the ratio dN′/dN for this latter ease, then
one can obtain the corresponding value when there is some interaction by multiplying it by
e−2h(ψ′−ψ). Likewise, if there is no interaction in D either time, and there is an interaction in
D′ one time but not the other, then one should multiply by e−2hψ′. One can also call dN′/dN
the relative probability of the two events, that for a molecule pair the values of the variables
lie in the region D′ or the region D.

A similar theorem holds, as can easily be shown, for the interaction of more than two
molecules. The relative probability of two configurations is e−2h(ψ′−ψ) times larger when
interactions occur than when they are absent, where ψ and ψ′ are the values of the
potentials of the interaction for the two configurations.

1 The criterion for equal possibility is provided by Liouville’s theorem.
2 Cf. Boltzmann, Vorlesungen über die Principe der Mechanik, Part I, §64, p. 208.
3 We shall think of a particular given solid or liquid as an aggregate of n material points, which

therefore have 3n degrees of freedom, perhaps just the 3n rectangular coördinates. If it is surrounded by
a larger gas mass, then it can be considered in certain respects as a single gas molecule, and the law found
in the text can be applied to it. The total kinetic energy is therefore 3n/4h. If the temperature is increased
in such a way that 1/4h increases by d(l/4h), then the total heat, measured in mechanical units, that must
be supplied to raise the mean kinetic energy is dQi = 3nd(1/4h). This heat, per unit of mass and
temperature increment, is what Clausius calls the true specific heat. It is invariable in all states and forms
of aggregation. It would be the total specific heat if the body were a gas dissociated into its atoms. For
all bodies it is proportional to the number of atoms in the body. The total specific heat is also
proportional to this number (Dulong-Petit law of chemical elements, or Neumann’s law for
compounds) if the heat increment dQi used to perform internal work is in a constant ratio to that used to
increase the kinetic energy, dQi. This is always the case if the internal forces acting on each atom are
proportional to its distance from its rest position, or still more generally if they are linear functions of its
coördinate variations. Then the force function V is a homogeneous quadratic function of the
coördinates, just as the kinetic energy L is such a function of the momenta. The integrations in the
formula for can then be performed in the same way used to obtain Equation (134), and one finds dQi =
dQi. (Cf. Eq. [111a] at the end of §45.) The total heat capacity is then twice the true monatomic gas
value. The assumed law of action of internal molecular forces holds approximately for most solid
bodies. For such bodies, whose heat capacity is smaller than half that predicted by the Dulong-Petit law
(e.g., diamond) one must assume that the motions related to certain parameters come into equilibrium
with the others so slowly that they do not contribute to the specific heats determined by experiment. (Cf.
§35. For the case that the molecule makes approximately pendulum-like motions, see Boltzmann, Wien.
Ber. 53, 219 [1866]; 56, 68b (1867); 63, 731 (1871); Richarz, Ann. Physik [3] 48, 708 [1893];
Staigmuller, Ann. Physik [3] 65, 670 [1898].)

4 In general, one obtains in these two cases all the formulas developed in Part I for monatomic
molecules directly from Equation (118), whether external forces are absent (§7) or present (§19). These
formulas are therefore only special cases of (118).

* This explanation of the anomalous specific heats of diatomic gases was first proposed by
Boltzmann in December 1876 (Wien. Ber. 74, 553 [1877]), and independently in April 1877 by R. H. M.
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Bosanquet (Phil. Mag. 15] 3, 271 [1877]).
* Kundt and Warburg, Ann. Physik [2] 157, 353 (1876).
† Ramsay, C. R. Paris 120, 1049 (1895). Ramsay and Collie, Proc. R. S. London 60, 206 (1896).

Rayleigh and Ramsay, Phil. Trans. 186, 187 (1896). Ramsay and Travers, Proc. R. S. London 63, 405
(1898).

‡ A. Wüllner, Ann. Physik [3] 4, 321 (1878).
5 Cf. Staigmüller, Ann. Physik [3] 65, 655 (1898) and footnote 2, §42.
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CHAPTER V

Derivation of van der Waal’s equation by means of the virial concept.

§48. Specification of the point at which van der Waals’ mode of reasoning
requires improvement.

In deriving van der Waals’ equation in Chapter I, we followed the method that he
himself first used, which is characterized by the greatest simplicity and perspicuousness. It
was already remarked (footnote 1, §7) that it is perhaps not completely free of objection.

The first assumption subject to doubt is the one that we made in §3 and also later on:
that in the entire container, as well as in the cylinder lying near the boundary of the space—
which we called there the cylinder γ—each volume element is equally probable as a
position for the midpoint of a molecule, regardless of its distance from another molecule.

If there are no forces except the collision forces, the correctness of this assumption
follows directly from Equation (140) , in which V is then constant, so that it therefore
predicts that the average number of molecules will be the same in each equal volume
element.

On the other hand, the van der Waals cohesion force will produce a denser arrangement
of the molecules in the interior of the fluid than in the immediate neighborhood of the wall.
Van der Waals did not take account of this effect, either in deriving the expression for
collisions at the wall or in calculating the dependence of the term a/ν2 on the density of the
gas. In both cases, however, correct treatment of the volume elements at the boundary is
essential; the quantities being calculated vanish more strongly as the number of particles at
the surface becomes small compared to those inside. Thus one cannot, as with the formulas
of this chapter, improve the accuracy of the results arbitrarily by making the volume large
compared to the surface.

Van der Waals calculated the correction to the Boyle-Charles law due to the finite
extension of the rigid core of the molecule, as was explained in Chapter I, just as if the
cohesion force were not present. He then calculated the additional term in the external
pressure due to the cohesion forces as if the molecules were vanishingly small. Since the
validity of this procedure might be doubted, we shall give a second deduction of the van
der Waals formula from the theory of the virial (to which van der Waals has likewise
already related it) against which this objection cannot be made. This second derivation
shows that van der Waals’ conclusion is completely correct. Yet we cannot of course
obtain by the exact method precisely the reciprocal of v – b which occurs in van der Waals’
equation, which van der Waals himself has called inexact; on the contrary we obtain an
infinite series in powers of b/v.

§49. More general concept of the virial.
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The concept of the virial was introduced into gas theory by Clausius.* Let there be
given an arbitrary number of material points. Let mh be the mass of one point, and let xh,
yh, zh, ch, uh, vh, wh be its rectangular coordinates, its velocity, and its velocity components
along the coordinate axes, respectively, at some time t. Let ξh, ηh, ζh be the components of
the total force acting on this material point at the same time. The force should have the
property that all the material points can move under its influence for an arbitrarily long time,
without any of their coördinates or velocity components increasing without bound. The
initial conditions should be such that this can actually be true. No matter how long a time of
motion may be chosen, the absolute value of any coördinate or velocity component must
remain smaller than a fixed finite quantity, which has the value E for the coordinates and
the value e for the velocity components. Such motions—of which all molecular motions
giving rise to thermal phenomena in a body of finite extent are clearly examples—we shall
call stationary.

Now let G be the value of any quantity at a particular time t; then we shall call the
quantity

the time average of G during the time of motion τ.
By virtue of the equations of motion of mechanics, we have :

Hence

If one multiplies this equation by dt, integrates over an arbitrary time (from 0 to τ) and
finally divides by τ, then it follows that:

where the values at time τ are characterized by the upper index τ, and the values at time
zero by the upper index 0. By virtue of the stationary character of the motion
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is smaller than 2mhE∊. If one allows the time of the entire motion, τ, to increase beyond
any limit, then 2mhE∊ remains finite; hence the expression 2mhE∊/τ approaches zero. If
one takes the mean value for a sufficiently long time, then :

Similar equations are obtained for all coördinate directions and all material points. If one
adds them all up, it follows that:

 is the kinetic energy L of the system. The expression

Clausius calls the virial of the forces acting on the system. Therefore the above equation
says that twice the time average of the kinetic energy is equal to the negative time average
of the virial of the system during a very long time.

We now assume that between any two material points mh and mk, whose distance is rhk,
a force fhk(rhk) acts in the direction of rhk, which we call the internal force. It has a positive
sign when it is repulsive, and a negative sign when it is attractive. Moreover, on each
material point mh an external force acts, which results from causes lying outside the system
and whose components along the coördinate directions we denote by Xh, Yh, and Zh. Then:

One sees easily1 that then Equation (143) becomes:

The first addend is twice the time average of the kinetic energy of the entire system. The
second is the external virial, and the third the internal virial. The two virials will be denoted
by Wa and Wi, so that Equation (144) reduces to

§50. Virial of the external pressure acting on a gas.
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We consider as a special case a gas in equilibrium, whose molecules, just as explained
in Chapter I, behave according to van der Waals’ assumptions. Let the gas be enclosed in
any container of volume V; it consists of n similar molecules of mass m and diameter σ, and
the mean square velocity of a molecule is . Then:

There are no external forces other than the pressure on the container, whose intensity on
unit surface will be p. The container has the form of a parallelepiped of edges α, β, γ, of
which three adjacent ones will be chosen as the x, y, and z axes. The two lateral surfaces
having the same surface area βγ will have abscissas zero and α respectively. The pressure
forces ρβγ and – ρβγ respectively will act on these surfaces, in the direction of the positive
abscissa axis. For these two lateral surfaces together the sum Σ xhXh has the value – pαβγ
= –pV. Since the equality holds also for the two other coordinate directions, we have for the
entire gas:

Since the pressure does not change with time, this is also the mean value of the same
quantity; hence it is the external virial Wa.

The same equation can easily be derived for a container of any shape. Let dω be a
surface element of the projection ω of the surface of the container on the yz plane, and K be
the cylinder erected on dω, perpendicular to it and extended to infinity on both sides. This
cylinder cuts from the container surface a series of surface elements d01, d02, . . . whose
abscissas are x1, x2, . . . and whose normals drawn into the interior of the gas are N1, N2, . .
. The x component of the pressure force acting on d01 is:

The same x component has, for the surface element d02, the value

and so forth. The sum ∑ xhXh extends over all surface elements lying within the cylinder K.
and therefore has the value:

The factor of the quantity – p is just the volume cut out by the cylinder from the interior of
the container. The sum ∑xhXh, extended over the entire gas, is found by integrating this
expression over all surface elements dω of the entire projection ω, whereby one obtains the
product of the total volume V of the gas and the quantity –p. Since the same considerations
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are applicable also to the y and z axes, it follows that:

§51. Probability of finding the centers of two molecules at a given distance.

The internal virial will consist of two parts, of which the first, , arises from the

forces acting during the collision of two molecules, and the second, , from the

attractive force assumed by van der Waals.
In order to find  we denote (as earlier) by σ the diameter of a molecule, and call a

sphere of radius σ circumscribed around a molecule its covering sphere, so that the volume
of the covering sphere is eight times as large as the volume of the molecule itself. The
midpoint of a second molecule cannot come closer to the midpoint of our molecule than a
distance σ, and we shall first calculate the probability that the center of a particular
molecule is at a distance between σ and σ+δ (where δ is infinitesimally small compared to
σ) from one of the other molecules. In order to have a precise name we call this other
molecule the remaining molecule.

In order to have a concept of probability as free from objection as possible, we imagine
that the same gas is present infinitely many times (N times) in identical containers at
different positions in space. Our specified molecule will in general be in a different place in
each of these N gases. Of all the N gases, let the remaining molecule in N1 gases be in very
nearly the same place relative to the container. N1 is then very small compared to N, but it
should still always be a very large number. The influence of the wall on the interior can in
any case be made small by making the container large, and in the interior the van der Waals
cohesion forces acting on a molecule from all directions will cancel out. Hence, according
to Equation (140) , all positions in the container will be equally probable for the center of
the specified molecule in all these N1 gases. Let N2 be the number of gases in which the
center of the specified molecule is at a distance between σ and σ+δ from the remaining
molecule. Then the ratio of N1 to N2 will be the same as the ratio of the total space
available to the center of the specified molecule in one of the N1 gases to the space in
which this center must be found in order that its distance from the center of one of the
remaining molecules may lie between σ and σ+δ. The latter space we shall call the
favorable space.

Since in all N1 gases the center of each of the remaining molecules has a given position,
and since the center of the specified molecule cannot come nearer to it than the distance σ,
we obtain the available space for the center of the specified molecule in one of these gases
by subtracting from the total volume V of the gas the volume of the covering spheres of all
remaining molecules, viz., the quantity
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Since we can neglect unity compared to n, the total space available for the center of the
specified molecule in one of the N1 gases is

The negative term is the total volume of all covering spheres contained in the volume V,
or eight times the volume of the molecules in the volume V. It should be small compared to
V, and we denote the degree of its smallness compared to V as “smallness of the first
order.” In order to find the favorable space, we construct around the center of each of the
remaining molecules a spherical shell, which is enclosed between two spherical surfaces
concentric with the molecule itself, with radii equal to σ and σ+δ respectively. The sum of
the volumes of all these spherical shells is the favorable space. One finds for it the
contribution

for which we can also write

As a first approximation we can ignore the negative term in (148) and hence the ratio of
the favorable space to the available space is

Therefore in

of our N1 gases, the center of the specified molecule finds itself at a distance between σ and
σ+δ from the remaining molecule. However, since the state of our N1 gases can still be
chosen completely arbitrarily, the same holds also for all N gases. In 4πnσ2Nδ/V of these,
the center of the specified molecule will have this property. Since the same holds for all
other molecules, in all N gases there will be a total of

molecules whose centers are at a distance from the center of any other molecule that lies
between σ and σ+δ. Hence in each gas,
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molecules will satisfy this condition, and the number of molecule pairs in a gas for which
the distance of centers lies between σ and σ+δ is

If one wishes to take account also of terms of next higher order, then he should not only
substitute (148) for V, but also introduce a correction in the numerator. Δ was the total
volume of all spherical shells of thickness δ, which we had constructed around the centers
of all the remaining molecules. Not all of these should be counted as favorable volumes. In
particular, the covering spheres of two molecules can partially overlap. Then one part of
such a spherical shell lies within the covering sphere of another molecule, so that it is not
available as a location for the center of the specified molecule, and must be subtracted from
the favorable space Δ. Strictly speaking the circumstance that two covering spheres can
interpenetrate should be taken account of in the calculation of the space Γ that we have
subtracted from V, in order to find the available space; but one sees at once that we would
have thereby obtained a term that is a second-order infinitesimal compared to V. Hence as
long as we are only taking account of first-order infinitesimals, this term can be ignored.
The quantity δ/σ is supposed to be of higher order than σ3/V. Hence all terms containing
δ2 can be neglected—i.e., cases where two or more spherical shells of thickness δ
interpenetrate—and neither the simultaneous interpénétration of three covering spheres nor
the interaction of three molecules need be included.

We shall now calculate the correction to the quantity Δ. The covering spheres of two
molecules will overlap when the distance between their centers lies between σ and 2σ. Let
r be a length somewhere between these limits. Then, by analogy with Equation (149) , the
number of molecule pairs in a gas whose centers have a seoaration between r and r+dr is
eaual to:

By the covering sphere we mean a spherical surface of radius σ around the center of the
molecule. Since σ<r<2σ, the covering spheres of all these v molecule pairs will overlap,
and indeed an easy calculation shows that for each such pair, the part of the surface of a
covering sphere that lies within the second one is equal to πσ(2σ – r). There is also a
spherical shell of thickness δ surrounding the entire covering sphere. The part of this
spherical shell that lies inside the covering sphere of the other molecule, and is therefore not
available as a location for the center of the specified molecule, therefore has the volume:
πσ(2σ – r)δ. An equal part of the spherical shell pertaining to the other molecule lies
within the covering sphere of the first molecule, and hence is likewise not available.
Therefore one has to subtract a total volume 2πσ(2σ – r)δ from the two spherical shells of
the molecule pair because that volume is not available to the center of the specified
molecule. For all v pairs the space
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is to be subtracted. Since r can take all values between σ and 2σ, the total volume to be
subtracted from all spherical shells is equal to :

The total volume of all spherical shells in a gas would be Δ = 4πnσ2δ. Hence the
favorable volume remaining is

The quotient of this quantity divided by the total available volume,

—which, since we ignore terms of second order, can be written

—gives the probability that the center of the specified molecule is at a distance between σ
and σ + δ from another molecule. The further conclusions remain as before. The last
expression, multiplied by , provides at an arbitrarily chosen instant of time the number

of molecule pairs in a gas for which the centers of the two molecules have a distance
between σ and σ+δ. The number of these molecule pairs is therefore:

The number of molecules from which these pairs are formed is of course twice as large.

§52. Contribution to the virial resulting from the finite extension of the
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molecules.

We can determine the average virial in different ways. The simplest way is to make use
of Equation (142) in §47. We replace the elasticity of the molecule by a repulsive force f(r)
which is a function of the distance of centers, r, which vanishes for r ≥ σ and increases
beyond all limits as soon as r becomes smaller than σ. From now on we shall denote by r a
distance slightly less than σ. If the repulsion first began at distances a little less than r, then
the number of molecule pairs for which the distance of centers lay between r and r + δ
would, according to Equation (150) , be equal to:

where we can replace σ by r in Equation (150) since the latter is only infinitesimally
different from the former. We still have to calculate how the number of pairs will be
decreased by the repulsive force. If in Equation (142) one replaces the p by the rectangular
coördinates of the molecule centers, then he finds that the number of systems for which
these lie in a certain volume d01, d02, . . . is proportional to e−2hV0d01d02 . . ., where V0 is
the potential energy function whose negative derivative with respect to a coördinate is the
force acting to increase that coördinate. For our molecule pair, V0 is just a function of r, and
indeed it is equal to the negative integral of f(r)dr. As soon as the distance of centers of two
molecules is equal to or greater than σ, the repulsion stops, and the potential energy then
has the same value that it has at infinity, which we denote by F(∞). The value of the
potential at r is denoted by F(r).

The probability that the distance of centers of two molecules lies between r and r+δ, in
the absence of all repulsive forces, is to the probability that it lies between the same limits,
when repulsive forces are present, as

and for the number of molecule pairs for which the distance of centers is between r and r+δ
one finds instead of (151) the expression

Since
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therefore

Since moreover δ in Equation (152) represents an infinitesimal increase of r, we can denote
it by dr following general usage, and Equation (152) then becomes

If we multiply this expression by the virial rf(r) of the molecule pair in question, and
integrate over all colliding molecules, we obtain the total virial  arising from the

forces acting during collisions. Therefore if σ – ∊ is the smallest permitted distance of
approach of two molecules when they impinge on each other with an enormous velocity,
then one obtains:

Since r is always infinitesimally different from σ, it can always be replaced by σ if it does
not occur as an argument of the function f, so that it then comes out in front of the integral
sign :

The last integral can easily be computed if one introduces the new variable

which is equal to zero at the upper limit and to infinity at the lower; indeed it is equal to the
kinetic energy with which a molecule must approach a molecule at rest, if their centers are

to approach to a distance σ – ∊; hence, on introducing this new variable, we have
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since, according to §42,  is the mean kinetic energy  corresponding to a

momentoid, and each of the components of the total velocity c represents a momentoid.
(Cf. also Part I, Eq. [44] .) If, as in Equation (20) , we substitute

then it follows that

where v = V/nm is the specific volume.

§53. Virial of the van der Waals cohesion force.

The virial due to the attractive force is found without difficulty by using the hypothesis
about the nature of the interaction made in §2. If ρ is the density of the gas, and d0 and dω
are two volume elements separated by a distance r, at which the molecules attract with a
force F(r) and hence repel with a force – F(r), then ρd0/m and ρdω/m are the numbers of
molecules in those volume elements, and

is the virial of the molecules contained in the two volume elements.

is therefore the total virial of the molecules in d0 interacting with all the others. Since there
is a noticeable contribution only for molecules at molecular distances,
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has the same value for all volume elements d0 in the interior of the gas. Since this value
depends only on the nature of the function F, it must be a constant peculiar to the
substance, and we denote it by 3a. The total virial  is found by integrating over all

volume elements d0, whereby we obtain the total volume V. The contribution of the
molecules lying very near to the surface is infinitesimal. Hence

The substitution , with the values (154) and (155) for 

and , as well as the values (146) and (147) in the virial equation (145), gives

therefore:

According to Equation (21) we now set . Furthermore, V/nm = v = 1/ρ, so that

the above equation becomes

If one neglects quantities of order b2/v2, the right-hand side is identical with the
expression rT/(v – b) found by van der Waals. But there is already a discrepancy in the
terms of order b2/v2. Van der Waals himself noted that his equation cannot be valid for
arbitrary v, since it predicts that the pressure becomes infinite at v = b, whereas actually the
pressure does not become infinite until v is much smaller than b.

§54. Alternatives to van der Waals’ formulas.

Our present considerations teach us that the expression for the pressure given by van der
Waals does not agree with the theoretical one for small values of v, as soon as one takes
account of terms of order b2/v2. Since the theoretical determination of terms of still higher
order would be extraordinarily difficult,* one can try to replace van der Waals’ equation by
one that agrees with theory at least as far as terms of order b2/v2. We saw, moreover, that
one can also determine theoretically the smallest permitted value of v, for which the
pressure becomes infinite. It is  (cf. §6), since for approximately this value of v the

molecules are as densely packed as possible, and any further decrease of v must make the
molecules interpenetrate. One can therefore construct an equation of state for which p
becomes infinite at this value of v.

In order to depart as little as possible from the form of van der Waals’ equation, we shall
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write the equation of state in the following form, where x, y, and z are numbers to be
chosen suitably :

We then have the advantage that for given p and T we obtain a third degree equation for
v. If we set y = 1 – x, , then for small values of b/v the terms of order b2/v2

agree with those found theoretically. If we set

then the condition that p becomes infinite for  is also satisfied. Since all our

considerations are only approximate, it would perhaps be more rational not just to choose
these values for x, y, and z, but rather to assign to them values that yield the best possible
agreement with observations.

If one does not wish to add any factors to rT in the numerator, then a quadratic function
of b/v in the denominator, such as a law of the form

would hardly be very advisable; for then p, if it is to become infinite at all, and if it is also to
be correct to first order in b/v, would have to become infinite for a value of v that is greater
than or equal to .

The latter occurs if one sets

It would be better to set

and to choose for ∊ a transcendental or algebraic function of higher degree, which is nearly
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equal to 1 for large v, and for  is nearly equal to , and also agrees as well as

possible with experimental data. I owe Equation (158a) to an oral communication of van
der Waals (cf. also the work of Kamerlingh-Onnes cited in footnote 1, §60). Moreover, van
der Waals has given us such a valuable tool that it would cost us much trouble to obtain by
the subtlest deliberations a formula that would really be any more useful than the one that
van der Waals found by inspiration, as it were.

A more general way to bring the original van der Waals formula into better agreement
with experience would consist in treating the expressions a/v2 and v – b in it as empirically
chosen functions of volume and temperature instead of constants, or, quite generally, to
seek in place of a/v2 and v – b the functions best fitting the observations. Of course these
functions must be chosen so that the theorems on critical quantities and on liquefaction do
not come out qualitatively different. Clausius and Sarrau have modified the van der Waals
formula in this way.* Even though they have been guided by theoretical ideas (Clausius
especially seems to have in mind taking account of the combination of molecules into larger
complexes), their equations have more the character of empirical approximations, which I
will not go into further, although I would not wish to disparage their practical usefulness.

§55. Virial for any arbitrary law of repulsion of the molecules.

By means of Equation (153) we can also calculate by the same method the quantity 
 for the case where the molecules do not behave like elastic spheres, but rather like

material points that exert an arbitrary central repulsive force f(r) on each other during
collisions. Since the time during which two colliding molecules act on each other can then
no longer be neglected, the method by which we derived Equation (150) from (149) is no
longer correct; however, the latter formula is still correct as a first approximation.

The number of pairs of molecules whose distance lies between r and r+dr is therefore
2πn2r2dr/vy as soon as no force acts at the distance r. The modification of this number by
the action of repulsive forces was previously found according to the general formula (142).
This formula remains applicable here, and hence as soon as there is a repulsive force at the
distance r, the number of pairs of molecules at a distance between r and r+dr is
(corresponding to Eq. [153] ) equal to:

Each such molecule pair provides a contribution rf(r) to the virial . The sum of all

these contributions is therefore
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where ζ is the closest allowed distance of approach of two molecules, and σ is the distance
at which they cease to interact. However, one can integrate from zero to infinity instead of
from ζ to σ, since for r<ζ the exponential factor is zero, while for r>a, f(r)=0.

If one sets f(r) = K/r5 as in Chapter III of Part I, then of course the present assumptions
are not strictly satisfied, since properly speaking all molecules are continually repelling each
other; but this repulsion decreases so rapidly with increasing distance that the deviations
thereby produced in our formulas are probably completely insignificant. Hence we obtain:

We shall introduce the distance of closest approach of two molecules if one were held fixed
and the other approached it with a velocity whose square is equal to the mean square
velocity of a molecule (cf. Part I, §24). However, we shall denote this distance here by σ
instead of s. Then :

Hence

If one imagines that the van der Waals attractive force is present, and brings it into the
calculation as before, then on substituting all values into Equation (145) he obtains the
following equation for unit mass of the gas:

where*

However, σ is no longer constant now, but instead is inversely proportional to the fourth
root of the absolute temperature. Hence the numerical coefficient b has become
temperature-dependent. In particular, b is inversely proportional to the  power of the
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absolute temperature, since σ is inversely proportional to the fourth root of the temperature.

§56. The principle of Lorentz’s method.

We have previously derived the internal virial from Equation (154) by means of
Equation (142) for the case where the gas molecules behave like elastic spheres. One can
also do the same thing in another way without using the latter formula, as was first shown
by H. A. Lorentz.† By definition,

where the sum is to be extended over all pairs of molecules that collide during a very long
time. Since the state is stationary we can choose unit time t = l instead of a very long time t.
If we integrate each term of the sum, it follows that :

where the sum is to be extended over all pairs of molecules that collide during unit time.
However, the relative motion of the molecules takes place just as if one of them were at rest
and the other had half its mass. If, in this relative motion, the first molecule is imagined to
move toward the second one (which is at rest) with relative velocity g, then the component
of g perpendicular to the line of centers of the molecules does not change. The component
γ in the direction of the line of centers will be exactly reversed by the force f(r), however.
Hence, for each collision:

since r is always approximately equal to σ during the collision. If one substitutes this into
Equation (160) , it follows that:

where the sum is to be extended over all pairs of molecules that collide in unit time.
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In order to calculate this sum, we shall first ask how many molecules in the gas collide
in a particular way during a very short time dt. If the molecules are to collide during dt, then
their centers must already be at a distance only slightly larger than σ at the beginning of the
interval dt. According to Equation (150) , at any arbitrary time and therefore also at the
beginning of the interval dt there are

pairs of molecules whose centers have a distance between σ and σ+δ, where

and v is the specific volume. These molecule pairs consist of

molecules. Each of these molecules lies so close to another one that the distance of their
centers lies between σ and σ+δ.

Here we must invoke, not indeed Equation (142) in particular, but rather a probability
law, in that we assume that, in the space where the molecules whose number is given by
Equation (163) find themselves, there is the same average distribution of molecules, and
among these the same distribution of states, as in the entire gas. This follows directly from
the “S-theorem” of §46. Then, out of those molecules whose number is given by Equation
(163) ,

have a velocity between c and c+dc, if, as in Equation (8) , φ(c)dc is the probability that the
velocity of a molecule lies between these limits, so that of all n gas molecules, nφ(c)dc
have a velocity lying between these limits. Then, as we saw in Part I (cf. also Eq. [8] , Part
II):

The expression (164) therefore gives the number of molecules that have a velocity
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between c and c+dc at the beginning of dt, and whose centers have a distance between σ
and σ+δ from any other molecule. Now we shall consider, out of all these molecules, only
those for which the velocity of the other molecule lies between c′ and c′+dc′, and the

direction of this velocity forms an angle between ∊ and ∊+d∊ with that of the velocity of
the first molecule. Since the other molecules have a Maxwellian velocity distribution,
regardless of the state of the molecules near them, and any direction in space is equally
probable for their velocities, we must—in order to find the number of those molecules
which we have picked out from all the molecules whose number is given by (164)—
multiply the latter expression by

The product

therefore gives the number of pairs of molecules for which the velocity of one molecule
(which we call the c-molecule) is between c and c+dc, that of the other molecule (the c′-
molecule) is between c′ and c′+dc′, the angle of the directions of their velocities is between

∊ and ∊+d∊, and the centers of the molecules are at a distance between σ and σ+δ at the
beginning of the time interval dt.

If we draw around the center of each c-molecule a spherical shell bounded by two
concentric spherical surfaces, the inner surface having radius σ and the outer surface
having radius σ+δ, then (166) gives the number of molecules whose centers lie in one of
these spherical shells at the beginning of the interval dt, and for which the velocity lies

between, c′ and c′+dc′ and forms an angle between ∊ and ∊+d∊ with the velocity of the c-
molecule.

§57. Number of collisions.

Each c′-molecule lies very near to a c-molecule. In order to find how many will actually
collide during an infinitesimal time interval dt, we imagine that all the c-molecules are at
rest, while each c′-molecule moves with velocity

relative to the c-molecule near it, so that during time dt it moves a distance gdt in the
direction of the relative velocity g.

Furthermore, we again imagine that there is a sphere K of radius σ around the center of
each c-molecule. From the center of each of these spheres we draw a line G which has the
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direction of the relative velocity of that c′-molecule which is in the neighborhood of the c-
molecule in question. We extend the line G through the opposite side, and draw all radii of

each of the if-spheres that form an angle between ϑ and ϑ+dϑ with the extension. The end-
point of all these radii will form a zone on the surface of each of the K-spheres whose

surface area is 2πσ2 sin ϑdϑ. From each point of each of these zones we draw a line
whose length is gdt and whose direction is opposite to the direction of the relative velocity
of the c′-molecule. All the lines drawn from the points on a zone fill a ring-like space of

volume 2πσ2g sin ϑ cos ϑdϑdt, and one easily sees that all c′-molecules whose centers lie
within this ring-like space at the beginning of dt (whose number we call dv) will collide
with the c-molecule in their neighborhood in such a way that the angle between the line
drawn from the center of the c′-molecule to the center of the c-molecule and the relative

velocity of c′ with respect to c lies between ϑ and ϑ+dϑ. However, the ratio of dv to the

number dµ (given by Eq. [166] ) is the same as the ratio of the volume 2πσ2g sin ϑ cos

ϑdϑdt of one of the ringlike spaces in which the centers of the dv molecules must be found,
to the volume 4πσ2δ of one of the spherical shells in which the centers of the dµ molecules
are found; whence one obtains:

If we divide by dt, we find the following expression for the number of pairs of molecules
that collide in unit time in such a way that before the collision the velocities are between the

limits (c, c+dc) and (c′ , c′+dc′) respectively, the angle between the velocities is between ∊

and ∊+d∊, and the angle between the line of centers and the relative velocity is between ϑ

and ϑ+dϑ:

If we divide the expression (168) by nφ(c)dc, then we obtain the number of collisions
experienced by an individual c-molecule with c′-molecules subject to the above conditions.

If we integrate over ϑ from zero to π, over ∊ from 0 to π, and over c′ from 0 to ∞, we

obtain the total number  of collisions experienced per second by a molecule moving
with velocity c. We can call the expression
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the mean value of all relative velocities of a molecule moving with velocity c, with respect
to all other possible velocities. Hence

If one substitutes in (169) the value (165) for the function φ and the value (167) for g, then
he finds, as we already saw in Part I, §9,

Since φ(c)dc is the probability that the velocity of a molecule is between c and c+dc,
and therefore is also the fraction of the time during which its velocity lies between these
limits in the entire course of its motion during a long period of time, the total number of
collisions that an arbitrary molecule experiences on the averaee during: unit time is eaual to

where

is the mean value of the relative velocities of all possible molecule pairs in the gas. We have
performed a similar integration in Part I, §9; if we do this one in the same way, we obtain:
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The mean relative velocity is therefore just as large as if the two molecules each moved
with their average velocity in perpendicular directions. This theorem is also valid if the two
molecules are of different kinds. If one substitutes the value found for g into the equation
following (169), he obtains:

§58. More exact value of the mean free path. Calculation of  according to

Lorentz’s method.

Since the mean free path is , it follows moreover that

or, on substituting this value (162) for β and expanding in powers of b/v,

This is therefore the value of the mean free path, one order of magnitude more exact (with
respect to b/v) than that given in Part I, §10.

We can now easily find the mean virial of all forces acting in collisions from Equations
(161) and (168). For each of the collisions whose number is given by Equation (168) , the
component γ of the relative velocity g in the direction of the line of centers has the value γ

= g cos ϑ; each of these collisions contributes therefore the term mσg cos ϑ to the sum
(161). If one multiplies this by the expression (168), then he finds the contribution of all
these collisions to the sum (161). If one then integrates over all possible values, he obtains
finally the total contribution to the sum, and hence, according to Equation (161) , the
quantity . Finally, however, one must divide by 2, since otherwise he would have
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counted each collision twice—once when the velocity of one molecule lies between c and
c+dc and then again when the velocity of the other molecule lies between c and c+dc.
Hence:

If one substitutes for g the value (167) and recalls that:

then he obtains the value already found,

The corrected value (171) for the mean free path was first given by Clausius.1 The
additional term of order b/v in the Boyle-Charles law was first calculated by the foregoing
method by H. A. Lorentz;2 the additional term of order b2/v2 was calculated by Jäger3 and
van der Waals;4 the value found by Jäger agrees with the one calculated here, but the one
found by van der Waals does not.*

§59. More exact calculation of the space available for the center of a
molecule.

Let there be present, in a container of volume V, a total of n similar molecules, which
we consider as spheres of diameter σ. Then we can find the space available for the center
of another molecule introduced into the container, given the positions of all n molecules, by
subtracting from the total volume V the space occupied by the n molecules: Γ =
4πnσ3/3=2Gb (cf. Eq. [148] ). As before, m is the mass of a molecule, mn = G is the total
mass of the gas, and
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as in Equation (20) is half the sum of the covering spheres of all molecules found in unit
mass of the gas. Here the term of order Γ2/V2, corresponding to the effect of
interpenetration of the covering spheres of two molecules, is omitted. We shall now
calculate this term, although we shall still leave out terms of order Γ2/V2.

Let Z be the sum of the volumes of all those parts of the covering spheres of molecules
that lie within the covering spheres of any other molecule, so that we have to set:

The case that the covering spheres of two molecules overlap occurs each time that their
centers have a distance between σ and 2σ. Let x be such a distance. The covering spheres
are spheres of radius σ, which are concentric with the molecule in question. If the centers
of two molecules are at a distance x, then the total space that belongs simultaneously to the
covering spheres of both molecules has the form of two spherical sections of height σ – x/2.
Such a spherical section has a volume

We shall construct, for each molecule, a concentric spherical shell of inner radius x and
outer radius x+dx. The sum of the volumes of these spherical shells, 4πnx2dx, has the same
ratio to the total volume V of the gas that the number dnx of molecules whose centers are at
a distance between x and x+dx from another one has to the total number n of molecules.
Therefore :

Here terms of order Γdnx/V have been omitted, but one can easily convince himself that in
the final result these would only give terms of order Γ3/V3.

The number of pairs of molecules for which the distance of centers lies between x and
x+dx is dnx. Since, for each such molecule pair, two spherical sections of volume K lie

within the covering spheres, all these molecule pairs provide a contribution Kdnz to Z, and
we find the quantity Z itself by integrating these contributions from x = σ to x = 2σ. One
obtains in this way
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§60. Calculation of the pressure of the saturated vapor from the laws of
probability.1

Now let the liquid and vapor phase of a substance be in contact with each other at a
particular temperature T. The total mass of the liquid part will be Gf, and its total volume
Vf; the mass of the vapor part will be Gg, and it fills the total volume Vg, so that vf = Vf/Gf,
vg = Vg/Gg are the specific volumes or reciprocals of the densities ρf and ρg of the liquid
and the vapor.

If one now introduces a molecule into the space in which the two phases are present,
then according to Equation (173) the space available for this molecule within the liquid is

while the space in the vapor is

The ratio of these volumes would be—if the van der Waals cohesion force did not exist—
the ratio of the probabilities that, for given positions of all other molecules, the last one lay
within the liquid or the vapor. This ratio is (on account of the action of the van der Waals
cohesion force) to be multiplied by e−2hψf: e−2hψg, where ψf and ψg are the values of the
potential of the van der Waals cohesion force for a molecule that finds itself in the liquid or
the vapor, respectively. If one determines the constant so that ψ = 0 for infinite separation,
then – ψf is the work needed to bring a molecule of mass m, under the action of the van der
Waals cohesion force, out of the interior of the liquid and remove it to a large distance. In
§24 we found the expression 2maρf = 2ma/vf for this work, while apf was the total work of
separation for all molecules in unit mass. Likewise,
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Taking account of the van der Waals force, we find that the ratio of the probability that the
last molecule is in the liquid to the probability that it is in the gas is:

In the equilibrium state this must also be equal to the ratio of nf to ng; or, if one multiplies nf
and ng by m, equal to Gf/Gg. If one writes out the proportion, he obtains immediately

Now according to Equations (21) and (135)2 (cf. also Part I, Eq. [44] ), 2h = 1/mrT, if r is
the gas constant of the vapor at high temperature and low density. If one takes the
logarithms, expands in powers of b and retains terms of order b2, then

Naturally this formula can hardly be expected to give more than qualitative agreement,
since the assumption that b is small compared to v is incorrect for liquids.

If we introduce the Celsius temperature t, consider ρf to be constant and large compared
to ρg, and assume that the vapor obeys the Boyle-Charles law, i.e., ρvg = rT, then there
follows from Equation (174) an equation of the form

—an equation that has some practical usefulness, though with a somewhat different
meaning of the constants A, B, C, and D.

We can also calculate the pressure of the saturated vapor from the condition found in
§16, that the two shaded areas of Figure 2 of that section must be equal. In this figure, the
abscissa OJ1 is the specific volume vf of the liquid, the abscissa OG1 is the specific volume
vg of the vapor, while the ordinates J1J = G1G are equal to the corresponding saturation
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pressure. The equality of the shaded areas requires that the rectangle JJ1G1GJ = p(vg – vf)
must be equal to the surface area , which is bounded above by the curve JCHDG,

below by the abscissa axis, and on the left and right by the ordinates J1J and G1G. One
therefore obtains:

If one starts from the van der Waals equation

as a basis, then it follows on performing the integration that :

T and the constants a, b, and r are to be considered as given. The three unknowns p, vf, and
vg follow from Equation (178) and the two conditions: that vf is the smallest and vg the
largest root of Equation (177) . If one again takes for the vapor the Boyle-Charles law pvg
= rT, neglecting b and vf compared to vg, and ρg compared to ρf (the latter is considered to
be a linear function of the temperature), then he obtains for the saturation pressure an
expression of the form (175) again; yet Equation (178) by no means agrees exactly with
Equation (174) .

This would not be expected, since Equation (177) is only provisory, and is not an exact
consequence of the conditions of the problem.

On the contrary, one must obtain precisely Equation (174) if he uses instead of Equation
(177) the equation

which, on neglecting the terms containing powers of b higher than the second, exactly
satisfies the conditions of the problem.

In fact, it then follows from (176), on performing the integration, that
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Since now vg as well as vf must satisfy Equation (179) , one can calculate pvg by
substituting v = vg in this equation, and pvf by setting v = vf. Subtraction of the two values
yields

which, together with Equation (180) yields exactly Equation (174) .

§61. Calculation of the entropy of a gas satisfying van der Waals’
assumptions, using the calculus of probabilities.

I will now indicate briefly how one can calculate, according to the principles developed
in Part I, §§8 and 19, the entropy of a gas for which the space filled by the molecules is not
vanishingly small compared to the entire volume of the gas, and in which also the van der
Waals cohesion force acts. The van der Waals cohesion force does not change the velocity
distribution among the molecules, but only causes them to draw closer together. Like
gravity, it has no direct influence on the entropy, so that the dependence of the entropy on
the temperature for such a gas will be obtained just as in the sections cited for an ideal gas;
in the present case only a correction for the finite size of the molecules is needed.

The expression found in Part I, §8, for the entropy—which we shall call S in the
following—can easily be put in the form1

If M is the mass of a hydrogen atom, then R is the gas constant of dissociated hydrogen,
hence it is twice the gas constant of ordinary hydrogen. The exponent of T must be
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when internal motions take place in the molecule, for which the variation of the sum of
mean kinetic energy and potential energy stands in a constant ratio β:1 to the mean
progressive kinetic energy. If β is a function of temperature, then

must take the place of lT3n/2.
S is the entropy per unit mass, so that n is the number of molecules in unit mass; v is the

volume of unit mass.
If one interprets S as a probability expression, then the quantity vn occurring therein has

the following meaning: it represents the ratio of the probability that all n molecules are
simultaneously in volume v, to the probability of some standard configuration, for example
one in which the first molecule is in a definite space of volume 1, the second in a
completely different space of volume 1, and so forth. This quantity is the only one that is
changed when we take into account the extension of the molecules, and indeed there
occurs in its place the probability W of the simultaneous occurrence of the following events:
the first molecule is found in v, and also the second, third, fourth, etc. are also found there
(not, as in §60, simply the probability that one additional molecule is found in v).

The entire volume v is available for the center of the first molecule. The ratio of the
probability that it is there to the probability that it is in the given space of volume 1 is thus v.
In calculating the probability that the center of the second molecule is simultaneously in the
space v, we have to subtract the volume of the covering sphere of the first molecule, 

, from v. If there are already v molecules in the space v, then the space available

for the center of a (v+1)th molecule is, according to Equation (173) :

This expression is therefore equal also to the ratio of the probability that the (v+1)th
molecule finds itself in the space v to the probability that it finds itself in another space of
volume v completely separate from the other space. Hence the product
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represents the ratio of the following probabilities: the probability that all n molecules
simultaneously are in the space v, and the probability that each of them lies in a separate
space of volume unity.2 This expression has to occur in S instead of vn, when we take
account of the finite extension of the molecules. Therefore the entropy of unit mass is

Here r is the gas constant of our substance in states that are sufficiently similar to the ideal
gas state, so that rm = RM.

If one expands the logarithm in powers of b and neglects, as usual, powers of b higher
than the second, it follows that:

Since moreover we assume that n is large compared to 1, we can set :

so that we obtain, since nm = 1,

Since the partial derivative of TS with respect to v at constant temperature is equal to the
pressure due to molecular collisions alone, we find for this pressure, in agreement with the
earlier result, the value

The calculation of terms with higher powers of b in this expression can be done most easily
by the same method, taking account of these terms in the expressions for S and W.3

If the molecules are not spherical, but behave like solid bodies, then the probability that
the center of the (v+1)’th molecule lies in the volume v is still given by an expression of the
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form

We assume that the series development yields

then

Hence the pressure due simply to molecular collisions will be

and the total external pressure acting on the gas will be :
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If we substitute this into the equation

then we obtain, as a condition that vapor and liquid can coexist :

which, on repeated application of Equation (183) , can also be written :

In agreement with this, one now obtains by the same method by which we previously
obtained Equation (174) the following condition for equilibrium of liquid and vapor:

which, taking account of Equation (182) , again yields Equation (184) .

The following additions to Chapter I, which van der Waals communicated orally to me
after that chapter was printed, may be inserted here.

1. He never explicitly made the assumption, explained in §2, that the attractive force of
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the molecules decreases so slowly with increasing distance that it is constant at distances
large compared to the average separation of two neighboring molecules; and he believes
such a force law to be improbable. Nevertheless I cannot obtain an exact foundation for his
equation of state without this assumption.

2. If one conceives the bounding curve JKG of the two-phase region (Fig. 3, §17) to be
a parabola or circular arc in the immediate neighborhood of the point K, then he sees that
JN will be more nearly equal to NK, the closer N is to K, if N remains continually on the
line KK1. Hence if a substance has exactly the critical volume, and is heated at constant
volume, then at the moment when the meniscus vanishes, the volume of the liquid part will
be exactly equal to the volume of the vapor part. On the other hand, if the volume differs
slightly from the critical volume, then the meniscus always moves progressively a great
distance from the middle of the tube containing the substance, before it vanishes.

According to the experiments of Kuenen,* gravity plays an important role in causing
deviations from the theoretical behavior.

* R. Clausius, Sitzber. Niederrhein Ges. (Bonn) 114 (1870), reprinted in Ann. Physik [2] 141, 124
(1870). For further references see S. G. Brush, Amer. J. Phys. 29, 593 (1961), footnote 14.

1 The simplest way is to calculate the virial of the force acting between any two material points, as
well as that of the external force, separately, and then to recall that the virial of several forces is the sum
of the virials of the forces taken individually, since the ξh, ηk, ζh are contained linearly in the expression
for the virial.

* For the coefficient of b3/v3 (known as the fourth virial coefficient) see Boltzmann, Verslagen
Acad. Wet. Amsterdam [4] 7, 477 (1899); P. Ehrenfest, Wien. Ber. 112, 1107 (1903); H. Happel, Ann.
Physik [4] 21, 342 (1906); R. Majumdar, Bull. Calcutta Math. Soc. 21, 107 (1929). The fifth virial
coefficient was estimated by the Monte Carlo method by M. N. and A. W. Rosenblueth, J. Chem. Phys.
22, 881 (1954). A more accurate value will probably be available very soon. Modern methods for
calculating such coefficients are reviewed by G. E. Uhlenbeck and G. W. Ford in Studies in Statistical
Mechanics, Vol. I (Amsterdam: North-Holland, 1962), and J. E. Mayer, Handbuch der Physik, XII, 73
(Berlin: Springer, 1958). From the recent work of Groeneveld, Phys. Letters 3, 50 (1962), it appears that
even if one could calculate all the coefficients in the virial series for the pressure, he would not thereby
gain much information about the equation of state at high densities, since the radius of convergence of
the series is rather small.

* Clausius, Ann. Physik [3] 9, 337 (1880); Sarrau, C. R. Paris 101, 941 (1885). See Partington,
Treatise on Physical Chemistry (London, 1949), Vol. I, pp. 660–729.

* 

† H. A. Lorentz, Ann. Physik [3] 12, 127, 660 (1881).
2 Clausius, Kinetische Gastheorie, Vol. 3 of Mechanische Wärmetheorie (Vieweg, 1889–1891), p.

65.
3 Lorentz, Ann. Physik [3] 12, 127, 660 (1881).
* Jäger, Wien. Ber. 105, 15 (16 Jan. 1896).
4 Van der Waals, Verslagen Acad. Wet. Amsterdam [4] 5, 150 (31 October 1896).
* Van der Waals later accepted the Boltzmann-Jäger value as correct, after his son (J. D. van der

Waals, Jr.) showed that the method used in ref. 4 was incorrect. For references to this dispute see Brush,
Am. J. Phys. 29, 593 (1961), esp. footnotes 31–41.

5 The same problem has been treated by Kamerlingh-Onnes, Arch. Neerl. 30, §7, p. 128 (1881).
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6 In particular, .
7 In Part I, §8, n is the number of molecules in unit volume; hence Ωn is the total number of

molecules of a gas in volume Ω, which we have denoted here by n.
8 Naturally terms of order b3 are omitted, and it should also be recalled that v is large compared to 1

in all terms except those that are vanishingly small.
9 The expression found here for S would not of course be found comparable with that given in §21

for the entropy, since the calculation of the latter assumed the exact validity of the van der Waals
equation. However, we find exactly the same expression for the entropy when in Eq. (38) of §21, from
which one finds

we substitute instead of Eq. (22) the equation of state

which forms the basis of our present calculations.
* See J. P. Kuenen, Comm. Phys. Lab., Leiden, No. 17 (1895), and other works cited therein.
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CHAPTER VI

Theory of dissociation.

§62. Mechanical picture of the chemical affinity of monovalent similar atoms.

I have once previously treated the problem of the dissociation of gases, on the basis of
the most general possible assumptions, which of course I had to specialize at the end.1

Since here I prefer perspicuousness to generality, I shall make special assumptions that are
as simple as possible. The reader must not misunderstand the following and perhaps believe
that I hold the opinion that chemical attraction acts precisely according to the laws of the
force assumed here. These laws are rather to be considered the simplest, most perspicuous
possible picture of forces which have a certain similarity to chemical forces, and hence in
the present case can be substituted for them with a certain degree of approximation.

I will first consider the simplest case of dissociation, for which the dissociation of iodine
vapor can serve as a prototype. At not too high temperatures, all molecules consist of two
iodine atoms; as the temperature increases, however, more and more molecules decompose
into single atoms. We explain the existence of molecules composed of two atoms (the
double atom) by an attractive force acting between the atoms, which we call chemical
attraction. The facts of chemical valence make it probable that the chemical attraction is by
no means simply a function of the distance of centers of the atoms; on the contrary it must
be associated with a relatively small region on the surface of the atom. Moreover, it is only
with the latter assumption, and not the former, that one can obtain a picture of gas
dissociation corresponding to reality.

Both for the sake of simplicity of calculation, and because of the monovalency of
iodine, we assume that the chemical attraction exerted on one iodine atom by another is
effective only in a space small compared to the size of the atom, which we shall call the
sensitive region. This region will lie on the external surface of the atom and will be firmly
connected to it. The line drawn from the center of the atom to a particular point of the
sensitive region (e.g., its midpoint, or its center of gravity in the purely geometrical sense)
we call the axis of this atom. Only when two atoms are situated so that their sensitive
regions are in contact, or partly overlap, will there be a chemical attraction between them.
We then say that they are chemically bound to each other. They can touch each other at
any other place on the surface without chemical attraction occurring. The sensitive region
shall be such a
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FIG. 4

small part of the entire surface of the atom that the possibility that the sensitive regions of
three atoms can be in contact, or partly overlapping, is completely excluded. For the
following calculation it is not necessary to assume that the atoms have the form of spheres.
Since this is the simplest assumption, however, we shall make it. Let σ be the diameter of
the spherical atom.

We consider a particular atom; let it be represented by the circle M of Figure 4. Let A be
its center. The shaded region α will be the sensitive region. We need not immediately
exclude the case that this lies partly inside the atom, but we draw it as if it were completely
outside, as one must naturally assume if one imagines the atom to be completely
impenetrable. If a second atom M1 is chemically bound to the first, then the sensitive region
β of the second atom must partially overlap the space α, or at least touch it. We shall again
construct the covering sphere of the first atom (a sphere of center A and radius σ), which is
indicated in the figure by the circle D. We construct on the surface of the covering sphere
D a space (the critical space, the shaded space ω in the figure) with the property that the
sensitive regions α and β can never overlap or touch each other unless the center B of the
second atom lies in this critical space ω or on its boundary. The converse is not true. If the
center B of the second atom lies in the critical space ω, then that atom can still be rotated in
such a way that the sensitive regions α and β are widely separated from each other.

In order to define precisely the position that the second atom must have relative to the
first if the two are to be chemically bound, we shall next construct in the critical space ω a
volume element dω. At the same time, ω will be the total volume of the critical space.2

Further, we shall imagine that a concentric sphere of radius 1 is rigidly connected to the
first atom; this sphere is indicated by the circle E Figure 4. If the second atom is chemically
bound to the first, then the axis of the second atom must not make too great an angle with
the line BA, since otherwise the sensitive regions α and β would separate from each other.
The line drawn from the point A parallel to and in the same direction as the axis of the
second atom should strike the spherical surface E in a point which we shall always call the
point Λ. Since the sphere E is rigidly connected to the first atom, the position of the axis of
the second atom relative to the first is completely determined by this point Λ, and we can
now construct, for each volume element dω of the critical space, a surface section λ on the
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spherical surface E with the following property. If Λ lies within or on the boundary of the
surface section λ, then, as soon as the center of the second atom lies within or on the
boundary of the volume element dω, the two sensitive regions α and β will interpenetrate
or touch each other. But as soon as A lies outside λ, the two sensitive regions β and β will
likewise lie outside each other. This surface section λ will of course in general be of a
different size according to the position of the volume element dω within the critical space ω,
and also will have a different position on the sphere E. Now if the center of the second
atom lies within or on the boundary of any volume element dω of the critical space, and Λ
lies within or on the boundary of a surface element dλ of that area λ which corresponds to
the volume element dω, then the second atom will be chemically bound to the first—i.e.,
the two atoms will actively attract each other. The work needed to bring them from this
position to a distance at which they no longer interact noticeably with each other will be
denoted by χ. This quantity can in general be different according to the position of the
volume element dω within the critical space, and also according to the position of dλ on the
corresponding surface λ.

§63. Probability of chemical binding of an atom with a similar one.

Now suppose that a identical atoms are present in a container of volume V at a pressure
p and absolute temperature T. Let the mass of an atom be m1 and that of all atoms am1 =
G. We pick out one of the atoms. The others we call again the remaining atoms. For a
moment we imagine that the gas is present in infinitely many (N) equivalent but spatially
separated containers at the same temperature and pressure. In each of these N gases, let n1
of the remaining atoms not be bound to the other remaining atoms, while 2n2 of the
remaining atoms are bound to another one, so that they form n2 double atoms. We now
ask, in how many of the N gases will the specified atom be chemically bound to one of the
other atoms, and in how many will this not be the case.

We consider first only one of the N gases. Since we have excluded chemical binding of
three atoms, the specified atom, if it is bound at all, can only be united with one of the n1
not otherwise bound atoms of this gas.

We therefore draw, as in Figure 4, the covering sphere and the concentric sphere E of
radius 1 for each of these n1 atoms; on each of these covering spheres will be found
somewhere the critical space ω. In each of the critical spaces corresponding to all n1 atoms,
we draw the volume element dω, which has exactly the same position relative to the atom
in question as the element dω of Figure 4 with respect to the atom drawn there, and on each
spherical surface E we draw a surface element dλ, which likewise has the same position
relative to the atom in question as has that surface element dλ in Figure 4. If the center of
the specified atom now finds itself in any one of the volume elements dω, and moreover the
point Λ is in the surface element dλ of the surface λ (or its boundary) corresponding
thereto, then it is chemically bound to another atom, and indeed is at a completely
determined position relative to another atom, so that the quantity denoted by χ has a definite
value.

If that attractive force which we call the chemical attraction were not present, then the
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probability that the center of the specified molecule is in one of the volume elements dω
would be in the same ratio to the probability w that it is in the arbitrary space Ω in the gas—
which is neither a part of the covering sphere of a remaining atom, nor contains one of the
spaces ω—as n1dω:Ω. The space Ω is, according to what has been said, constructed so that
the center of the specified atom can be in each point of it without being chemically bound.
The probability w2 that not only does the center of the specified molecule lie in one of the
volume elements dω but also the point Λ lies within the surface element dλ would, in the
absence of chemical forces, be in the same proportion to w1 as dλ:4π, so that therefore

As a result of chemical attraction, this probability will be increased by a factor e2hx,
according to Equation (142) ; hence in the presence of chemical attraction, the probability is

In order to include all possible positions at which the specified atom is bound to any one of
the n1 remaining individual atoms, we must integrate this expression over all volume
elements dω of the entire critical space ω, and for each such volume element, over all
surface elements dλ of the surface λ corresponding to the volume element dω concerned;
whereby we obtain for the probability that the specified atom is chemically bound at all, the
expression

If we put

then

Here w is the probability that the center of the specified molecule lies in an arbitrary
space Ω not containing the covering sphere or critical space of any of the remaining atoms.

We now have to calculate the probability that the specified molecule in the gas
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considered is not chemically bound. The latter circumstance will always occur if its center
is found in the space free of the covering spheres of all remaining atoms and of the critical
spaces of the n1 atoms. The sum of those critical spaces is n1ω, and the total space filled by
covering sphere is, as in §59, equal to Gb. Since the total volume of the gas is V, the space
free of covering spheres and critical spaces is V − Gb − n1ω.1 The probability, w4, that the
center of the specified atom is found in this space is in the same ratio to the probability that
it is in Ω as the volumes of the corresponding spaces, since the latter space is only an
arbitrary part cut out of the former. Therefore :

The specified atom is also not chemically bound when its center is in a volume element
of a critical space but the point Λ does not lie on the corresponding surface λ, since then it
is rotated so that the sensitive areas do not overlap. For the probability of this latter event
one finds, by analogy with Equation (185) , the expression

where, however, for each volume element dω, dλ1 means an element of the spherical
surface E that does not lie on the surface λ corresponding to dω. Again one is to integrate
over all surface elements that satisfy this condition and over all volume elements dω. The
exponential is now omitted, of course, since in none of the positions now considered does
the attractive force act. In each of the N gases, therefore, the total probability that the
specified atom is not chemically bound is:

The three quantities Gb, n1ω, and n1∫∫dωdλ/4π are completely independent of the
chemical attractive forces. The first represents the deviation from the Boyle-Charles law
considered by van der Waals, due to the finite extension of the molecules. Since the critical
space is very small compared to the covering sphere, the second and third of the above
three quantities are small compared to the first. We shall neglect all three quantities
compared to V, since we shall calculate the dissociation of a gas that otherwise has the
same properties as an ideal gas, so that the deviations from the Boyle-Charles law from
causes other than dissociation can be neglected. By the same token we can also forget all
terms added to the expression in parentheses in Equation (189) in the search for greater
accuracy. Hence Equation (189) reduces to
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On the other hand, we may not consider the quantity k (given by Eq. [186] ) to be small
compared to V, since on account of the great intensity of chemical forces the exponential
has a very large value. Noticeable dissociation occurs only when the exponential e2hx is of
the same order of magnitude as Ν/n1ω, and hence k and V are of the same order of
magnitude. From Equations (187) and (190) it follows that

If we now return to the N identical gases, and assume that in N3 of them the specified
atom is chemically bound, and in N6 it is not bound, then we have also:

Since we could just as well have specified any other atom, this must also be the ratio of the
number of unbound atoms, n1 to the number of bound ones, 2n2, in the equilibrium state.
Therefore

hence

§64. Dependence of the degree of dissociation on pressure.

In determining the two numbers n1 and n2, we have of course imagined that one
molecule, which we called the specified one, is excluded. However, since these numbers
are very large compared to 1, Equation (191) is also valid when n1 means the total number
of all unbound atoms (simple molecules) in the gas, and n2 means the number of all double
atoms (compound molecules). Since a is the total number of all molecules in the gas, one
has moreover n1+2n2 = a. Whence it follows that:

We denote by G the total mass of gas, and by m1 the mass of one atom, so that a =
G/m1. a/G1 = 1/m1 is the number of dissociated and chemically bound atoms together in
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unit mass. We again denote by v=V/G the specific volume, i.e., the volume of unit mass of
the partially dissociated gas at the given temperature and pressure, and by q = n1/a the
degree of dissociation, i.e., the ratio of the number of chemically unbound (dissociated)
atoms to the total number of atoms. Finally we set

Then the above equation reduces to :

For the sake of orientation, we make the following remark: if two single atoms happen to
collide in such a way that their sensitive regions interpenetrate, then because of the
smallness of these regions and the large relative velocities of the atoms, which are
accelerated by the chemical forces, the time during which the sensitive regions overlap will
in most cases be small compared to the average time between successive collisions of a
molecule. The energy of the double atom is so large that the two atoms can separate from
each other again. (We refer to this case as virtual chemical binding.)

The number of these virtually bound atoms is in any case vanishingly small compared to
a, since they always remain together only a very short time. They can therefore make only
a vanishingly small contribution to n2, when n2 is not very small compared to a. Only
when the kinetic energy of the motion of the centers of gravity of the atoms is transformed
into internal energy of the atoms (e.g., rotation around their axis, or internal motion) can
there be, in the case when the atoms are not solid spheres, a somewhat longer interaction.
(First kind of proper chemical binding.) On the other hand, if a third single atom or double
atom intervenes while the sensitive regions of the other twx) atoms are overlapping, the
energy can be lowered so much that it no longer suffices to separate the two atoms again,
so that they must remain together, at least until another collision occurs. (Second kind of
proper chemical binding.) In all cases where our calculation gives the result that the number
of double atoms, n2, is not vanishingly small compared to a, numerous double atoms must
remain united with each other for long times. The principal advantage of our general
formula is just that it permits us to calculate the number of chemically bound atom pairs
without having to take special account of the processes of creation and dissolution of these
pairs. In any case, out of the n2 double atoms found by calculation—in case this number is
not very small—all except a vanishingly small number are united with each other for a
longer time, so that they are to be considered molecules in the sense of gas theory.

To calculate the pressure we must therefore proceed as if we had a mixture of two
gases. The molecule of one of these gases is a single atom, while the molecule of the other
is a pair of two atoms. The total pressure of any arbitrary gas mixture is:
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where m1, m2, . . . are the masses, and  . . . the mean square velocities of the

centers of gravity of the various kinds of molecules. n1 is the total number of gas molecules
of the first kind, n2 that of the second kind, and so forth (cf. Part I, §2, Eq. [8] ). Moreover,
if M is the mass of a molecule of the normal gas and  its mean square velocity at the

same temperature T; µh = mh/Μ is the atomic weight of one of the other gases, if the
molecular weight of the normal gas is set equal to 1 ; then:

hence

In our special case,

hence

therefore, since v = V/am1,

If one substitutes the value (194) for q here, then the pressure p is obtained as a function of
the specific volume v and the temperature T. K is still a function of temperature, which will
be discussed later. In fact, direct observation gives the relation between p, v, and T. The
chemist is usually accustomed to state the degree of dissociation q as a function of p and T,
however. One can accomplish this by writing Equation (191) in the form:
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Multiplication of this equation by Equation (196) yields

hence :

If one substitutes this value into Equation (196) , he obtains v as a function of p, T, and K.

§65. Dependence of the degree of dissociation on temperature.

There remains still the discussion of the quantity K. If we substitute in Equation (193)
for h its value ΜRT, it follows that:

which in any case is only a function of temperature. At constant temperature, K is therefore
a constant, and Equations (194), (196), and (197) give directly the relation between p and
v, as well as the dependence of the quantity q on p and v, in which is involved only one
new constant K which has to be determined.

Since Equation (198) contains the temperature under the integral sign, the dependence
of the quantity K on temperature cannot immediately be given in a simple manner. One
must instead make some assumption about the dependence of the function χ on the amount
of overlapping of the two sensitive regions. In order not to lose ourselves in vague
hypotheses, we shall discuss only the simplest of all assumptions: that χ always has a
constant value when the two atoms are chemically bound at all, i.e., as soon as the two
sensitive regions overlap at all, no matter how much. This would be the case when, at the
instant when the sensitive regions touch, there occurs a strong attraction, equal at all points
on the surfaces of these regions. But this attraction at once drops off to zero as soon as the
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sensitive regions penetrate further into each other, χ would then be the constant work of
separation of the two chemically bound atoms, or, conversely, the work done in chemical
binding by the chemical attractive forces.

If all the a/G atoms present in unit mass of the gas are initially unbound, and
subsequently combine to form a/2G double atoms, then the amount aχ/2G of work would
thereby be done; therefore Δ = aχ/2G is the total binding (or also dissociation) heat of unit
mass of the gas, measured in mechanical units, and one has:

In chemistry one calls the mass 2µ1 “one molecule.” Therefore 2μ1Δ is the heat of
dissociation of “one molecule.”

One can easily see that χ may not be more than at most logarithmically infinite for any
configuration of the atoms, since the probability of that configuration would otherwise be
an infinity of order eχ and would thus be so large that the atoms could never separate.
Whatever χ may be as a function of the positions of the atoms, one will not obtain a
qualitatively different result by replacing χ by its mean value for all positions, whereby he
would again arrive at Equation (200) . This equation must certainly therefore provide an
approximation to reality in the general case.

In the case where χ is constant, no intramolecular work will be done by the relative
motion of the chemically bound atoms, as long as they remain bound. The mean kinetic
energy however is always the same at a given temperature, whether the atoms are
chemically bound or not; hence equal increments of mean kinetic energy correspond to
equal increments of temperature, and the specific heat is independent of whether the atoms
are chemically bound or not, as long as χ is constant. Of course we mean here the specific
heat before the beginning or after the end of the dissociation; in case the degree of
dissociation changes, the heat of dissociation is not included in the specific heat.

We shall now introduce for brevity the notation

Pure Mathematical Physics



349

where λ is the surface section on the sphere E, which the point λ may not leave without
breaking the chemical bond, when the center B of the second atom lies within dω in Figure
4; then it follows from Equations (197), (200), (201), (202), and (203) that

If q is given experimentally as a function of p and T, then the two constants α and γ can
be determined from this formula. From α there follows at once from Equation (201) the
heat of dissociation—or, if one prefers, the heat of combination Δ of unit mass of the gas.
From γ, one can determine the quantity β by means of Equation (203) . According to
Equation (202) this quantity has a significant molecular meaning. For each volume element
dω of the critical space belonging to an atom, the point A must lie on a certain surface
section λ of the spherical surface E, in order that chemical binding can occur. We shall now
count not all of the volume of each volume element dω of a critical space, rather only the
fraction of it which is obtained on multiplying the volume element by λ/4π. We call this
fraction of the total volume element the reduced volume. ∫λdω/4π is then the sum of the
reduced volumes of all volume elements of the critical space belonging to an atom; we call
it simply the reduced volume of the critical space.

We shall now use an abbreviated manner of speaking. Instead of saying that the center
of the second atom lies in the volume element dω and simultaneously the point Λ lies on
the corresponding surface λ, we say simply that the second atom lies in the reduced volume
element dω. Instead of saying that it lies in some reduced volume element of the critical
space, we say simply that it lies somewhere in the reduced critical space.

Since finally 1/m1 is the total number of atoms in unit mass, β is the sum of the reduced
volumes of all critical spaces which belong to all the atoms in unit mass. If one wishes to
make a definite assumption about the form of the sensitive region, then he can calculate
therefrom the form of the surface section λ corresponding to each volume element dω of
the critical space, and hence not only the reduced volume but also the absolute volume of
all the critical spaces belonging to all atoms in unit mass. But we shall not go into this in
more detail here.

If one substitutes the expression (204) into Equation (196) , then he can express the
specific volume v as a function of the pressure p, the temperature T, the gas constant R/µ1
of the dissociated gas, and the two constants α and γ. If one prefers to express p as a
function of v and T, then he can substitute the expression (194) for q into Equation (196) ,
after setting Κ = βeα/Τ (according to Eq. [220] ).
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§66. Numerical calculations.

A very short numerical calculation will be inserted here. I have analyzed1 the
experiments of Deville and Troost2 and of Naumann3 on the dissociation of hyponitrous
acid, and that of Meier and Crafts4 on the dissociation of iodine vapor, according to
Equation (204) . The constants there called a and b are related to the ones here called α and
γ as follows :

where l means the natural logarithm. I found that—denoting the quantities pertaining to
hyponitrous acid by the index u, and those to iodine vapor by the index j—that :

whence follows:

pu is the average pressure used by Deville and Troost in their experiments on the
dissociation of hyponitrous acid (about 755.5 mm of mercury) ; pj is that used in the
experiments of Meier and Crafts on the dissociation of iodine vapor (728 mm). According
to Equation (201) , the heat of dissociation of a molecule (in the chemical, macroscopic
sense) is

This formula is based on mechanical units for heat. If one uses thermal units, it is necessary
to multiply by the appropriate conversion factor J. The heat of dissociation of a chemical
molecule in thermal units is therefore
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We shall use grams, centimeters, and seconds as units for the mechanical quantities. A
weight of 430 kilograms raised one meter produces one kilocalorie. Hence

Here G = 981 cm/sec2 is the acceleration of gravity, and “cal” means a gram-calorie. The
value of the gas constant r for air is found by substituting the following values in the
equation of state pv = rT for air:

For a molecule of air, µ0 is about 28.9 when one sets H = 1, H2 = 2. Since R = rµ, we
have for monatomic hydrogen:

Finally it follows that

Hence one obtains for hyponitrous acid :
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On dividing by the molecular weight 2µ1 = 92 of hyponitrous acid (N2O4), one obtains for
the heat of dissociation of one gram of it the value

which is in good agreement with the direct determination of the heat of dissociation of
hyponitrous acid by Berthelot and Ogier.5

For iodine vapor it follows that :

According to Equations (202) and (203), the sum of the reduced critical spaces of all
atoms in unit mass is

Now we have

pu corresponds to a column of mercury of 755.5 mm height. Hence6

Hence
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This value is three times as small as the one I found previously,1 due to the fact that there I
made the improbable assumption that the four oxygen atoms can be arbitrarily exchanged
during the uniting and separation of two NO2 groups, whereas here I consider such groups
to be undecomposable, playing exactly the same role as atoms.

For iodine vapor I found1

The experiment was done likewise under atmospheric pressure (728 mm of mercury on the
average). Furthermore, the molecular weight 2µ1 of iodine is equal to 253.6. Substitution of
these values yields

Neither for hyponitrous acid nor for iodine vapor is the value of van der Waals’ constant
b known, so that one cannot calculate the space filled by the molecules from the van der
Waals equation. This would also give only the order of magnitude since it treats the
molecules as nearly undeformable spheres, and makes various other simplifications which
can influence the result. There remains finally Loschmidt’s method of estimation.* We shall
set the density of liquid hyponitrous acid equal to 1.5, and that of solid iodine equal to 5,
corresponding to temperatures below that of melting ice. At these temperatures the vapor
pressure of both substances is very small; for iodine it is of course much smaller than for
hyponitrous acid. But we can leave this out of consideration here, since we only want a
rough order-of-magnitude estimation. We assume completely arbitrarily that in these two
substances two thirds of the total space is filled up by the molecules. Then the space filled
by a gram of molecules of hyponitrous acid would be 0.44 cm3/gr; the sum of the volumes
of the covering spheres of these molecules is eight times as large, viz., 3.55 cm3/gr. For
iodine, the same quantities have the values 0.133 cm3/gr and 1.07 cm3/gr. Therefore, for
hyponitrous acid the reduced critical space of an NO2 group, considered as one atom, is
only about one 8-millionth part of the covering sphere, whereas for iodine it is an eighth or
a ninth part of the covering spheres. The small dis-sociability of iodine is therefore
predominantly due to the relative size of the critical space compared to the covering sphere,
whereas the difference in the heats of dissociation per gram of the substances is relatively
small. Iodine vapor would therefore be about as easily dissociated as hyponitrous acid
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when the former is diluted a millionfold.

§67. Mechanical picture of the affinity of two dissimilar monovalent atoms.

We consider a second simple example. Two kinds of atoms are present in a space V at
temperature T and total pressure p. There are a1 of the first kind and a2 of the second kind.
Let the mass of an atom of the first kind be m1, and that of an atom of the second kind be
m2. Two atoms of the first kind can be combined into a molecule (double atom of the first
kind), likewise two atoms of the second kind (double atom of the second kind). For each of
these bonds, exactly the same rules as those established in the preceding section will hold.
We shall denote all quantities pertaining to double atoms of the first kind by an index 1, and
those to double atoms of the second kind by an index 2. But in addition, chemical binding
of an atom of the first kind to one of the second kind, forming what we shall call a mixed
molecule, shall be possible. Similar laws will hold for these bonds, and we shall denote the
corresponding quantities by two indices, 1 and 2.

In the equilibrium state the following will be present in our gas: first, n1 single atoms of
the first kind, and n2 single atoms of the second kind; second, n11 double atoms of the first
kind and n22 double atoms of the second kind; third, n12 mixed molecules. Chemical
combination of more than two atoms will be excluded. The atoms of the first kind shall be
impenetrable spheres of diameter σ1. We shall call a sphere of radius σ1 around the center
of such an atom its covering sphere. To it will be attached the critical space ω1 for the
interaction with a similar atom; dω1 denotes the volume element of this critical space. If the
center of another atom of the first kind does not lie within ω1, it is not chemically bound to
the first atom. If its center is within dω1, then chemical binding takes place only if it is in
the reduced volume dω1—i.e., when the point Λ1 lies within a certain surface section λ1 of
the spherical surface E concentric with the first atom. Let dλ1 be an element of the surface
λ1. As before, Λ1 is the point of intersection of a line drawn from the center of the first
atom parallel to the axis of the second, with the spherical surface E. Finally, χ1 is again the
work performed when the two atoms come from a great distance to those positions where
the center of the second lies within dω1 and the point Λ1 lies within dλ1.

If one picks out an atom of the first kind, then he can assume that, of the remaining
atoms of the first kind, there will always be n1 which are bound neither to an atom of the
second kind nor to another remaining atom of the first kind. If the specified atom forms a
double atom of the first kind, then it can only be bound to one of these n1 atoms of the first
kind, since we exclude tri-atomic molecules. The probability of this event is to the
probability that it remains single as k1n1:.V, where

This can be found just as in the previous section. The ratio of these two probabilities must
however be equal to the ratio 2n11:n1, whence
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Likewise one finds for the atoms of the second kind the equation

where all quantities have a similar meaning. Therefore :

We still have to discuss the formation of mixed molecules. Since we assumed that the
atoms of the first kind are impenetrable spheres of diameter σ1, and those of the second
kind are impenetrable spheres of diameter σ2, we shall consequently assume that the
minimum distance of separation of two unlike atoms is . We construct a

sphere of radius  around the center of an atom of the first kind, and call it the

covering sphere of this atom with respect to an atom of the second kind. On the surfaces of
both kinds of atoms there will be sensitive regions with the property that attraction takes
place only when these regions touch or partly overlap. It seems most probable that the
sensitive region for interaction with atoms of a different kind is the same as that for
interaction with atoms of the same kind; but this assumption is not strictly necessary. In any
case, we can just as before construct a critical space attached to the covering sphere of an
atom of the first kind with respect to an atom of the second kind, and call it ω12. For each
volume element dω12 of this critical space we can construct a surface λ12 on the unit
sphere E concentric with the covering sphere, such that when the center of the second atom
lies within dω12, the two atoms attract only when, as before, a certain point Λ12 lies within
some surface element dλ12 of the surface λ12—when the atom is in the reduced volume
element dω12, in other words. In this case χ12 is the work of separation.

We again pick out some atom of the second kind. In order that it be a single atom, it
should have all but a vanishingly small part of the total volume V available to it. If on the
other hand it is in a mixed molecule, then its center must lie within some volume element
dω12 of the critical space belonging to one of the n1 unbound atoms of the first kind, and
the point Λ12 should lie in some surface element dλ12 of the corresponding surface λ12.
The probability that its center lies in a certain volume element dω12 and the point Λ12 lies
in a certain surface element dλ12 is, to the probability that for an arbitrary configuration of
its axis its center lies within V, as:
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The probability that the specified atom is bound in a mixed molecule at all is, to the
probability that it is a single atom, as

Therefore one obtains, on setting again

the proportion

hence

§68. Dissociation of a molecule into two heterogeneous atoms.

We first consider the special case that k1 and k2 are so small compared to k12 and V/n1
respectively that the number of double atoms of the first and second kinds is completely
negligible. The gas then consists only of three kinds of molecules: single atoms of the first
and second kinds, and mixed molecules.

We specialize further to the case that there is no surplus of single atoms of either kind—
i.e., the number of single atoms of the first kind is exactly equal to the number of single
atoms of the second kind. Then we set:

We have:

We again call the quotient q = (a – n12)/a the degree of dissociation, so that it follows from
Equation (221) that

Furthermore, one has from Equation (195)
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Hence

We again assume that χ12 is constant; then

is the heat of dissociation of the original unit mass consisting purely of mixed molecules.
Further:

µ1 is the atomic weight of a gas consisting of single atoms of the first kind, referred to Η1 =
1 , H2= 2. µ2 has a similar meaning for the second kind of gas. The quantity in the
exponent, (µ1+µ2)Λ12 = Π, is the heat of dissociation (measured in mechanical units) of a
molecule of the undissociated substance in the chemical or macroscopic sense, whose mass
(the chemical molecular weight) is µ1+µ2. If we set

then we find again
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χ12 is the reduced critical space of an atom of the first kind with respect to its interaction
with an atom of the second kind. χ12 would be the sum of all reduced critical spaces which
correspond to all the atoms contained in unit mass of the first kind of gas. χ1/M, on the
other hand, is the sum of all critical spaces that correspond to all atoms of the first kind of
gas contained in a molecule (in the chemical sense)—i.e., in the mass m1/M of the first kind
of gas, which is chemically equivalent to unit mass of the normal substance.

If one gas is present in excess, then Equation (221) yields

Since n12 can neither be larger than a1 nor larger than a2, the root must be taken with the
negative sign. If a1 were very large, then the other factor a2–n12 on the left-hand side of
Equation (221a) must be very small, hence n12 must be nearly equal to a2, which also
follows from Equation (222) if one considers a1 to be large compared to a2. As the number
of atoms of the first kind increases, more and more atoms of the second kind will be bound
to them, until finally all atoms of the second kind will be chemically bound, which agrees
with the law of mass action of Guldberg and Waage.

§69. Dissociation of hydrogen iodide gas.

We now consider the other extreme special case of the general case treated in §67.
Again let a1 = a2 = a, but now let V/a be vanishingly small compared to k1, k2, and k12, so
that the number of single atoms of the two kinds is vanishingly small. This would be the
case, for example, when HI dissociates into I2 and H2. We then obtain, on squaring

Equation (221) , . If we substitute the values of  and  from

Equations (217) and (218), then it follows that:
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If one denotes again by q=(a–n12)/a the degree of dissociation then:

Hence it follows from Equation (223) , after extracting the square root, that:

If one again assumes that χ is constant in the entire reduced critical space, and denotes
the reduced critical space for the interaction of two atoms of the first kind with each other,
of two atoms of the second kind with each other, and of one atom of the first kind with one
of the second, by κ1, κ2, and κ12, respectively, then according to Equations (216), (219),
and (220):

On forming two HI molecules from an I2 and an H2 molecule, the heat 2χ12 – χ1 – χ2 will
be liberated.
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is therefore the heat Δ which is liberated on forming unit mass of HI from ordinary iodine
and hydrogen gases. Hence

Π =2(µ1+µ2)Δ is of course the heat of formation of two HI molecules in the chemical sense
from a molecule of ordinary iodine vapor and a molecule of ordinary hydrogen gas.

At very high temperatures, q approaches the limit

From the experiments of Lemoine1 one calculates for this limit the value ; however,

this may not be completely reliable, on account of a possible false chemical equilibrium.
The reduced critical space for the interaction of an iodine atom with a hydrogen atom
would then be only about one third of the geometric mean of the reduced critical spaces for
the interactions of two iodine and two hydrogen atoms respectively with each other.

§70. Dissociation of water vapor.

We shall now briefly consider a special case, namely the dissociation of two water
vapor molecules (2H2O) into two hydrogen molecules (2H2) and one oxygen molecule
(O2). In a volume V at temperature T and pressure p, there will strictly be present all
possible molecules that can be formed by combining hydrogen and oxygen atoms. Let: n10,
n01, n20, n02, n11 and n21 molecules of the forms H, O, H2, O2, HO, and H2O be present.
We denote by κ20, κ02, κ11 and κ21 the reduced critical spaces for the combination of two
hydrogen atoms, two oxygen atoms, one oxygen atom and one hydrogen atom into the
group HO, and such a group with another hydrogen atom into water vapor, respectively.
Furthermore, we denote by χ20, χ02, χ11, and χ21 the amounts of heat liberated in forming
the corresponding compounds, so that:

is the heat of formation of two water vapor molecules from two hydrogen molecules and
one oxygen molecule. Each of the χ shall be constant in the corresponding critical space.

We next pick out a hydrogen atom. It is paired in a molecule of the form HO when it
finds itself in the reduced critical space κ11 of one of the n01 oxygen atoms. The probability
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that it is single is, to the probability that it forms a group HO, as

This however is at the same time equal to the ratio n10:n11, whence it follows that :

If one compares the probability that the specified hydrogen atom remains single with the
probability that it is united with an HO molecule into H2O, it follows likewise that :

hence :

The probability that the specified hydrogen atom remains single is, to the probability that
it is united with one of the remaining hydrogen atoms in an H2 molecule, as

This however is again the ratio of the number n10 of single hydrogen atoms to the number
2n20 of those bound to another hydrogen atom. Hence:

and likewise :

Hence, and from Equation (224), it follows that:

We assume that there are originally a water molecules. Of these let n21 remain
undissociated, so that a – n21 are dissociated and indeed are exclusively in molecules of the
forms H2 and O2. The quotient q = (a – n21)/a shall again be called the degree of
dissociation.

Since, out of the a – n21 water molecules, a – n21 hydrogen molecules and 
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 oxygen molecules would be formed, we have:

2χ21
+2χ11

 –2χ20
 – χ02

 is the heat liberated when two water vapor molecules form two
hydrogen molecules and one oxygen molecule. If we denote the heat produced when unit
mass of water is formed from the usual explosive gas by Δ, then:

If one sets

then:

Furthermore, according to Equation (195)

If one eliminates q, then he obtains the relation between p, v, and T. On the other hand, if
one eliminates v, then he obtains for the dependence of the degree of dissociation on
pressure and temperature the following equation:

The equation between q, p, and v would be obtained by eliminating T from Equations
(227) and (228).

In order to take account of the bivalence of the oxygen atom, one can assume that two
equivalent sensitive regions lie on its surface. The critical space for the formation of HO
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from H and O would then be twice as large as that for the formation of H2O from HO and
H. But then the sensitive regions would not have to lie directly vis à vis; or else they must
be able to move on the surface of the molecule, in order to make possible double bonding
of two oxygen atoms. One would obtain a phenomenon at least partly similar to bivalence
by assuming that the critical region of an oxygen atom is not completely covered by the
covering sphere of a single oxygen or hydrogen atom chemically bound to it, so that there
is still room for the chemical binding of another atom. I certainly am not very hopeful that a
more precise formulation of these speculations can be established at the present time; yet
perhaps I may be allowed to adduce here the statement of a great scientist, that these
general mechanical models will aid more than hinder the knowledge of the facts of
chemistry.

§71. General theory of dissociation.

We shall now make some remarks on the most general case of dissociation. Let there be
given arbitrarily many atoms of arbitrarily many different kinds. A molecule which contains
a1 atoms of the first, b1 atoms of the second, c1 atoms of the third kind, and so forth, will
be denoted symbolically by (a1b1c1 · · ·). The aggregate of C1 molecules of the form
(a1b1c1 · · ·), C2 molecules of form (a2b2c2 · · ·), C3 molecules of form (a3b3c3 · · ·) and so
forth can be transformed into Γ1 molecules (α1β1γ1 · · ·), Γ2 molecules (α2β2γ2 · · ·), Γ3
molecules (α3β3γ3 · · ·) and so forth. Since both aggregates must contain the same atoms,
we have the following equations

We now assume that all possible combinations of our atoms are present in the gas, even if
only in small amounts. We denote by n100… the number of single atoms of the first kind,
by n200… the number of double atoms of the first kind, and so forth. Likewise, let n010…
be the number of single atoms, n020… the number of double atoms of the first kind, etc.; let
n110… be the number of molecules consisting of one atom of the first kind and one of the
second, and so forth. For simplicity we ignore isomers. A double atom of the first kind can
be formed only when the center of an atom of the first kind lies within the reduced critical
space of another atom of the first kind. Hence, if κ200… is this reduced critical space, and
χ200… is the heat of bonding of a double atom of the first kind, then it follows from the
principles of our theory that

Likewise it follows that
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where χ300… is the heat of bonding of a molecule consisting of three atoms of the first
kind, formed from a single and a double atom of the first kind. χ300… is the reduced
critical space for this bonding which is available for the single atom in the neighborhood of
the double atom. From the two ratios it follows that:

where  is one sixth of the product of the reduced critical spaces κ200… and

κ300…; ψ300… = χ100… + χ200… is the heat of bonding of three single atoms of the first
kind into a molecule. Continuing in this line of reasoning, one finds easily that

where  is the product of all the reduced critical spaces, divided by a!, and ψa100· ·

· is the heat of bonding of a1 atoms of the first kind with each other.
Each such molecule will have a definite reduced critical space κa110· · · for the

annexation of an atom of the second kind. Let ψa110· · · be the heat of formation of a
molecule consisting of a1 atoms of the first and one atom of the second kind, from its
atoms. Then

If one attaches still more atoms of the second and third kinds, and so forth, then it follows
finally that

where ψa1b1c1· · · is the heat of formation of the molecule (a1b1c1 · · ·) from its atoms, and 
 is the product of all the critical spaces, divided by a1!b1!c1!…

Completely analogous expressions follow of course for na2b2c2
…, na3b3c3

…, na1β1γ1
…,

and so forth. The n’s that have a single one, and otherwise all zero indices, can be
eliminated by taking account of Equations (229), whence one obtains:

 is the quotient in which occur all the

reduced critical spaces of the compounds (a1b1 · · ·), (a2b2 · · ·), each with its appropriate C
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as exponent, and all the factorials (α1!)Γ1(β1!)Γ1 · · · (α2!)Γ2(a!)Γ2 · · · in the numerator, and
the critical spaces of the compounds (α1β1 · · ·), (α2β2 · · ·) raised to the powers Γ1, Γ2, · · ·
as well as the factorials (a1!)C1(b1!)C1 · · · (a2!)C2 · · · in the denominator. Γ1ψa1

β1 · · · +
Γ2ψα2

β2 · · · – C1ψα1b1 · · ·– · · · is the heat of reaction which would be liberated if C1
molecules (a1b1 · · ·), C2 molecules (a2b2 · · ·) and so forth were changed into Γ1
molecules (α1β1 · · ·), Γ2 molecules (α2β2 · · ·) etc. Furthermore,

We shall now denote by ma1b1 · · · the mass of a molecule (α1b1 · · ·) in the gas-theoretic
sense, and by µα1b1

… the mass of a molecule of this substance in the macroscopic sense,
i.e. the quotient ma1b1

…/M. One molecule (α1b1 · · ·) in the macroscopic sense therefore
contains 1/M gas-theoretic molecules. Likewise, in the aggregate of C1 macroscopic
molecules (α1b1 · · ·), C2 macroscopic molecules (a2b2 · · ·) etc. there are in all C1/M gas-
theoretic molecules (a1b1 · · ·), C2/M gas-theoretic molecules (a2b2 · · ·), etc. Therefore

is the heat which would be liberated if this reaction took place with C1, C2, · · ·
macroscopic molecules and Γ1, Γ2, · · · macroscopic molecules of the specified kinds.
Hence one can also write Equation (230) as follows:

This equation holds for any possible reaction. We now consider a special case: only one
kind of reaction is possible in the gas. Let there be initially a times C1 (gas-theoretic)
molecules of type (α1b1 · · ·), likewise a times C2 molecules of type (a2b2 · · ·) and so
forth, and no molecules of types (α1β1 · · ·), (α2β2 · · ·) etc. At the pressure p and
temperature T let there be only (a – b) × C1 molecules of type (a1b1 · · ·), (a – b) × C2 of
type (a2b2 · · ·) etc., and b × Γ1 molecules of type (α1β1 · · ·), b × Γ2 of type (α2β2 · · ·)
etc. present in equilibrium. Then b/a = q is the degree of dissoication. Furthermore,

Hence Equation (231) takes the form:
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The mass of gas present is a[C1ma1b1 · · · + C2ma2b2 · · · · · · ]. If we again denote by v the
volume of unit mass then

and we shall set

Then the above equation becomes

This equation gives the dependence of the degree of dissociation on the temperature and
specific volume, γ and (if the heat of reaction is not otherwise known) Π/R are constants to
be determined from experiment.

If one wishes to introduce the total pressure p instead of v, then he obtains according to
Equation (195)

Since C1µα1b1 · · · + C2µα2b2 · · · + · · · is the molecular weight of the undissociated
substance, this agrees with the Boyle-Charles-Avogadro law for q = 0, and gives, when q
is different from zero, the deviations from this law due to dissociation.

If one eliminates from this and from Equation (232) the quantity q, then he obtains again
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the relation between p, v, and T; if one eliminates v from the same equations, then he
obtains the degree of dissociation q as a function of p and T.

More general formulas would follow from the assumption that an atom of the first kind
can be bound to one of the second, and then this complex can be bonded to another atom
of the first kind, although the atoms of the first kind cannot be bonded to each other alone
(isomerism).

All these formulas agree with experience, as far as present observations go.

§72. Relation of this theory to that of Gibbs.

Gibbs11 has deduced essentially the same formula from the general principles of
thermodynamics, without referring to the dynamics of molecules. Yet one should not forget
that his deduction is based on the assumption that in a dissociating gas all the constituents
are present independently as individual gases, and energy, entropy, pressure, etc. are simply
additive. This hypothesis is completely clear from the molecular-theory standpoint, since
these different molecules are actually present separate from each other; and in many places
it seems evident that Gibbs has these molecular-theoretic concepts continuously in mind,
even if he does not make use of the equations of molecular mechanics.

On the other hand, if one takes the modern viewpoint, which has been most sharply
advocated by Mach12 and Ostwald,13 that in chemical binding something completely new
is created in place of the constituents, then it has no meaning to assume for example that
during the dissociation of water vapor, one has present simultaneously water vapor,
hydrogen, and oxygen. On the contrary, one must say that at low temperature there is only
water vapor; at intermediate temperature some new substance is present, which finally
becomes oxhydrogen gas [Knallgas] at very high temperatures.

The assumption that at these intermediate temperatures the energy and entropy of water
vapor and oxhydrogen gas are additive loses any sense; without this assumption, however,
the basic equations of dissociation can be derived neither from the first and second laws of
thermodynamics nor from any energetic principles whatever. One can only consider them
as empirically given.

There is no question that for the calculation of natural processes the mere equations,
without their foundation, are sufficient; likewise, empirically confirmed equations have a
higher degree of certainty than the hypotheses used in deriving them. But on the other
hand, it appears to me that the mechanical basis is necessary to illustrate the abstract
equations, in the same way that geometrical constructions illuminate algebraic relations.
Just as the latter are not made superfluous by mere algebra, so I believe that one cannot
completely dispense with the intuitive representation of the laws valid for the action of
macroscopic masses provided by molecular dynamics, even if he doubts the possibility of
knowledge of the latter, or indeed the existence of the molecules. A clear understanding is
just as important for knowledge as the establishment of results by laws and formulas.

It should still be mentioned that we have discussed here only the simplest relations
which would give rise to the so-called theoretical dissociation equilibrium. A deeper
investigation into molecular mechanics can also account for the phenomena which one
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denotes as false chemical equilibrum.14 The pertinent facts are as follows. At room
temperature, oxhydrogen gas as well as water vapor can exist for an arbitrarily long time,
without one being transformed into the other. All the molecules are bound so strongly that
in the time of observation no dissociation or reaction of any observable amount of the
substance is possible. Of course in a time infinite in the mathematical sense the reaction
would take place.*

The phenomena of false chemical equilibria are completely analogous to the phenomena
of supercooling and superheating that we have discussed in §15, and have exactly the same
basis.

§73. The sensitive region is uniformly distributed around the entire atom.

We shall now, for comparison, consider the simplest case of dissociation on the basis of
another mechanical picture, which is actually a special case of the one earlier considered.
There are present again equivalent atoms, a in number, with diameter σ. What we called
the sensitive region shall now no longer be limited to a small part of the surface of the
molecule, but rather shall be uniformly distributed over the entire molecule. The sensitive
region therefore has the form of a spherical shell concentric with the molecule, whose inner
radius is , and whose outer radius is , where δ is small compared to σ.

Whenever the sensitive regions of two molecules touch or overlap, they will be chemically
bound. The heat of separation, measured in mechanical units, will be equal to a constant, χ,
for all these positions.

The covering sphere is then a sphere of radius σ concentric with the molecule. The
critical space, which coincides with the reduced critical space, is a spherical shell which lies
between the surface of the covering sphere and a concentric spherical surface of radius σ +
δ. Each time the center of a second atom lies within this critical space, it is chemically
bound to the first one, and the heat of separation is a constant equal to χ.

Let there be present n1 simple and n2 double atoms, so that

where V is the total volume of the gas. Hence

The centers of two atoms united in a double atom will be at a distance approximately
equal to σ. Of the critical space 4πσ2δ of each of the two atoms, the part 3πσ2δ lies
outside the covering sphere of the second atom, and the part πσ2δ lies inside it. The center
of a third atom can lie only inside the former part, which we therefore call “free.” The total
“free critical space” of the two atoms has therefore the volume 6πσ2δ. However it is to be
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noted that a small zone exists where the critical spaces of the two atoms overlap, so that for
each double atom there is a narrow ringlike space of volume 2πσδ2 which we call “the
critical ring” belonging to both critical spaces. In calculating the volume of the total free
critical space one should properly subtract twice the volume of the critical ring from 6πσ2δ.
However this effect can be ignored since the volume of the critical ring vanishes compared
to the free critical space. The space available for a third atom to be united with the double
atom, thus forming a triple atom, consists therefore of two parts: first, the free critical space
of the double atom, and second, the critical ring of the double atom. In the former case the
work of separation of the third atom from the double atom is χ, while in the latter case it is
2χ. If we denote by n3 the number of triple atoms, then according to the principles of our
theory we obtain the ratio:

hence

Comparison of this formula with Equation (233) shows at once that in any case (n3/n2)
must be greater than (n2/n1). A state of dissociation in which there are many double atoms
but very few triple atoms would therefore be impossible in this case, where the critical
space is uniformly spread over the entire sphere of action.

Indeed there is still more. We can write the right-hand side of Equation (233) in the
form:

Now 4πn1σ
3/3 is the space filled by the covering spheres of n1 single atoms, while V is the

total space occupied by the gas. Hence 2πn1σ
3/V is in any case a very small quantity.

Hence if n2 is not already very small compared to n1, so that the gas is almost completely
dissociated, then e2hχ · δ/σ must be very large, hence also in Equation (234) the second
term is very large compared to the first. But the first term is equal to n2/n1. Therefore n3/n2
must be very large compared to n2/n1.

Therefore as soon as an appreciable number of single atoms have combined into double
atoms, most of the latter must also combine into triple atoms. A pairing of most atoms into
double atoms, such as we find in the best known gases, is therefore possible only if the
critical space covers a relatively small part of the surface of the covering sphere of each
atom.

In the present case, where the critical space is uniformly distributed over the entire
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surface of the covering sphere, as soon as the atoms begin to combine at all, they will prefer
to form aggregates containing a larger number of atoms. Something like liquefaction of a
gas would then occur. Unfortunately, except for the case where n2 is small compared to n1,
further calculations encounter difficulties that can scarcely be overcome, so that it remains
undecided whether one can obtain under this assumption laws of liquefaction similar to
those provided by the van der Waals equation, which we derived from a hypothesis directly
opposed to the present one; for there we proceeded from the assumption that the attraction
of the molecules extends to distances large compared to the distances of the centers of two
neighboring atoms, but here we assume that the attractive region of an atom is small
compared to the space occupied by the atom.

The author of this book once tried to make a mechanical model of the properties of gas
molecules in the following way.15 Consider them as material points (single atoms) of mass

m and mean square velocity . At distances greater than or equal to (σ+∊) they do not

interact with each other, nor do they interact at distances less than or equal to σ. In the
intervening region they exert an enormous attraction on each other, so that their kinetic

energy increases by χ, as they pass from the distance σ+∊ to the distance σ. ∊ is assumed
to be small compared to σ.

Let  be a sphere of radius σ, let n1 be the number of single atoms in the

volume v, n2 the number of double atoms— i.e., those for which the distance of centers is
smaller than σ. Then one finds, as earlier,

If for example (as for ordinary air) n1ω/υ were equal to about 1/1000, and moreover 
, then n2 could be rather small compared to n1; moreover, two atoms would be

significantly deflected in encounters, so that on the whole the characteristics of a gas would
be preserved. But at an absolute temperature ten times as large, the deflection of the
molecules from the rectilinear paths due to encounters would be so slight that the system
would scarcely show the properties of a gas any longer. At an absolute temperature ten
times smaller, however, n2 would be much larger than n1 and as before there would occur
a coalescence of larger complexes of atoms in their spheres of attraction, and thus a
liquefaction.

Hence although a mechanical system may show the characteristics of a gas at one
temperature, it might still be unusable as a mechanical model at all temperatures. The same
is probably true of the other model proposed by the author in the same place, based on an
attractive force inversely proportional to the fifth power of the distance. If this law held up
to zero distance of separation, then all the atoms would coalesce. If the interaction stopped
at a certain small distance, then above a certain temperature the deflection by collisions
would also be very small. A mechanical model based only on attractive forces, without
elastic repulsive forces in collisions, agreeing with all experimental facts for the gaseous
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and liquid states of aggregation, has not yet been found.
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CHAPTER VII

Supplements to the laws of thermal equilibrium in gases with

compound molecules.

§74. Definition of the quantity H, which measures the probabilities of states.

We have given (Part I, §3) a proof that the Maxwell velocity distribution for gases of
monatomic molecules satisfies the conditions which the stationary state must fulfill; then
(Part I, §5) we showed, using the assumption that the molecules move among each other so
randomly that the laws of probability can be applied, that it is the only one which satisfies
these conditions. Hence, provided that this assumption is correct, it is the only one which
can remain stationary in the gas.

Now, in Part II, we have proved that the general distribution of states represented by
Equation (118), page 316, satisfies the conditions which one finds for a stationary
distribution of states in a gas with compound molecules. The complete proof that it is the
only one satisfying these conditions has not yet been given in complete generality. Yet it is
possible to carry out this proof in the cases that are the simplest and of the greatest practical
importance, to the same extent as for gases with monatomic molecules. Hence in the
following I shall carry through in general those steps of the proof for which this is possible,
and then add the others at least for some special cases.

Let there be present in a container a gas consisting of identical compound molecules, or
a mixture of several different kinds of such cases. They shall have the properties of ideal
gases, i.e., the sphere of action of a molecule shall be vanishingly small compared to the
mean distance of two neighboring molecules. Let x, y, z be the rectangular coördinates, and

be the velocity components of the center of gravity of a molecule of the first kind; let p1 · · ·
pv be the generalized coördinates which determine the relative positions of the constituents
of such a molecule with respect to three coördinate axes passing through its center of
gravity, whose directions in space are fixed; and let q1 · · · qv be the corresponding
momenta.

The inclusion of external forces would not qualitatively increase the difficulties, but
would make the formulas still more complicated. We therefore exclude them, and assume
moreover that the mixing ratio and the distribution of states among the molecules is the
same in all parts of the container whose volume is so large that they contain many
molecules. Let
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be the number of molecules of the first kind in unit volume, for which at time t the variables
(235), as well as the variables

lie between the limits

For the sake of brevity we omit the variables from the function symbol, and set

where l means the natural logarithm, and the integration is to be extended over all possible
values of the variables.

Since f1dudvdwdp1 · · · dqv is the number of molecules for which at time t the variables
(235) and (237) satisfy the conditions (238) and (239), one obtains the value which the
quantity Η1 has at any arbitrary time in the following way: substitute in the function lf1 the
value which the variables (235) and (237) for each molecule of the first kind in the gas
have at this time, and add up all the values found for the function lf1 in this way. We shall
therefore also set

where the sum is over all molecules of the first kind in the gas at time t. Similarly we define
H2 for the second kind of gas, H3 for the third kind, and so forth, and set

Between the quantity H and the probability of the corresponding state of the gas there
exists a relation completely analogous to the one described in Part I, §6. But we will not go
into this here, since we are intentionally putting aside everything which does not lead
directly to our goal.

§75. Change of the quantity H through intramolecular motion.

We seek first the change experienced by H as a result of the internal motions of the
molecules, leaving out collisions completely. Since each kind of molecule is then
completely independent of the other kinds of molecules, it is sufficient to consider only the
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first kind. The effect of the wall will also be ignored. This is permissible when the container
is so large that the thermal equilibrium in the interior is completely independent of the
special processes at the wall, or also if each molecule, when it is reflected at the wall,
experiences no change in its state of motion aside from the change in the direction of
velocity of its center of gravity. Thus for simplicity one imagines the repulsive force at the
wall to be such that it acts in the same way on all constituents of an individual molecule,
just as, for example, gravity acts in the same way on all parts of a body.

For those molecules for which at time t the variables (237) lie between the limits (239),
the variables at some earlier time, the time zero, lie between the limits

We shall always use the abbreviations mentioned in §28 for the regions within which the
values of the variables lie. The values of u, v, w experience no change with time.

The expression which we obtain when we substitute in the function f1 the value zero for
t and the values

for p1 · · · qv, we denote by F1. Then

is the number of molecules for which at time zero the values of the variables (235) and
(237) lie between the limits (238) and (243). Since these are the same molecules as those
for which these variables lie between the limits (238) and (239) at time t, and since the
number of the latter molecules is

one has:

According to Equation (52), however,

hence it follows that F1 = f1 and

Furthermore, let
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be the value of the function Η1 at time zero. The molecules for which the variables (235)
and (237) lie between the limits (238) and (239) at time t provide a contribution

to the sum H1 = ∑ f1lf1. same molecules, these variables lie between the limits (238) and
(243) at time zero. Therefore the same molecules provide the contribution

to . According to Equations (246) and (247), the expressions (248) and (249) are equal

to each other. The same molecules therefore provide exactly the same addends to the sum
H1 as to the sum . Since this holds in general for all molecules at all times, it is clear

that H1 and hence also H are not changed at all by the intramolecular motion. The latter
follows since the same arguments hold for each other kind of molecule.

§76. Characterization of the first special case considered.

Although the change of H by collisions cannot yet be calculated in general for ideal
gases with compound molecules, we shall treat here a special case in which this calculation
takes an especially simple form.

We consider, as in the two preceding sections, a mixture of any ideal gases with any
compound molecules. In each molecule of each kind of gas there is always only one atom
that can exert a force on an atom of any other molecule, of the same or a different kind; and
the interaction of two such atoms of two different molecules is always the same as that of
two completely elastic negligibly deformable spheres. Hence the interaction of two
molecules always lasts so short a time that during this time the relative positions of the
constituents of the two molecules–and likewise the velocities and directions of velocity of
all other atoms except for the ones that collide–change only by an infinitesimal amount.

We shall now calculate the change experienced by H during an infinitesimal time dt as a
result of the collision of a molecule of the first kind with one of the second kind. We have
characterized the state of a molecule of the first kind by the variables (235) and (237), and
its absolute position in space by the coördinates x, y, z of its center of gravity. We shall now
retain the variables (237), but instead of the variables (235) we introduce the velocity
components

of that atom which collides with an atom of another molecule, and which we shall call the
atom A1. The other atom with which it collides we shall call A2. The absolute position of
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the molecule of the first kind in space we determine by the coördinates x1, y1 z1 of the
center of the atom A1. Since the variables (237) give the differences between the velocities
of all the atoms and the velocity of the center of gravity, and therefore also the quantities u1
– u, v1 – v, ω1 – ω, we see that when the variables (237) are kept constant,

Hence

is the number of molecules for which the variables (237) and (250) lie between the limits
(239) and

It makes no difference here whether one introduces u1, v1, ω1 in f1 instead of u, v, w, or
keeps the old variables.

We denote the coördinates of the center of atom A2 of the second molecule by x2, y2, z2,
and its velocity components by

and the other generalized coördinates and momenta needed to determine the state of the
second molecule by

Then by analogy with the expression (251), the number of molecules of the second kind for
which the variables (253) and (254) lie between the limits

will be denoted by

Following the method of Part I, §3, we can find the number of molecule pairs in which the
first molecule belongs to the first kind and the second to the second kind, and which
interact in time dt in such a way that atom A1 of the first molecule collides with atom A2 of
the second, and that at the instant of collision the following conditions are satisfied. The

Pure Mathematical Physics



377

variables (250), (237), (253), and (254) shall lie between the limits (252), (239), (255), and
(256), and the line of centers of the two atoms A1 and A2 shall be parallel to one of the lines
lying within an infinitely narrow cone dλ. All cases of interaction of two molecules which
take place during the time dt in such a way that all these conditions are satisfied, we call the
specified collisions.

If σ is the sum of the radii of the two atoms A1 and A2, g their relative velocity, and the
latter forms, with the line of centers of the colliding atoms at the instant of collision, an

angle whose cosine is ∊, then one finds by the method in the section cited, for the number
of specified collisions:

§77. Form of Liouville’s theorem in the special case considered.

Since the collisions take place instantaneously, the values of the variables (237) and

(254) do not change during collisions. Also, g, ∊, and the velocity components ξ, η, ζ of the
common center of gravity of A1 and A2 have the same values after the collision as before
(cf. Part I, §4). Only the values of u1 v1 ω1, u2, v2, ω2 will be changed. The values of these
quantities after the collision will be denoted by the corresponding capital letters; and for

given values of g and ∊, the values of the variables u1, v1 ω1, u2, v2, ω2, when they lie
between the limits (252) and (255) before the collision, will lie afterwards between the
limits

It can then easily be shown from Equation (52)—or even more generally by very simple
means, as in Part I, §4—that then

or

(Previously the letters ξ, η, ζ were used instead of u, v, w, and primed letters were used
instead of capital letters.)

The proof given in Part I, §4 contains an error, which was pointed out to me by C. H.
Wind1 and later by M. Segel in Kasan. Therefore I will give this proof again here using a
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method free of error.
We introduce instead of u2, v2, w2 the components ξ, η, ζ of the velocity of the center of

gravity common to A1 and A2, if one were to consider these two atoms as one mechanical
system. If m1 and m2 are their masses, then

with two similar equations for the other two coördinate directions. From these equations it
follows that, if one leaves the variables u1, v1 w1 unchanged and only introduces ξ, η, ζ for
u2, v2, w2, then

In the expression on the right-hand side we introduce now instead of u1, v1, w1 the
variables U1, V1, W1, while we leave ξ, η, ζ unchanged. It is evident geometrically from
Figure 2, page 39 of Part I that if the position of the center of gravity remains fixed, the
endpoint of the line which represents in magnitude and direction the velocity of the first
atom before the collision describes a volume element, which is congruent to the volume
element described by the endpoint of that line which represents the velocity of the same
atom after the collision. Hence

Now we introduce for ξ, η, ζ the variables U2, V2, W2, leaving U1, V1 W1 unchanged.
Since again we have the equation

with two similar equations for the other two coördinate directions, it follows that

From this and Equations (262) and (263) there follows at once the Equation (261) which
was to be proved.

Since the case considered in Part I, §4, is the special case of the one discussed here in
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which aside from the atoms A1 and A2 there are no other atoms in the molecules, we see
that our former proof has now been completed.

§78. Change of the quantity H as a consequence of collisions.

In §76 we have called a certain kind of collision the specified kind. It is that kind which
takes place between a molecule of the first kind and a molecule of the second kind during
time dt, in such a way that at the instant of the beginning of the interaction, the variables
(250), (237), (253), and (254) lie between the limits (252), (239), (255), and (256), and that
the line of centers of the colliding atoms is, at the instant of collision, parallel to one of the
lines within a given infinitesimal cone dλ. For the same collisions, at the instant of the end
of the interaction, the variables (237) and (254) lie between the same limits, but the

variables (250) and (253) lie between the limits (259) and (260). Moreover, g, ∊, and dλ

will not be changed during the collision.
We now denote as opposite collisions those collisions which take place during time dt in

such a way that at the beginning the variables (250) and (253) lie between the limits (259)
and (260) and the other variables lie between the same limits as in the case of the specified
collisions.

For opposite collisions, in order that they can occur at all, the initial relative positions of
the two molecules must be changed so that the second molecule appears displaced relative
to the first by a distance which is exactly equal and oppositely directed to the line of centers
drawn from atom A1 to atom A2.2 For opposite collisions, conversely, the variables (250)
and (253) will lie between the limits (252) and (255) at the end of the interaction.

We now calculate the change experienced by the sum denoted in §74 by H (see Eqs.
[241] and [242]) during the time dt, through the combined effects of specified and opposite
collisions. Each of the former collisions will decrease by one the number of molecules of
the first kind for which the variables (250) and (237) lie between the limits (252) and (239),
and hence decrease Hi by lf1. Likewise, the number of molecules of the second kind for
which the variables (253) and (254) lie between the limits (255) and (256), will decrease by
one, and hence H2 will decrease by lf2. On the other hand, the same collision will increase
by one the number of molecules of the first kind for which the variables (250) and (237) lie
between the limits (259) and (239), and will increase by one the number of molecules of
the first kind for which the variables (253) and (254) lie between the limits (260) and (256).
Hence H1 increases by lF1 and H2 by lF2, if we write for brevity F1 and F2 for f1(U1 V1
W1 p1 · · · qv, t) and f2(U2, V2, W2, pv+1 · · · qv+v′, t). The number of specified collisions is
given by Equation (258); hence all the specified collisions will increase H by

Conversely, each of the opposite collisions decreases by one the number of molecules of
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the first kind for which the variables (250) and (237) lie between the limits (259) and (239)
; while the number of molecules for which the same variables lie between the limits (252)
and (239) increases by one. Likewise, the number of molecules of the second kind for
which the variables (253) and (254) lie between the limits (260) and (256) will decrease by
one, and those for which the same variables lie between the limits (255) and (256) will
increase by one. Hence H1 increases by lf1–lF1 as a result of opposite collisions, while H2
increases by lf2 – lF2, so that H increases by lf1 + lf2 – lF1 – lF2.

The total number of opposite collisions in time dt, by analogy with Equation (258), is:

or, by Equation (261),

so that all the opposite collisions increase H by

(Remember that g, ∊, and dλ are unchanged by the collisions.) If one compares this with
the expression (264), then he sees that, combining together the specified and the opposite
collisions, the quantity H experiences the increment

The value of the latter expression is essentially negative. If one integrates over all possible
values of all the differentials except dt, and divides by 2 (since otherwise each collision
would be counted twice, once as a specified collision and again as an opposite collision),
he obtains the total increment of H during time dt. This is therefore also an essentially
negative quantity, provided there is any noticeable change of H at all. Since the same holds
for all other kinds of molecules, and similarly for collisions of different molecules of the
same kind with each other, we have proved that in this special case the value of H can only
decrease as a result of collisions.

For the stationary state, a continual decrease of H is forbidden, so that for such states the
expression (265) must in general vanish. Therefore the equation

must hold for all kinds of molecules, with similar equations for collisions of molecules of
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the same kind with each other.

§79. Most general characterization of the collision of two molecules.*

We shall now pass from the special kind of interaction discussed in §76 to the most
general case.

We denote by s the distance of the centers of gravity of a molecule of the first and a
molecule of the second kind, and we assume that if s is greater than a certain constant b, no
perceptible interaction takes place between the two molecules. A sphere of radius b, whose
center is the center of gravity of a molecule of the first kind, will be called for short the
domain of the molecule in question. Hence we can also say: as soon as the center of gravity
of a molecule of the second kind lies outside the domain of a molecule of the first kind, no
noticeable interaction takes place between the two molecules. Any process whereby the
center of gravity of one of the former molecules penetrates the domain of the latter will be
called a collision.

Of course it is possible that even if the center of a molecule of the first kind does
penetrate the domain of a molecule of the second kind, it goes out again without any
perceptible interaction having occurred, so that the collision does not perceptibly modify
the motion of either colliding molecule. But most of the collisions will in fact produce a
significant modification of the motion of the two molecules.

Just as in §§75–78, the positions of the constituents relative to the center of gravity, the
rotations around the center of gravity, and the velocities of the parts of a molecule of the
first kind will be characterized by the variables (250) and (237), and for a molecule of the
second kind by the variables (253) and (254). u1 v1 w1 will now be the velocity
components of the center of gravity of a molecule of the first kind, and u2, v2, w2 those of a
molecule of the second kind.

We shall call a configuration of the two molecules a critical constellation when the
distance of centers is equal to b. We consider critical constellations which satisfy the
following conditions: for the first molecule the variables (250) and (237) lie between the
limits (252) and (239), for the second molecule the variables (253) and (254) lie between
the limits (255) and (256). Finally, the direction of the line of centers shall be parallel to
some line lying within an infinitesimal cone of aperture dλ. The set of these conditions we
shall call:

When the center of gravity of the second molecule is moving into the domain of the first
molecule, the critical constellation represents the beginning of a process of interaction of the
two molecules (a collision in the wider sense of the word), and it is then called an initial
constellation. If, on the other hand, the second molecule is leaving the domain of the first at
this instant, it represents the end of a collision (final constellation). Critical constellations for
which the distance of centers of the two molecules attains its minimum at that moment can
be ignored, since they represent at the same time the beginning and end of a collision that
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has no effect on the motion of the molecules.
We denote two constellations as opposite, when the coördinates have the same value in

both, while the velocity components have equal magnitude and opposite sign. We denote
two critical constellations as corresponding to each other, when the coördinates (237) of the
first and (254) of the second molecule and likewise all velocity components have the same
magnitude and sign for both collisions, whereas the coördinates of the center of gravity of
one molecule with respect to a coördinate axis parallel to a fixed axis drawn through the
center of gravity of the other have the same value but opposite signs. The constellation
corresponding to any given constellation can therefore be constructed by leaving the first
molecule fixed and displacing the second molecule–without changing the configuration and
velocities of its constituents–by an amount 2b in the direction of the line drawn from its
center of gravity to the center of gravity of the first molecule. In other words, one
interchanges the positions of the centers of the two molecules without changing their state,
and without rotating them.

The following is now immediately clear: if we imagine collected together all the initial
constellations and look for all the opposite constellations for each of them, then we obtain
all the final constellations, and conversely. Likewise we obtain all the final constellations if
we look for all the corresponding initial constellations, and the converse again holds.

§80. Application of Liouville’s theorem to collisions of the most general kind.

Now, as before, let the number of molecules of the first kind in the gas, for which at
time t the variables (250) and (237) lie between the limits (252) and (239), be given by the
expression (251). Likewise, let the number of molecules of the second kind, for which at
time t the variables (253) and (254) lie between the limits (255) and (256), be given by the
expression (257). If we write the abbreviations

for

then

is the number of collisions that take place during time dt in such a way that their initial
constellation is a critical constellation determined by the conditions (267). Here k is the
component of the velocity of the center of gravity of the second molecule relative to that of
the first, in the direction of the line of centers at the beginning of the collision. For the
critical constellations with which all these collisions end, the variables (250) and (237) for
the first molecules shall lie between the limits (259) and (243); the variables (253) and
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(254) for the other molecule shall lie between the limits (260) and

and the line of centers of the molecules shall be parallel to a line lying within a cone of
aperture dΛ. The set of these conditions we call

We again abbreviate the more complicated, though more precise, terminology of §27.
We write dΩ1 and dΩ2 for

and let K be the component of the relative velocity of the centers of gravity of the two
molecules at the end of the collision in the direction of the line of centers at this instant.

Finally, we denote as before the difference of coordinates of the centers of gravity of the
two molecules (drawn from the first) for the initial constellation by ξ, η, ζ, and for the final
constellation by Ξ, H, Z. Then Liouville’s theorem (Eq. [52]) applied to this case runs as
follows:

We now replace ξ, η, ζ and Ξ, H, Z by polar coördinates, setting:

Equation (270) then becomes:

sin ϑdϑdφ and sin ΘdΘdΦ are the apertures of the cones within which the lines of centers
lie before and after the collision. Since we are denoting the apertures of these cones as
before by dλ and dΛ, we have therefore:

We shall also introduce for ds and dS the time differential dt. Let g be the relative
velocity of the two centers of gravity, and let s be the line connecting the two centers of
gravity before the collision; then the direction cosines of these two lines will be
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The component of relative velocity in the direction of the line s is:

The corresponding value of this component of relative velocity after the collision will be
denoted by K. Therefore we have

On substituting all these values and recalling that s = b at the beginning as well as the end
of the collision, Equation (270) takes the form:

where dt has the same value on the right and left sides of the equation, since t is always
considered constant in Liouville’s theorem. If we divide the last equation by b2dt, it follows
that:

We shall now keep in mind all the final constellations of those collisions whose number
was denoted by dN in Equation (267a). Furthermore, we construct the constellations
corresponding to these, and denote by dN′ the number of collisions that occur during time
dt such that they begin with the corresponding constellations in the manner described. Then

where F1 and F2 are abbreviations for

and one has in general dN = dN′, if Equation (266) is satisfied for all collisions. Now in
each of the dN collisions of a molecule of the first kind, a state in which the variables (250)
and (237) lie between the limits (252) and (239) is replaced by one in which these variables
lie between the limits (259) and (243). Conversely, in each of the dN′ of a molecule of the
first kind, the latter state is replaced by the former; similarly for the second kind of molecule
and for all other collisions. Hence it follows that the distribution of states is not changed by
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the collisions when Equation (266) is satisfied, and it is easily proved that this equation is in
fact satisfied by the formula (115), so that we have given a second proof that the
distribution of states represented by this formula satisfies the conditions which must be
satisfied by a stationary distribution of states. In order to prove, insofar as this is at all
possible, that it is the only one which satisfies these conditions, we shall again calculate the
change of the quantity H.

§81. Method of calculation with finite differences.

In the following we shall need an abstraction which may appear surprising to many, but
which must seem natural tc anyone who clearly understands that the entire symbolism of
the differential and integral calculus is meaningless unless one proceeds first by considering
large finite numbers.

We shall assume that the molecule can have only a finite number of states, which we
denote by the series 1, 2, 3, and so forth; any arbitrary state can be denoted by 1, any other
state by 2, etc. The present representation is related to that of a continuous series of states in
such a way that one always considers as being the same all states which fill a region such
that they correspond according to Liouville’s theorem. Let (a, b) express symbolically a
critical constellation of two molecules which have the states a and b; let (b, a) express the
corresponding, and ( –a, –b) the opposite constellation.

A collision which begins with the constellation (a, b) and ends with the constellation (c,
d) shall be denoted by

Let wa be the number of molecules in unit volume that have the state a; wb, etc. have
similar meanings. Let

be the number of collisions in the gas that begin with the constellation (a, b) and end with
the constellation (c, d); then if dwa means the increment experienced by wa as a result of
collisions during time dt, then

where the sums are to be extended over all possible values of the quantities x, y, z, n, p, q.
Now suppose that all the expressions for
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have been written out, and set

Denote by dE the increment of E during time dt as a result of collisions, and substitute in

the above values of

l means the natural logarithm. The collision

in which 1, 2, 3, 4 can be any states, (2, 1) and (3, 4) any critical constellations, provides in
the expression for dw1, as well as in that for dw2, the term

However, to the expressions for

it contributes a positive term. All these terms contribute to dE/dt the sum

The corresponding collision
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–i.e., that one which has as initial constellation the same constellation (4, 3) which
corresponds to the final constellation (3, 4) of the previously considered collision–
contributes to

the term

and to

again two equal positive terms.
In the same way one can continue with the collision

which corresponds to the collision

and so forth.
Since we only have a finite number of states, we must eventually arrive at a collision

which corresponds to one of the previous ones, and it can be proved that the first collision
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for which this occurs must correspond to the collision

For if it corresponded, for example, to the collision

then (x, y) and (6, 5) must be corresponding collisions, therefore (x, y) and (5, 6) would be
identical, and two collisions, one beginning with (k, k – 1), and the other with (4, 3) would
lead to the same final constellation. But then the initial constellation ( –5, –6) would lead to
the final constellation (–4, –3) as well as to the final constellation ( –k, –k+1). Hence the
latter two constellations must be identical, hence

and for the same reason

Therefore the cycle must have already been closed previously.
Equation (272) means, in our present notation, that the coefficients

must be equal to each other, since we have collected together all states for which the
variables fill a region that is equal according to Liouville’s theorem, and called them a
single state. Hence it follows that one can arrange all the terms contained in dE/dt in a cycle
of the form:
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If one denotes the expression in square brackets by lX and sets w1w2 = α, w3w4 = β, · ·
·, then:

Among the numbers α, β, γ, · · ·, there must be at least one, for example γ, which is not
larger than its two neighbors β and δ; then

where

has exactly the same form as X but lacks one term.
The factor of Y in Equation (275) is equal to 1 if either γ = β or γ = δ, but otherwise it is

always less than 1. If one applies the same considerations to Y again and again, then he can
finally reduce X to a product of fractions each of which is less than or equal to 1; they
cannot all be equal to 1 unless all the quantities α, β, γ · · · are equal to each other.

Hence the quantity E—whose time derivative reduces to dH/dt on passing to
infinitesimals–can only decrease or remain constant as a result of collisions; and it can
remain constant only if for all collisions

the equation

is satisfied. Since for the stationary state E cannot decrease any further, the equation

must be satisfied for all possible collisions in the stationary state, and on passage to
infinitesimals this is identical with Equation (266).

§82. Integral expression for the most general change of H by collisions.

If one wishes to avoid the transition from a finite number of states to an infinite number,
but at the same time make use of differentials, he may use the method outlined here. As in
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Part I, §18, and Part II, §75–78, one finds

where the single integral denotes an integration over the differentials contained in dω1, and
the triple integral denotes integration over all the differentials contained in dω1dω2dλ.
d∫f1lf1dω1 means the change experienced by this integral merely as a consequence of the
collisions of molecules of the first and second kinds. The change due to intramolecular
motion is zero. The other quantities have the same meaning as in the preceding sections.
We imagine that for each collision the corresponding one has been constructed, whose
initial constellation therefore corresponds to the final constellation of the first one. We
denote by  and  the values which the functions f1 and f2 take when one substitutes

therein the variables characterizing the state of both molecules at the end of this second
collision; furthermore, we shall once again construct the collision corresponding to this
second collision, and denote by  and  the function values that arise on

substituting the values of the variables characterizing the final states of the two molecules
for this latter collision, and so forth.

Then the quantity (d/dt)∫f1lf1fω1c an be brought into the form:

If one sets again

then the expression in square brackets in (277) will be the natural logarithm of

This quantity has exactly the same form as the expression (274), except that now the
cycle of quantities α, β, y · · · is in general not finite. Nevertheless, if one proceeds far
enough along this series, he will eventually come to a term whose base is again very nearly
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equal to α, so that the difference between (278) and an expression terminated at this point
can be made arbitrarily small. As soon as the motion of two molecules is not changed by a
collision, then it can of course happen that one of the quantities α, β, γ · · · is equal to its
neighbor. However, as long as we do not choose b to be so large that this is the case for
most of the collisions, then most of these quantities will be completely different from their
neighbors, so that most of the fractions being multiplied in the expression (278) will be
smaller than 1; the same is true of the factors of Y in (275). Hence dH/dt will be negative,
and can be zero only when the condition (266) is satisfied for all collisions.

§83. Detailed specification of the case now to be considered.

We have shown in the preceding sections that, for thermal equilibrium in ideal gases
with any kind of compound molecules, Equation (266) must be satisfied for all collisions of
like or unlike molecules. In carrying out the proofs we have excluded external forces, yet
the proofs can still be performed when external forces are permitted. One sees immediately,
moreover, that Equation (266) will be satisfied as soon as the distribution of states is
determined by the formula (118).

However, the proof that this distribution is the only possible one apparently cannot be
carried out in complete generality, so that one still has to provide a proof in each special
case. Naturally we shall have to leave all these different special cases to monographs; we
can only treat here a rather small number of examples.

The simplest of these is the following special case. Let there be a mixture of any ideal
gases on which no external forces act. The atoms of the different molecules shall be held
together by arbitrary conservative forces, for which the Lagrange equations hold. The
interaction of two different molecules proceeds as if one atom from each molecule collided
with the other in the same way as elastic, negligibly deformable spheres.

On account of the negligible deformability, during such a collision neither the position
of the colliding atom nor the positions and velocities of the other atoms will change. But
since every direction in space is equally probable for the velocity of an individual atom
before the collision, one can calculate the probabilities of various kinds of collisions just as
in Part I, §3.

For the sake of generality we consider a collision in which the two interacting molecules
are of different kinds, and call these the first and second kinds of gas. The same statements
will still be valid when both molecules are actually of the same kind.

§84. Solution of the equation valid for each collision.

A particular atom of mass m1 belonging to the first molecule collides with a particular
atom of mass m2 belonging to the second molecule. We call atoms equivalent to the first
atom the m1-atoms, and all the atoms equivalent to the second atom the m2-atoms. Let c1
and c2 be the velocities of the two colliding atoms just before the collision, and γ1 and γ2
the velocities just after the collision. The values of c1 and c2 are completely arbitrary. γ1
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can take any value lying between the limits zero and

but γ2 must, according to the conservation of energy, be equal to

since because of the shortness of the duration of the collision, the energy of the molecules
does not change noticeably.

The number of those m1-atoms in the entire gas for which the three components of
velocity of their center in the three coördinate directions lie between the limits

while all other variables determining the state of motion of the molecules can have any
possible values, we denote by

Since there is no preferred direction in space for the velocity of this atom, the coefficient of
the product of differentials is clearly a function only of c1, and hence will be called f1(c1).

Similarly the number of m2-atoms whose velocity components lie between the limits

will be denoted by

For this collision, Equation (266) reduces to

Since this equation must be satisfied for all possible values of the variables which fulfill
the condition of conservation of energy, it follows that, as a simple calculation shows (cf.
also Part I, §7),
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These formulas, together with the condition that all directions of space are equally
probable for the velocities, completely determine the probability of the various velocity
components. If all the atoms of all the molecules can collide with each other, then h must
have the same value for all. Hence the mean kinetic energy is the same for all atoms, and,
as can easily be proved from the equivalence of all directions of velocity, the mean kinetic
energy of progressive motion of the center of gravity is the same for all molecules, and is
equal to the mean kinetic energy of an atom. The coefficients A1 and A2 are constants;
however, they would depend on the other variables determining the state of the molecules
and the limits assumed for these variables, if all values were not allowed for these variables
but only values lying between given limits.

A special case of the one considered is that of diatomic molecules whose atoms are solid
spheres connected with rods so that they form a solid system like the so-called gymnastic
dumbbells.3 If the connecting rods were considered to be elastic, then the atoms could
perform radial vibrations back and forth. However, we can go to the limiting case where
the deformability of the rod becomes zero, hence the amplitude of these vibrations is so
small that, just like the rotation around the line connecting the centers of the atoms, they do
not come into thermal equilibrum with the other motions in the time of observation.

The result then agrees completely with that obtained earlier, where we found the value
1.4 for the ratio of specific heats.

Another special case is a molecule consisting of three or more spheres rigidly bound
together. We then have the case for which we previously obtained the value  for the

ratio of specific heats. One could treat this case extensively without much difficulty, finding
the probability of various combinations of values of the coördinates as before. We shall not
discuss these cases further, but instead give an example of the method of treating more
difficult cases.

§85. Only the atoms of a single type collide with each other.

Let there be given an ideal gas, all of whose molecules are the same. Each molecule
consists of two different atoms of masses m1 and m2 (to be called the atoms of the first and
second kinds). The two atoms of a molecule shall behave, with respect to their
intramolecular motion, like material points concentrated at the centers of the atoms, exerting
on each other a force in the direction of their connecting line, which is a function of their
distance. The intramolecular motion will therefore be ordinary central motion.4 The
interaction of two different molecules is as follows: the two atoms of the first kind collide
like negligibly deform-able elastic spheres, but there is no interaction between atoms of the
second kind, or between an atom of the first kind and an atom of the second kind.*

On applying the same arguments as before, we obtain for the atoms of the first kind an
equation analogous to Equation (282), from which it follows that:
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As before, u1, v1, w1 are the velocity components for an atom of the first kind;
f1(c1)du1dv1dw1 is the number of atoms of the first kind for which u1, v1, and w1 lie
between the limits (280) ; A can still depend on the limits imposed on the states of the
molecule.

However, the same method of reasoning cannot be applied to the atoms of the second
kind, since they never collide with atoms of other molecules. We must therefore introduce
the probability of orbits and phases of motion of the central motion.

§86. Determination of the probability of a particular kind of central motion.

We have already denoted by c1 and c2 the absolute velocities of the first and second
atoms at any time. Let ρ be the distance of centers of the two atoms at the same time; let a1
and a2 be the angles formed by the directions of c1 and c2 with the line drawn from the first
to the second atom; finally, let β be the angle between the two planes passing through the
line ρ, one with the same direction as c1, the other with the same direction as c2.

The total energy of the molecule is

where φ is the potential function of the central force. Twice the angular velocity of m2
relative to m1 in the orbital plane is:

the velocity of the center of gravity of the molecule, multiplied by m1+m2, is

and its component perpendicular to the orbital plane is

The number of molecules in unit volume for which K, L, G, H lie between the limits
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will be denoted by

The number of molecules for which ρ lies between ρ and ρ+dρ is

Here

is the time elapsed from the perigee to the apogee, and is therefore a given function of K, L,
G, and H;

is therefore a given function of these four quantities. We limit ourselves to those molecules
for which, first, the line of apses of the path forms with a line in the orbital plane parallel to

a fixed plane an angle between ∊ and ∊+d∊; second, the two planes through the velocity of
the center of gravity normal to the orbital plane and parallel to a fixed line Γ form an angle
between ω and ω+dω; and third, the velocity direction of the center of gravity lies within a
cone of specified direction and infinitesimal aperture dλ. Then we have to multiply by

d∊dωdλ:16π3. The number of molecules in the gas satisfying all these conditions is
therefore

If we denote by g and g+dg, h and h+dh, k and k+dk the limits between which the velocity
components of the center of gravity of these molecules relative to fixed rectangular
coördinate axes lie, then
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Now keep g, h, and k fixed, and construct through the center of the first atom a rectangular
coördinate system whose z-axis has the direction of G. Denote the coördinates and velocity
components of the second atom relative to this system by x3, y3, z3, u3, v3, w3, and

transform these six variables into K, L, H, ρ, ∊, ω. For this purpose we construct through
the center of the second atom a second coördinate system, with respect to which the
coördinates and velocity components of the second atom shall be called x4, y4, z4, u4, v4,
w4. The 2-axis of the second system shall be perpendicular to the orbital plane, and the x-
axis shall lie in its intersection line with the old xy plane. Then

where 90°–ϑ is the angle between the two z-axes; hence, since G is constant,

Finally, we denote the angle between the two x-axes by ω, since it differs from the angle
previously so denoted only by an amount which we always now consider constant. We
find:

both of which expressions must vanish, since the x4y4 plane is the orbital plane. By means

of these two equations, keeping x3, y3, u3 and v3 constant, one can introduce ϑ, ω in place
of z3, w3, and find

Now furthermore

and similar equations follow for u4, v4. Hence it follows that
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and for constant ϑ, ω,

hence

Now we denote by σ and τ the velocity components of the motion of the second atom
relative to the first in the direction of ρ and perpendicular thereto, as before; then, for
constant x4 and y4,

where Lg is the energy of motion of the center of gravity, now considered constant. Finally,
if ψ is the angle between ρ and the last line of apses,

where ψ is a function of ρ, K, and L. But the last two are now constant, hence

Collecting all these together, we see that:

and one sees at once that, if x, y, z are the coördinates of the second atom with respect to a
coördinate system going through the center of the first atom, whose axes are parallel to the
originally chosen completely arbitrary coördinate axes, then likewise
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If we introduce this into the expression (288) and recall that for constant u2, v2, w2 we have

then we find

as the number of molecules in unit volume for which the variables x · · · w2 lie between x
and x+dx · · · w2 and w2+dw2. We shall set this number equal to

According to Equation (283), on the one hand B can be only a function of c2, ρ, and α2,
while on the other hand according to Equation (289) it can be only a function of K, L, G,
and H. B must therefore be a function of these latter variables which is completely
independent of the values of c1, α1 and β, and is merely a function of c2, ρ, and α2. If we
therefore set B = f(K, L, G, H), then this function must be completely independent of c1,
α1, and β when one substitutes for K, L, G, H the values (284) to (287). Since this must
hold for all values of c2, ρ, and α2, we shall first set c2 = 0; then

therefore

Since this must be independent of c1 and α1 K cannot occur at all in f, and L and G can
occur only in the combination 2mL – G2. The latter can be seen at once by substituting in f,
instead of the two variables L and G, 2mL – G2 and G. We obtain therefore
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and inserting the general values (284) to (287)

This must be completely independent of c1, α1, and β. One sees at once that then both
quantities under the function sign must be completely independent of each other, and hence
B must be a constant. But then Equation (290) becomes in fact just a special case of (118).

Another special case, whose treatment involves no particular difficulty, would be
molecules which are arbitrary solid bodies, either having the form of solids of revolution or
not. However, I fear that I have already spent too much time on complicated calculations
for special cases, and I will therefore leave the rest of these special problems for doctoral
dissertations.

§87. Characterization of our assumption about the initial state.

When a gas is enclosed in a rigid container, and initially one part of it has a visible
motion with respect to the rest, then it soon comes to rest as a consequence of viscosity.
When two kinds of gas are initially unmixed, but in contact with each other, then they mix,
even if the lighter one was originally on top. In general, when a gas or a system of several
kinds of gas has initially some improbable state, then it passes to the most probable state
under the given external conditions, and remains there during all observable later times. In
order to prove that this is a necessary consequence of the kinetic theory of gases, we used
the quantity H defined and discussed in this chapter. We proved that it continually
decreases as a result of the motion of the gas molecules among each other. The one-
sidedness of this process is clearly not based on the equations of motion of the molecules.
For these do not change when the time changes its sign. This one-sidedness rather lies
uniquely and solely in the initial conditions.

This is not to be understood in the sense that for each experiment one must specially
assume just certain initial conditions and not the opposite ones which are likewise possible;
rather it is sufficient to have a uniform basic assumption about the initial properties of the
mechanical picture of the world, from which it then follows with logical necessity that,
when bodies are always interacting, they must always be found in the correct initial
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conditions. In particular, our theory does not require that each time when bodies are
interacting, the initial state of the system they form must be distinguished by a special
property (ordered or improbable) which relatively few states of the same mechanical system
would have under the external mechanical conditions in question. Hereby the fact is
clarified that this system takes in the course of time states which do not have these
properties, and which one calls disordered. Since by far most of the states of the system are
disordered, one calls the latter the probable states.

The ordered initial states are not related to the disordered ones in the way that a definite
state is to the opposite state (arising from the mere reversal of the directions of all
velocities), but rather the state opposite to each ordered state is again an ordered state.

The self-regulating most probable state—which we call the Maxwell velocity
distribution since Maxwell first found its mathematical expression in a special case—is not
some kind of special singular state which is contrasted to infinitely many more non-
Maxwellian distributions. Rather it is, on the contrary, characterized by the fact that by far
the largest number of possible states have the characteristic properties of the Maxwell
distribution, and compared to this number, the number of possible velocity distributions
which significantly deviate from the Maxwellian is vanishingly small. The criterion of
equal possibility or equal probability is provided by Liouville’s theorem.

In order to explain the fact that the calculations based on this assumption correspond to
actually observable processes, one must assume that an enormously complicated
mechanical system represents a good picture of the world, and that all or at least most of the
parts of it surrounding us are initially in a very ordered—therefore very improbable—state.
When this is the case, then whenever two or more small parts of it come into interaction
with each other, the system formed by these parts is also initially in an ordered state, and
when left to itself it rapidly proceeds to the disordered most probable state.

§88. On the return of a system to a former state.

We make the following remarks: 1. It is by no means the sign of the time which
constitutes the characteristic difference between an ordered and a disordered state. If, in the
“initial states” of the mechanical picture of the world, one reverses the directions of all
velocities, without changing their magnitudes or the positions of the parts of the system; if,
as it were, one follows the states of the system backwards in time, then he would likewise
first have an improbable state, and then reach ever more probable states. Only in those
periods of time during which the system passes from a very improbable initial state to a
more probable later state do the states change in the positive time direction differently than
in the negative.

2. The transition from an ordered to a disordered state is only extremely improbable.
Also, the reverse transition has a definite calculable (though inconceivably small)
probability, which approaches zero only in the limiting case when the number of molecules
is infinite. The fact that a closed system of a finite number of molecules, when it is initially
in an ordered state and then goes over to a disordered state, finally after an inconceivably
long time must again return to the ordered state,* is therefore not a refutation but rather
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indeed a confirmation of our theory. One should not however imagine that two gases in a 
 liter container, initially unmixed, will mix, then again after a few days separate, then

mix again, and so forth. On the contrary, one finds by the same principles which I used5 for
a similar calculation that not until after a time enormously long compared to 101010

 years
will there be any noticeable unmixing of the gases. One may recognize that this is
practically equivalent to never, if one recalls that in this length of time, according to the
laws of probability, there will have been many years in which every inhabitant of a large
country committed suicide, purely by accident, on the same day, or every building burned
down at the same time—yet the insurance companies get along quite well by ignoring the
possibility of such events. If a much smaller probability than this is not practically
equivalent to impossibility, then no one can be sure that today will be followed by a night
and then a day.

We have looked mainly at processes in gases and have calculated the function H for this
case. Yet the laws of probability that govern atomic motion in the solid and liquid states are
clearly not qualitatively different in this respect from those for gases, so that the calculation
of the function H corresponding to the entropy would not be more difficult in principle,
although to be sure it would involve greater mathematical difficulties.

§89. Relation to the second law of thermodynamics.

If therefore we conceive of the world as an enormously large mechanical system
composed of an enormously large number of atoms, which starts from a completely ordered
initial state, and even at present is still in a substantially ordered state, then we obtain
consequences which actually agree with the observed facts; although this conception
involves, from a purely theoretical—I might say philosophical—standpoint, certain new
aspects which contradict general themodynamics based on a purely phe-nomenological
viewpoint. General thermodynamics proceeds from the fact that, as far as we can tell from
our experience up to now, all natural processes are irreversible. Hence according to the
principles of phenomenology, the general thermodynamics of the second law is formulated
in such a way that the unconditional irreversibility of all natural processes is asserted as a
so-called axiom, just as general physics based on a purely phenomenological standpoint
asserts the unconditional divisibility of matter without limit as an axiom.

Just as the differential equations of elasticity theory and hydrodynamics based on this
latter axiom will always remain the basis of the phenomenological description of a large
group of natural phenomena, since they provide the simplest approximate expression of the
facts, so likewise will the formulas of general thermodynamics. No one who has fallen in
love with the molecular theory will approve of its being given up completely. But the
opposite extreme, the dogma of a self-sufficient phenomenology, is also to be avoided.

Just as the differential equations represent simply a mathematical method for calculation,
whose clear meaning can only be understood by the use of models which employ a large
finite number of elements,6 so likewise general thermodynamics (without prejudice to its
unshakable importance) also requires the cultivation of mechanical models representing it,
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in order to deepen our knowledge of nature–not in spite of, but rather precisely because
these models do not always cover the same ground as general thermodynamics, but instead
offer a glimpse of a new viewpoint. Thus general thermodynamics holds fast to the
invariable irreversibility of all natural processes. It assumes a function (the entropy) whose
value can only change in one direction—for example, can only increase—through any
occurrence in nature. Thus it distinguishes any later state of the world from any earlier state
by its larger value of the entropy. The difference of the entropy from its maximum value—
which is the goal [Treibende] of all natural processes—will always decrease. In spite of the
invariance of the total energy, its transformability will therefore become ever smaller,
natural events will become ever more dull and uninteresting, and any return to a previous
value of the entropy is excluded.*

One cannot assert that this consequence contradicts our experience, for indeed it seems
to be a plausible extrapolation of our present knowledge of the world. Yet, with all due
recognition to the caution which must be observed in going beyond the direct
consequences of experience, it must be granted that these consequences are hardly
satisfactory, and the discovery of a satisfactory way of avoiding them would be very
desirable, whether one may imagine time as infinite or as a closed cycle. In any case, we
would rather consider the unique directionality of time given to us by experience as a mere
illusion arising from our specially restricted viewpoint.

§90. Application to the universe.

Is the apparent irreversibility of all known natural processes consistent with the idea that
all natural events are possible without restriction? Is the apparent unidirectionality of time
consistent with the infinite extent or cyclic nature of time? He who tries to answer these
questions in the affirmative sense must use as a model of the world a system whose
temporal variation is determined by equations in which the positive and negative directions
of time are equivalent, and by means of which the appearance of irreversibility over long
periods of time is explicable by some special assumption. But this is precisely what
happens in the atomic view of the world.

One can think of the world as a mechanical system of an enormously large number of
constituents, and of an immensely long period of time, so that the dimensions of that part
containing our own “fixed stars” are minute compared to the extension of the universe; and
times that we call eons are likewise minute compared to such a period. Then in the
universe, which is in thermal equilibrium throughout and therefore dead, there will occur
here and there relatively small regions of the same size as our galaxy (we call them single
worlds) which, during the relative short time of eons, fluctuate noticeably from thermal
equilibrium, and indeed the state probability in such cases will be equally likely to increase
or decrease. For the universe, the two directions of time are indistinguishable, just as in
space there is no up or down. However, just as at a particular place on the earth’s surface
we call “down” the direction toward the center of the earth, so will a living being in a
particular time interval of such a single world distinguish the direction of time toward the
less probable state from the opposite direction (the former toward the past, the latter toward
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the future). By virtue of this terminology, such small isolated regions of the universe will
always find themselves “initially” in an improbable state. This method seems to me to be
the only way in which one can understand the second law—the heat death of each single
world—without a unidirectional change of the entire universe from a definite initial state to
a final state.

Obviously no one would consider such speculations as important discoveries or even—
as did the ancient philosophers—as the highest purpose of science. However it is doubtful
that one should despise them as completely idle. Who knows whether they may not
broaden the horizon of our circle of ideas, and by stimulating thought, advance the
understanding of the facts of experience?

That in nature the transition from a probable to an improbable state does not take place
as often as the converse, can be explained by assuming a very improbable initial state of the
entire universe surrounding us, in consequence of which an arbitrary system of interacting
bodies will in general find itself initially in an improbable state. However, one may object
that here and there a transition from a probable to an improbable state must occur and
occasionally be observed. To this the cosmolog-ical considerations just presented give an
answer. From the numerical data on the inconceivably great rareness of transition from a
probable to a less probable state in observable dimensions during an observable time, we
see that such a process within what we have called an individual world—in particular, our
individual world—is so unlikely that its observability is excluded.

In the entire universe, the aggregate of all individual worlds, there will however in fact
occur processes going in the opposite direction. But the beings who observe such processes
will simply reckon time as proceeding from the less probable to the more probable states,
and it will never be discovered whether they reckon time differently from us, since they are
separated from us by eons of time and spatial distances 101010

 times the distance of Sirius–
and moreover their language has no relation to ours.*

Very well, you may smile at this; but you must admit that the model of the world
developed here is at least a possible one, free of inner contradiction, and also a useful one,
since it provides us with many new viewpoints. It also gives an incentive, not only to
speculation, but also to experiments (for example on the limit of divisibility, the size of the
sphere of action, and the resulting deviations from the equations of hydrodynamics,
diffusion, and heat conduction) which are not stimulated by any other theory.

§91. Application of the probability calculus in molecular physics.

Doubts have been expressed as to the permissibility of the applications made of the
probability calculus to this subject. Since however the probability calculus has been verified
in so many special cases, I see no reason why it should not also be applied to natural
processes of a more general kind. The applicability of the probability calculus to the
molecular motion in gases cannot of course be rigorously deduced from the differential
equations for the motion of the molecules. It follows rather from the great number of the
gas molecules and the length of their paths, by virtue of which the properties of the position
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in the gas where a molecule undergoes a collision are completely independent of the place
where it collided the previous time. This independence is of course attained only for a finite
number of gas molecules during an arbitrarily long time. For a finite number of molecules
in a rigid container with completely smooth walls it is never completely exact, so that the
Maxwell velocity distribution cannot hold throughout all time.7

In practice, however, the walls are continually undergoing perturbations, which will
destroy the periodicity resulting from the finite number of molecules. In any case, the
applicability of probability theory to gas theory is not refuted but rather is confirmed by the
periodicity of motion of a finite closed system in the course of eons of time, and since it
leads to a model of the world which not only agrees with experience but also stimulates
speculations and experiments, it should be retained in gas theory.

Moreover we see that the probability calculus plays yet another role in physics. The
calculation of errors by Gauss’s famous method is confirmed in purely physical processes,
like the calculation of insurance premiums for statistical ones. We have to thank the laws of
probability for the fact that in an orchestra the sounds regularly reinforce each other in
unison rather than cancelling out by interference; and the same laws also clarify the nature
of unpolarized light. Since today it is popular to look forward to the time when our view of
nature will have been completely changed, I will mention the possibility that the
fundamental equations for the motion of individual molecules will turn out to be only
approximate formulas which give average values, resulting according to the probability
calculus from the interactions of many independent moving entities forming the
surrounding medium—as for example in meteorology the laws are valid only for average
values obtained by long series of observations using the probability calculus. These entities
must of course be so numerous and must act so rapidly that the correct average values are
attained in millionths of a second.

§92. Derivation of thermal equilibrium by reversal of the time direction.

These considerations are connected with the method of derivation of Equation (266)
which was first indicated by Maxwell8 and further developed by Planck.9 We imagine a
mixture of arbitrarily many ideal gases having any properties desired, enclosed by fixed
solid walls, which we will call our mechanical system. The positions of all the parts of a
molecule of one kind of gas, which we call the first, will be specified by µ coördinates p1,
p2 · · · pµ, that of a molecule of another kind (the second) by v coördinates pµ+1, pµ+2 · · ·
pµ+ν. The corresponding momenta will be q1 q2 · · · qµ+v.

We assume that, with the exception of a few singular states, all initial states pass
gradually to probable states, in which the system then remains for a time long compared to
the time during which it had an improbable state. For all probable states, the mean values of
the various quantities in each small region shall be equal, even though the individual
molecules are distributed over many different states in different ways.

We mean by
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the probability that for a molecule of the first kind the variables

lie between the limits

and we define it as follows: we consider our system during a long time T, during which it is
continually in probable states. The ratio of the sum of all time intervals during which the
variables (291) for some molecules of the first kind lie within the limits (292), to the total
time T multiplied by the number of molecules of the first kind, is then the definition of the
probability that the variables (291) for a molecule of the first kind lie between the limits
(292).

The time T may include times during which the system has an improbable state, since
these are very rare anyway. Only singular states that continually deviate from probable
states must be excluded. If, during a short time, the variables (291) for 2 or 3 molecules of
the first kind simultaneously lie between the limits (292), then these time intervals are to be
counted doubly or triply in the sum.

Similarly let

be the probability that for a molecule of the second kind the variables

lie between the limits

Now let the limits (292) and (293) be chosen so that the two molecules are not
interacting but will soon be. We shall call the type of interaction which comes about in this
way a collision with property A. Then (cf. Eq. [123])

is the probability that for a molecule pair10 the variables (291) and (294) lie between the
limits (292) and (295), which we call the probability of a collision with property A, for
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brevity.
From the instant when the variables (291) and (294) of a molecule pair (consisting of

molecule B of the first kind and molecule C of the second kind) first fall within the limits
(292) and (295), let there elapse a certain time t, which is longer than the time during which
two molecules interact in any collision. The values of the variables (291) and (294) for
molecules B and C will lie, at the end of time t, between the limits

Now at the end of the time denoted above by T we reverse the directions of the
velocities of all the constituents of all the molecules, without changing the magnitude of
these velocities or the positions of the constituents. The system will then pass through the
same sequence of states in the opposite order, which we shall call the inverse process, in
contrast to the originally considered variation of states during time T, which we call the
direct process.

During the inverse process, it will just as often happen that the variables (291) and (294)
lie between the limits

as during the direct process it happened that they lay between the limits (292) and (295).
We next assume that in our system two states in which all the coördinates and all

magnitudes of the velocities are the same, but the directions of the latter are opposite, are
equally probable. We shall call this assumption A. It is obviously true when the molecules
are simple material points or solid bodies of arbitrary shape, and in many other cases.
However, in certain cases it needs to be proved.

Therefore in the inverse process the variables will lie between the limits (297) as many
times as they lie between the limits (292) and (295) in the direct process. But the inverse
process likewise consists of a very long sequence of states in which the variables can
assume many different values. These states therefore cannot consist exclusively or
predominantly of singular states, but rather for the most part they must be probable states.
Hence the various mean values must be the same for the inverse process as for the direct
process, and the probability that for a molecule pair the values of the variables lie between
the limits (297) must be given by the expression similar to (296):

which according to the aforesaid must be equal to the expression (296). But according to
Liouville’s theorem,
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hence one obtains finally the equation

whereby Equation (266) is proved for all kinds of possible collisions.

§93. Proof for a cyclic series of a finite number of states.

If one does not wish to make assumption A, which in fact is by no means obvious in all
cases, then the proof, as in §81, must be carried out by means of recurrent cycles. For the
sake of simplicity we assume that all molecules are of the same kind, and we consider the
series of collisions

The notation is the same as that of §81. The probability of the first of these collisions is

that of the next is

Now by virtue of Liouville’s theorem,

If we denote the common value of all these coefficients by C, then the probabilities of the
different collisions in (300) are:

Now suppose we reverse the entire process of variation of states of our system in the way
described above. We must again obtain a stationary distribution of states. Hence the
probability of any particular collision must be the same in the reversed sequence of states as
in the original one. Now in the reversed sequence, the probability of the last collision in the
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series (300) is Cw1w2, that of the next to last is Cwa–1wa, and so forth. Therefore we must
have

Since these equations must hold for all collisions, Equation (266) is again proved.
I believe that I have here developed in extenso the idea indicated by Maxwell11 in the

passage beginning with the words, “This is therefore a possible form of the final
distribution of velocities; it is also the only form.”

1 Wien. Ber. 106 (2A) 21 (1897).
2 Mun. Ber. 22, 347 (1892); Phil. Mag. [5] 35, 166 (1893).
* For more detailed discussion see R. C. Tolman, The Principles of Statistical Mechanics (London:

Oxford University Press, 1938) Chap. V.
3 Cf. Ramsay, Les gaz de l’atmosphère (Paris: Carré, 1898), p. 172.
4 Boltzmann, Vorlesungen über die Principe der Mechanik, §§20–24.
* This model is somewhat similar to one proposed by Lord Kelvin (Proc. R. S. London 50, 79

[1891]) as a test case for which the equipartition theorem was alleged to be violated. Kelvin’s model was
a system of “molecules” each of which consisted of a globule enclosed in a hollow spherical shell; thus
the globule can interact with its own shell, but not with any other globule or shell. Kelvin had proposed
similar models for vibratory molecules imbedded in the lumeniferous ether, and he doubted whether the
globules could equilibrate their energy when they did not interact directly. P. G. Tait had also asserted
that a necessary condition for equipartition is the possibility of collisions between all parts of the system
(Trans. R. S. Edinburgh, 33, 65 [1886]). Boltzmann’s considerations in §§85–86 are also relevant to
subsequent studies based on the Bohr model of the atom, in which one might like to know whether
nuclei could equilibrate their energy if they could not interact directly but only through their coupling
to the orbital electrons. See also the discussion at the British Association meeting, reported in Nature 32,
533–535 (1885).

* H. Poincaré, Acta Math. 13, 67 (1890); E. Zermelo, Ann. Phys. [3] 57, 485 (1896).
5 Ann. Phys. [3] 57, 783 (1896).
6 Boltzmann, Die Unentbehrlichkeit der Atomistik i.d. Naturwissen-schaft. Wien. Ber. 105 (2) 907

(1896); Ann. Phys. [3] 60, 231 (1897). Ueber die Frage nach der Existenz der Vorgänge in der
unbelebten Natur, Wien. Ber. 106 (2) 83 (1897).

* W. Thomson (Lord Kelvin), On a universal tendency in nature to the dissipation of mechanical
energy, Proc. R. S. Edinburgh 3, 139 (1852), and later papers by many authors, too numerous to cite. For
the generalized “dissipation of energy” version of the second law, see F. O. Koenig, On the history of
science and of the second law of thermodynamics, p. 57 in Men and Moments in the History of Science,
éd. H. M. Evans (Seattle: University of Washington Press, 1959), and other articles cited therein.

* For further discussion see H. Reichenbach, The Direction of Time (Berkeley and Los Angeles:
University of California Press, 1956).

7 Of the relevant literature, I cite only: Loschmidt, Ueber den Zustand des Warmegleichgewichts
eines Systems von Körpern mit Rucksicht auf die Schwere, Wien. Ber. 73, 139 (1876). Boltzmann,
Wien. Ber. 75 (2) 67 (1877); 76, 373 (1878); 78, 740 (1878). Wien. Alm. 1886; Nature 51, 413 (1895).
Vorlesungen über Gastheorie, Part I, §6. Ann. Phys. [3] 57, 773 (1896); 60, 392 (1897). Math. Ann. 50,
325 (1898). Burbury, Nature 51, 78 (1894). Bryan, Am. J. Math. 19, 283 (1897). Zermelo, Ann. Phys.
[3] 57, 485 (1896); 59, 793 (1896). [See also: P. and T. Ehrenfest, The Conceptual Foundations of the
Statistical Approach in Mechanics (Ithaca: Cornell University Press, 1959) (translated from Enc. Math.
Wiss. 4, 2, II, [Leipzig: B. G. Teubner, 1911]). D. ter Haar, Elements of Statistical Mechanics (New
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York: Rinehart, 1954), Appendix I; R. Dugas, La Théorie Physique au sens de Boltzmann (Neuchatel-
Suisse: Griffon, 1959) -TR.]

8 Maxwell, Phil. Mag. [4] 35, 187 (1868); Scientific Papers, Vol. 2, p. 45.
9 Planck, Mun. Ber. 24, 391 (1894); Ann. Phys. [3] 55, 220 (1895).
10 When we speak of a molecule pair, we shall always in the following mean a pair consisting of a

molecule of the first kind and a molecule of the second kind.
11 Maxwell, Phil. Mag. [4] 35, 187 (1868); Scientific Papers, Vol. 2, p. 45.
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